

Abstract

A diagnostic was developed to determine the $(\rho r)^2$ of a DT reaction via the resulting tertiary neutrons. High energy neutrons were incident upon a carbon disk which was activated via the ¹²C(n,2n)¹¹C reaction then placed in a Nal detector system to record the gamma rays emitted by the ¹¹C as it decayed. The six detectors were aligned on Cartesian axes which increased the counting statistics in comparison to the previously used two detector system. To ensure a uniform calibration, copper pellets mixed with graphite powder were activated using a PuBe source prior to being placed in the center of the 6 detector system. The calibrated system was then used to count back-to-back 511 KeV gamma rays emitted from positron annihilation from the ¹¹C decay.

Capabilities of the System

Six standard Nal detectors, each with ORTEC model 296 photomultiplier tube with preamplifier and bias supply, were connected to three ORTEC 855 dual spec amplifiers. The amplifier signals were then passed though three 100 Kilo-samples/sec Wilkinson ADCs before being processed in a multiparameter data acquisition system (Fast-ComTec MPA system). The replay function in the software allows the data to be re-analyzed in with different 2D gates after acquisition.

Detector setup at LLE with electronics connected

Detector Setup

Image of detector array produced with IViPP

Setting up the 3-D detector array at SUNY Geneseo

Six Nal detectors arranged on Cartesian axes with an activated source placed in the center. During acquisition, the detectors are shielded with lead to reduce background radiation due to outside sources.

Gamma X: A 3-D Detector Array for Carbon Activation

C. Brown, M. Cummings, S. Padalino. State University of New York at Geneseo V. Glebov, T. Sangster, T. Duffy. Laboratory for Laser Energetics, University of Rochester

Efficiency Tests

Tests were performed using activated copper pellets in diamond dust in a four detector array to determine the efficiency of the system. A saturation test was performed to determine the effect of distance from the detector on the number of counts. The efficiency of the system was determined to be about 10%.

Why Carbon?

- Carbon is ideal for the detection of primary and secondary neutrons for several reasons: • Sensitive to the fuel density-radius product $(\rho r)^2$ Insensitive to primary & scattered neutrons Robust, inexpensive, reusable and reliable

 $D_{ko} + T_{fuel} \rightarrow \alpha + n^{**}$ $n^{**} + {}^{12}C \rightarrow 2n + {}^{11}C$

MPA System with replay

Expected Counts:	2.14E6
leasured Counts:	212,618

Efficiency:

9.9%

 $^{11}C \rightarrow ^{11}B + e^+$

 $e^+ \rightarrow 2 \gamma_{511 \text{KeV}}$

Tests were performed to compare purified and unpurified forms of graphite and diamond powders activated in graphite and aluminum holders. The powders were activated after being inserted into the reaction chamber of the Omega Laser during a "high-yield" shot. A pair of sodium iodide detectors was used to count the number of resulting coincidence events. Each data set was fit with an exponential growth curve due to ¹³N decay, a linear background, and the growth curve of an unknown contaminant with a long half-life

Sources of

- ¹⁴N(n,2n)¹³N
- ${}^{27}Al(n,p){}^{27}Mg \longrightarrow {}^{12}C(p,\gamma){}^{13}N$
- (from H₂0) $p(n,p) \rightarrow {}^{12}C(p,\gamma){}^{13}N$

Shot #	Aerated/ Purified	l/ Particle Size I (μm)	Powder Material	Holder Material	Total Number of Coincidences Projected for t=∞		Background (Counts per Minute)	
					From Nitrogen	From Copper	PreShot	PostShot
51520	Purified	74	Graphite	Graphite	442.27	0	2.5693	2.1727
51518	Purified	74	Graphite	Graphite	654.98	0	2.5604	2.3623
51527	Aerated	74	Graphite	Aluminum	1021.33	9331.8	2.2879	1.7423
51524	Aerated	74	Graphite	Graphite	1091.42	0	2.1128	3.1029
51516	Purified	0.25	Diamond	Aluminum	1674.2	9564.9	2.4001	1.3196
51305	Purified	1	Diamond	Aluminum	1851.18	1059.33	2.992	2.3369
51529	Aerated	1	Diamond	Graphite	2379.62	0	2.6098	3.091
51326	Aerated	1	Diamond	Aluminum	2421	0	2.1727	2.1553
51324	Purified	80	Diamond	Aluminum	7534.45	1993.69	2.5693	2.1727

Data acquired using graphite powder in a graphite holder had significantly less counts due to ¹³N activation, as well as fewer counts resulting from copper contamination. Data acquired using the aluminum holders had increased amounts of ¹³N activation as well as significant numbers of counts from activation of copper. Diamond powder overall had more counts due to ¹³N activation.

- understanding of the system
- post real-time acquisition

Graphite vs. Diamond

18: Purified Graphite Powder in Graph	nite Holder
Accurate lune 10, 2009 11-141-10, AM EDT	
Acquirea: June 19, 2008 11:44:19 AM ED1	
bot Yield: 8.2E12 TCC: 17 cm Delay Time: 14:5 r	nin
5	
	O Data
	Growth Curve due to 13N decay
	Growth Curve due to Unknown Contaminant
	Linear Background
20 40 60 80	100 120
Time Elapsed (min)	
$N(1 -\lambda_1 t) + N(1 -\lambda_2 t)$	$\lambda_{2}t$ mt h
$[N_1(1-e^{-\alpha_1})] + N_2(1-e^{-\alpha_1})$	$(m_{2}^{2}) + m_{1} + b$
£ 13NI	
DT 'SN	Sources of of Cl

• ⁶⁵Cu(n,2n)⁶⁴Cu

⁶³Cu(n,γ)⁶⁴Cu

Future Expectations

- Further explore calibration to ensure accuracy and a full

- Implement the Replay function to allow for further analysis of data

- Use FCM6 with activated carbon samples to determine the number of tertiary neutron activations from DT-reactions