

ProofSpace Comprehension Quiz

Sets

Operations and Identities

1 Write out each of the following sets.

Let $A = \{5, 6, 7, 8, 9\}$.

Let $B = \{x \in \mathbb{N} \text{ such that } 3 \mid (x + 1)\}$.

Let the universal set U be \mathbb{Z} .

a) $B = \underline{\hspace{2cm}}$.

k) $\mathbb{N} - A = \underline{\hspace{2cm}}$.

b) $A \cup B = \underline{\hspace{2cm}}$.

l) $B - A = \underline{\hspace{2cm}}$.

c) $A \cup \mathbb{N} = \underline{\hspace{2cm}}$.

m) $A^c = \underline{\hspace{2cm}}$.

d) $B \cup \mathbb{N} = \underline{\hspace{2cm}}$.

n) $B^c = \underline{\hspace{2cm}}$.

e) $A \cap B = \underline{\hspace{2cm}}$.

o) $\emptyset^c = \underline{\hspace{2cm}}$.

f) $A \cap \mathbb{N} = \underline{\hspace{2cm}}$.

p) $B^c = \underline{\hspace{2cm}}$.

g) $B \cap \mathbb{N} = \underline{\hspace{2cm}}$.

q) $\mathbb{N}^c = \underline{\hspace{2cm}}$.

h) $A \times A = \underline{\hspace{2cm}}$.

r) $(A \cup B \cap \mathbb{N}) = \underline{\hspace{2cm}}$.

i) $A - B = \underline{\hspace{2cm}}$.

s) $(A \cup B)^c = \underline{\hspace{2cm}}$.

j) $B - U = \underline{\hspace{2cm}}$.

2 For each equivalence in Column A, choose the appropriate identity used from Column B. Each entry in Column B may be used no more than once.

Column A	Column B
1) $(A \cup B) \cap (A \cup B) = A \cup B$ _____	a) Associative Laws
2) $(A \cup B) \cap (C \cup A) = (C \cup A) \cap (A \cup B)$ _____	b) Commutative Laws
3) $(A \cup B)^{c^c} = (A \cup B)^c$ _____	c) Complement Basic Properties
4) $(A \cup B)^c = A^c \cap B^c$ _____	d) Complement Empty Set and Universal Set Properties
5) $U^c = \emptyset$ _____	e) DeMorgan's Laws
	f) Distributive Laws
	g) Empty Set Properties
	h) Idempotent Laws
	i) Subsets and Complements
	j) Universal Set Complements
	k) Universal Set Properties

3 Which of the following is equivalent to $A \cup (B \cap C)$?

- a)** $A \cup B \cap C$.
- b)** $A \cap (B \cup C)$.
- c)** $(A \cup B) \cap (A \cup C)$
- d)** None of the above options.

4 Which of the following is equivalent to $A \cup \emptyset$?

- a)** \emptyset
- b)** A
- c)** A^c
- d)** None of the above options.