

ProofSpace: Sample Schedules

Two 75-Minute Meetings/Week

In this configuration, we suggest the following:

1. Each day, students watch one section of videos and complete the quiz before class.
2. In class, students work on the discussion problems.
3. Students work at home on the evaluated problems.
4. On the first day of each week, students hand in their solutions to the evaluated problems from *both* of the previous week's problem sets.

We suggest using 2 midterm exams and one final exam. In the schedule below, one test is after proof techniques, one after sets, and then a final that emphasizes functions and relations. However, you may alternatively choose to delineate these as a short test on logic, a test on proof techniques (including induction), and the final exam emphasizing sets, functions, and relations.

2 Day, 2 Midterms Format – 13 Weeks

26-Aug	Introduction; Pre-test
28-Aug	Statements, Connectives, and Truth Tables
2-Sep	Conditionals
4-Sep	Basic Proof Writing; Logical Identities
9-Sep	Number Systems, Quantifiers and their Negations
11-Sep	Unraveling Definitions; Direct Proofs and Counterexamples
16-Sep	Proofs by Contrapositive and Contradiction
18-Sep	Proving Implications with Disjunctions (Cases)
23-Sep	Review
25-Sep	Exam One – Logic and Proofs

30-Sep	Induction (Day 1)
2-Oct	Induction (Day 2)
7-Oct	Introduction to Sets (Elements, Empty Set, Subset, Power Set)
9-Oct	Proving Set Relations (Union and Intersection, Element Chasing, Set Equality, Disjoint sets)
14-Oct	Fall Break - No Class
16-Oct	Set Operations (Cartesian Product, Set Difference, Complement), Identities, and Set Algebra
21-Oct	Indexed Sets
23-Oct	Review
28-Oct	Exam 2 – Induction and Sets
30-Oct	Functions and Functions on Sets
4-Nov	Injections, Surjections, and Bijections
6-Nov	Inverses and Compositions
11-Nov	Cardinality
13-Nov	Cardinality
18-Nov	Equivalence Relations
20-Nov	Equivalence Classes
25-Nov	Extra Topics
27-Nov	Thanksgiving - No Class
2-Dec	Extra Topics
4-Dec	Review
16-Dec	Final Exam (Emphasis on Functions, Cardinality, and Relations)