

ProofSpace Comprehension Quiz

Proof Techniques

Induction

1 Which of the following is the **most appropriate** way to end a proof by induction?

- (a) Since $P(k)$ implies $P(k + 1)$, the proposition is true by induction.
- (b) Since $P(k)$ implies $P(k + 1)$, and $P(1)$ holds, the proposition is true by induction.
- (c) Since $P(k)$ implies $P(k + 1)$ for all $k > 1$, and $P(1)$ holds, the proposition is true by induction.
- (d) Since $P(1)$, $P(k)$ and $P(k + 1)$ all hold, the proposition is true by induction.
- (e) Since the induction hypothesis holds, the proposition is true by induction.

2 Rank the steps below in the order you would do them in a proof by induction, where “1” is the first step and “5” is the last step.

- a) We will show $P(1)$ is true (the base case).
- b) We will use what we’ve established to show $P(k + 1)$ is true.
- c) We will state that we are using a proof by induction.
- d) We will assume $P(k)$ is true.
- e) We will conclude the proof.

3 Consider the following proof by induction.

Theorem: For all natural numbers, $1 + 2 + \dots + n = \frac{(n)(n+1)}{2}$.

Proof: We will prove the proposition by induction on n . Let $P(n)$ be the statement

$$1 + 2 + \dots + n = \frac{(n)(n+1)}{2}.$$

Observe that

$$1 = \frac{2}{2} = \frac{(1)(2)}{2} = \frac{1(1+1)}{2},$$

so clearly $P(1)$ holds. Now, assume that $P(r)$ holds for some r , that is, that

$$1 + 2 + \dots + r = \frac{(r)(r+1)}{2}.$$

Then,

$$1 + 2 + \dots + r + (r+1) = \frac{(r+1)(r+2)}{2}.$$

So by the induction hypothesis,

$$\frac{(r)(r+1)}{2} + (r+1) = \frac{(r+1)(r+2)}{2}.$$

$$\frac{(r)(r+1)}{2} + \frac{2(r+1)}{2} = \frac{(r+1)(r+2)}{2}.$$

$$\frac{(r+1)(r+2)}{2} = \frac{(r+1)(r+2)}{2}$$

which is true, so therefore $P(r+1)$ is true. Now, (use the concluding sentence you selected in question 1). \square

Which of the following **best** explains the **most significant error** of this proof?

- (a) Did not label the assumption as the induction hypothesis.
- (b) Assumed $P(1)$
- (c) Assume $P(r+1)$ and worked backwards to show it was true.
- (d) Used r instead of k .
- (e) The proof had no significant errors.