

ProofSpace Comprehension Quiz

Functions

Composition and Inverses

1 Consider the following functions:

$$f : A \rightarrow B$$

$$g : B \rightarrow C$$

$$h : C \rightarrow A$$

Assume each function is a bijection.

For each of the following, decide if the entry given is a function. If it is, write down its domain and codomain.

a) f^{-1}	h) $h(g(x))$
b) g^{-1}	i) $g \circ h$
c) h^{-1}	j) $g \circ g$
d) $f(h(x))$	k) $g \circ g^{-1}$
e) $g \circ f$	l) $g \circ f^{-1}$
f) $h \circ f$	m) $g^{-1} \circ f^{-1}$
g) $f \circ f$	n) $h^{-1} \circ f$

2 Consider the following proof.

Theorem: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections. Then, $g \circ f$ is a surjection.

Proof: Let $y \in C$. Then, since g is surjective, there is an $z \in B$ such that $g(z) = y$. Since $z \in B$ and f is surjective, there exists an $x \in A$ such that $f(x) = z$. Thus, since $g(z) = y$, by substitution, $g(f(x)) = y$. Observe, therefore, that for any $y \in C$ there exists an $x \in A$ such that $g(f(x)) = y$. Therefore, $g \circ f$ is surjective, as desired. \square

Which of the following **best** explains the **most significant error** of this proof?

- (a) Used the wrong codomain.
- (b) Used the wrong domain.
- (c) Used an unproven fact.
- (d) Failed to take into account $f \circ g$.
- (e) The proof had no significant errors.