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Abstract

The field equations for two non-local variables, equivalent to the
Einstein vacuum equations, are presented. These variables are the
holonomy operator associated with special paths and the light cone
cut function.

Starting from these equations, one shows via a perturbation argu-
ment, that a single, fourth-order equation for the cut function can be
derived. This single equation encodes the entire conformal structure
of a vacuum space-time. The same perturbation technique yields, via
guadratures, solutions to the vacuum Einstein equations to any order.



1 Introduction.

Among the many contributions that Roger Penrose has made to the field
of General Relativity, the use of non-locality and self-duality have played
a major, though probably not fully appreciated, role in the development of
the field[1]. Ashtekar’s formulation of canonical gravity [2] and subsequent
developments are based in an essential way on the idea of self-duality while
the theory of the non-linear graviton, H-space [3] and the present work are
based on both non-locality and self-duality. The work reported here thus owes
a major debt to Roger’s ideas and encouragement. We take this opportunity
to thank Roger for the years of collaboration and deep friendship.

In this reformulation of General Relativity [4] (a generalization of H-Space
ideas) two non-local variables, the holonomy operator associated with specific
closed curves (whose definition is based on duality) and the light cone cut
function of null infinity are used as the basic variables. They replace the usual
metric and connection of the space-time, which become derived concepts.

A purpose of this note is, first of all, to present an informal review of this
approach, trying to avoid technical details. We also wish to present some
further developments and a new point of view towards this work.

In Section 2 we review the main results of our reformulation, giving, in
symbolic form, the coupled non-local field equations for the holonomy opera-
tor and cut function. (An outline of the derivation of these equations is given
in Appendix A while the full set of equations is given in Appendix B.) We
then raise the question; whether it is possible, by increasing the diLerkntial
order of the equations, to eliminate the holonomy operator from the equa-
tions and obtain a single higher order equation just for the cut function in
terms of the free data, which would be equivalent to the (conformal) Einstein
equations [5].

In Sec. 3 a perturbation procedure to obtain this equation (which will be
referred to as the Light-Cone Cut Equation, LCCE) is discussed. In the linear
approximation, the resulting LCCE is found and shown to be the same as an
equation suggested by L. Mason[6]. The LCCE is also extended to second
order in the perturbation expansion where we can identify the interaction
between the self-dual and anti-self-dual parts of the free data. Finally, we
argue from the perturbation expansion that the full LCCE in principle does
exist.

In Sec.4 we use the same perturbation expansion to argue that the solution



space of the LCCE is four dimensional, i.e. that the LCCE, an equation for
local cross-sections of a line-bundle over the sphere, defines via the space of
solutions a four-dimensional manifold, the space-time itself. From these local
cross-sections, a (conformal) metric on this manifold can be obtained.

2 The Non-Local Field Equations.

We first give a brief discussion of our earlier work on encoding the conformal
properties of an Asymptotically Simple Space-time (ASST) in terms of a
single non-local function, the light-cone cut function[7].

We begin with an ASST, the physical manifol and its conformal com-
pletion, i.e. M plus the conformal boundary 1* T~. Though the radiation
data for the ASST could be chosen on either 1™ or 1~ for simplicity we will
make the definite choice, 17. 3

On 1™ we choose the usual “Bondi coordinates”, (u, ¢, {), where u labels
the Bondi slicing of 1™ and the complex stereographic coordinates, ((, Q)
label the sphere of null generators. Any 2-surface on I is given by some
function u = (¢, ¢) and will be referred to as a “cut” of 1 or simply as a
“cut”. We now consider any interior point of M, with local coordinates x2,
and construct its null-cone Ny. The intersection of Ny with 1™ is a preferred
cut, Cy, which we refer to as a “light-cone cut”. It will be locally described
by the function, the “light-cone cut function”, associated with the point x2,
ie.,

u=2Z(1,0). (1)

The function Z plays a dominant and critical role for us. First of all it
allows us to “find” the points on I that are connected, via null geodesics,
to x2. Second, it is the knowledge of the cut or cut function that determines
the apex, x2, of the light-cone, i.e. the light-cone cuts determine the space-
time points. Most important is the fact that knowledge of Z is equivalent
to knowledge of the conformal structure of M. This can be seen from the
following argumept: Note that u = Z(x?, ¢, {) has two meanings; the one just
given, Cx = Ny T~ i.e., the light cone cuts, and the second, which arises
from holding (u, ¢, {) constant but varying the x?, yields a characteristic
surface, i.e. all points x? that get to (u, ¢, ) on 1™, via null geodesics. This



surface is the past cone of the point (u, ¢, Z_). Taking the gradient of Z at a
fixed point, X2, we obtain, by definition, a null covector

L= 2,2, Q).

By letting ({, {) range over the sphere, the null covector ranges over the
cone of null “directions” at x2, thus yielding the conformal structure. From
Z, one can explicitly construct the conformal metric[7].

It had long been our expectation that a simple equation for Z of the form

82z = Nz,82,82,882,7, 7, data) )

could be found that would encode the conformal structure of the vacuum
Einstein equations. (The characteristic data for general relativity is given
by the Bondi shear, og , a complex function on 1*.) This expectation was
based on the observation that many vacuum space-times could be found from
an equation of that form, e.g., the regular solutions of

32z =0, (3)

yields the Minkowski space light-cone cuts and the regular solutions of the
“good cut equation”[3]

3272 = 05(2,2,0), 4)

with og(u, ¢, {) the free Bondi data, yields the cuts of H-spaces.

Note that (3) and (4) are equations for the angular behaviour of the func-
tion Z; no mention is made of space-time points. The idea is that the solution
are to depend on a four parameter set, i.e., four constants of integration x2,
that define a four-manifold, the space-time itself. The functional form of Z,
evaluated at the point x? yields the conformal metric. After considerable
e Lart, we no longer believe that an equation of the form (2) can be found for
general vacuum space-times. On the other hand two alternatives to (2) have
arisen.

1. Lionel Mason has argued, from the vanishing of the Bach tensor[6],
that instead of (2), there should be a single fourth-order equation, the
Light Cone Cut Equation (LCCE), of the form

8282z = F[z, data]. (5)
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This is a generalization of (2), which should encode the conformal vac-
uum Einstein equations. We emphasize that the form of F is not known
at the present time. From general considerations it is however surmised
that it will be a universal non-local functional of both Z and the char-
acteristic data, the Bondi shear og(u, , {). Again the solution space of
the LCCE is to be a four parameter set, the space-time manifold itself
with the solutions yielding the conformal metric on the manifold. We
will return to this issue in Sec. 4.

. A second approach to the generalization of (2) came with the realiza-
tion[4] that by introducing of a set of auxiliary variables, (namely the
components of the holonomy operator, H, associated with a special set
of closed paths) we could write a pair of coupled angular dilerkntial
equations that encoded the full vacuum Einstein equations, including
the conformal scaling. Though in detail they are reasonably compli-
cated, (see Appendix B) symbolically they have the simple form

32z = L[Z, H,data], (6)
dH = K[Z,H,data] (7)

The point of view towards (6) and (7) is to be similar to that of (5) in
that they are both angular di Lerential equations whose solution space
defines the manifold and whose solutions Z and H yield the vacuum
Einstein metrics. (Z by itself only yields the conformal metric but with
H, the scaling is determined.) An immediate question arises: what
relationship, if any, is there between (5) and (6)-(7)? One would ex-
pect, since Z encodes the conformal metric, that by taking two angular
derivatives of (6), the H could be eliminated via (7) and an equation
of the form (5) obtained. This would be an important result since it
would yield the explicit form of the F. Though we believe that this
calculation can be explicitly carried out, we, nevertheless, have not yet
succeeded in doing so - the calculations being simply too complicated.
However, a perturbative procedure to obtain F is given in Sec. 3. We
plan to return to this issue in the future.



3 Perturbations.

It is the purpose of this section to take the explicit form, from Appendix
B, of the symbolic equations (6) and (7), expand them in powers of a small
parameter [Wwhich measures the deviation from flatness and eliminate the H
from the equations term by term leaving finally an equation only for the Z,
i.e. the LCCE. From the assumption that [énters as a multiplicative factor
of the Bondi shear, i.e. via [ak, it becomes clear that the expansions have
the form

Z=2Zo+ [+ 7, + ... (8)

€n = €0a + (B, + o, + ..

H = [E|1+|__2-H2+,., (9)
h:r_z-hz"'li‘hg"'...

By direct substitution of (8) and (9) into (51) we have as the only zeroth

order term
32Z4,a=0, - 82zZ,=0, (10)

Applying 3 twice yields the zeroth order LCCE,

3282z, = 0, (11)

whose solution is
Zo = Xa@
with

— — — — — 1 —
WD = Vs 1+ UL+ L=, ~1+20; P = 5(1+20).
Continuing the expansion in Egs. (45)-(55), the first order terms yield
822,13 = (6a+H O —3H)Zo,a +2H D88 20, —2H 8 70,2 +dH O3 200
IHY = —HE,
JHD = 2H§, (12)
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5Hé:) = 563,

JHEY = —H{,
JHEY = 2n§,
éHét) - dO'B

By applying 32 to the first equation and eliminating the H via the second
set we obtain

328°Z1,0= 8266 Zo,a) + 0206 Z0,a), (13)
which immediately integrates to
32822, = 8264(2,) + 8208(Zy), (14)

the first-order LCCE. Since Z, is known and there is a simple Green’s function
for the operator d2d2 one can write the solution Z; as a sphere integral over
the data.

(Note that if (14) is written as

32827 = §%65(2) + 820s(2), (15)

and understood to be an equation for Z accurate only to first order, it is
equivalent to the linearized (conformal) Einstein equations.)

With considerably more e [ant this expansion procedure can be continued,
and the second order H eliminated, obtaining the LCCE accurate to second
order,

qufzz = §%65(2) + 8%0(2) — ) (16)
38 (A3, o) drZdr r ™

in

3 — — —
+ [Zé I (A, pm) — 2,y

r

An important observation is that the equation is no longer local. It now
depends on radial integrals along the null geodesics from the field point to
I *. This is a manifestation of the non-Huygens behaviour of the non-linear
Einstein equations. It is also an example of Penrose’s zig-zag integrals[8].

It is easy to see that at the nth order of the approximation, the coe Lciehts
of the H,, are exactly the same as the coe [ciehts of the H,—; at the (n-
1)th order. From this observation it follows that H can be systematically
eliminated at all orders. Assuming that the procedure converges, the H
could, in principle, be eliminated - leaving an exact form for the LCCE.
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4 Conclusion

We have adopted the point of view that the (conformal) Einstein equations
can be rewritten as a single non-local, non-linear angular equation of the
form _

32327 = F[z, data] (17)

where the F is a universal functional of the Z and data. We have expressed
the idea that this equation, the LCCE, which at the start contains no mention
of space-time itself, nevertheless somehow defines the space-time as the space
of solutions. The set of solutions, (with some as yet unspecified regularity
condition) are to be parametrized by four “constants of integration”, which
become, by definition, the local coordinates x? of the space-time manifold.
The solutions thus would have the form

u=2zZ(2,0). (18)

The question is why should one expect or hope that the LCCE would have
such a property. First of all one had the same situation with the “good cut
equation”, Eq. (4) - it was not clear why it should have a four parameter
set of regular solutions. Basically the reason is that the kernel of the 32
operator is four dimensional. This was used first in a perturbative argument
for the four dimensionality of the solution space and later used with an index
theorem argument.[9]. _

Basically we have the same situation here. The kernel of 3242 is again
four dimensional, i.e. the Z, depends on four parameters, x2. In an iterative
scheme, the Z, continually gets reinserted in as the *“driving” term for the
higher approximations, always yielding the solutions as functions of the same
four parameters, x2.

This certainly does not constitute a proof of the four dimensionality of
the solution space - it is only a plausibility argument. One hopes that with
an exact form for F a proof via an index theorem will emerge. It is perhaps
worth mentioning that once the cut function is obtained. i.e., u = Z(x?, ¢, (),
the construction of the conformal vacuum metric is a straightforward Kine-
matical procedure[7].

There is an important caveat to the above remarks that must be stated
and explained. For the sake of simplicity and clarity we omitted the dis-
cussion of a serious structural complication in Eqg.(17) and its perturbative
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version Eq.(16). One sees that there are both integrals and derivatives with
respect to the (as yet undefined) variable r in F. We will now define r and
explain its role in the *“structural complication”.

Assuming that we know

u=2z(2127),

we can define 0 = §Z(x:2,0), ® = 8Z(x*¢,0) and r = 38Z(x*, 2, 0).
These four equations can be inverted, (for Minkowski space and spaces
close to Minkowski space) yielding

x% = x%(u,w, w, r;Z,Z_).

With this relationship, dilerentiation and integration with respect to r
becomes well defined, e.g., A,y = A,a %

The complication is now clear: the functional F depends on both the r
derivatives and integrals. These are however only defined when the solutions
are known. Eg. (17) is thus, in some sense, not meaningful. On the other
hand if a function Z(x?, ¢, {) exists, it can be tested to see if it satisfies (17).
In addition (17) has a perfectly well defined meaning in a perturbative sense:
at the nth order of a perturbation calculation the functional F depends on the
already known n-1 terms, all of which are known functions of r. Though we do
not fully understand Eq.(17), it appears to have a meaning in a ”bootstrap”
sense; the solutions Z define the x? and hence r, while the r is used to define

the equation (17) itself.



Appendix A

In this appendix we give a brief review of a slightly unconventional way
of rewriting the Einstein equations[10] and then use these equations as a first
step in deriving field equations for the holonomy operator.

We start with the ordinary Yang-Mills equations on an unspecified Lo-
rentzian manifold, for the O(3,1) gauge group. In the vector representation,
the connection ya} will have (in addition to the space-time index ‘a’) a pair
of Lorentzian internal indices, i, j which can be raised and lowered with the
(internal) Minkowski metric so that the connection will be antisymmetric in
these internal indices and hence can be decomposed into a self and anti-self-
dual pair, i.e.

yal =y 4y (19)
where self-and anti-self dual are defined by
0 =y, Dl (20)
and duality by
=2 My (21)

where Gl is the alternating symbol with [gdo3 = —1.

The curvature tensor, the Bianchi identities and the Yang-Mills field equa-
tions then also decompose into the (internal space ) self and anti-self dual
parts, i.e. there is no coupling between the self and anti-self dual parts. One
has (suppressing the internal indices)

-+ -
Fap = ab + I:ab

where the self and anti-self-dual curvatures are constructed from the self and
anti-self-dual connections. The Bianchi lIdentities become

DieHan ™ + [Yje » Fagl = 0. (22)
and the Yang-Mills field equations are
CEE + [y**, F3] =0. (23)
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One is thus dealing with two independent Y-M connections and fields. It
is possible to further decompose each of the two curvature tensors now on the
space-time indices, into its space-time, self and anti-self dual parts, where we
have used the existence of the Lorentzian metric. We will refer to space-time
dual statements as left duals and internal dual statements as right dual. The
full curvature then has four terms,

1. the left and right self dual part, *F;

2. the left anti-self dual and right self dual part, F;

3. the left self dual and right anti-self dual part, “F_;

4. the left anti-self dual and right anti-self dual part, 7F.

Parts (1) and (2) are coupled as are parts (3) and (4), in the sense that
they depend respectively on the y* and y~. If we now make the algebraic
assumption that the curvature parts, (2) and (3), both vanish, i.e.

r= and *Fp =0, (24)
then we are left with two curvatures, *F; and “F,, curvatures, coming re-
spectively from the two independent connections. This algebraic assumption
has automatically imposed the Yang-Mills field equations on the connection.
The field equations in each case are identical to the Bianchi identities, i.e.
Eq.(23) follows from (22) after dualing. We are thus dealing with two Yang-
Mills fields, a (left) self and a (left) anti-self dual Yang-Mills field.

To this system we now add another variable, namely a space-time or-
thonormal tetrad A!, compatible with the unknown Lorentzian metric, i.e. a
soldering form to be used to connect the space-time indices with the internal
indices, e.g., AiAL = A,. The role of Al will be to connect or relate the two
(originally) independent connections y* and y~ to the space-time geometry.
This relationship is given by the Cartan structure equation

el = (V7 + Y )y (25)
Egs. (24) and (25) are equivalent to the vacuum Einstein equations with
cosmological constant[10].
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We now introduce the holonomy operator associated with the SO(3,1)
connection y, introduced in Eq. (19). In symbolic form this operator is

defined as
1

H=Pexp[ Yadx?]
C

where C is an arbitrary closed path with an initial point in space-time and
Pexp denotes the path ordered exponential.

Note that this operator is defined on the space of loops, an infinite di-
mensional space. We will, however, restrict ourselves to two special six-
dimensional subspaces of loop-space. Essentially these loops are the infinites-
imally narrow, long triangles with apex at x?, bounded by two neighboring
null geodesics and connected by the geodesic deviation vector at 1.

More precisely, we denote by [L{¢, {) the null geodesic that starts at x@
and ends at the (¢, ) generator of 1*. We introduce two types of paths,
defined as the infinitesimal triangles L.(d {) (and L ()) formed by two
neighboring geodesics (¢, {) and L{C+d{, ) (and L{{, ) and LAC, {+dQ))
and connected at 1™ with the connecting vectors M2 (and M?2) on 1*. Of
course [, ahd L[, Doth lie on the null cone C4. Since these paths are very
narrow, the holonomy operators associated with them will be the identity
operator plus a correction term for each of them. It is the correction terms
that are referred to as the dilerential holonomy operators associated with
the paths [ (d (), and [({ {). We denote them by

H(x3,2,0)dl , H(x®,Z,0)dL. (26)

A second basic variable, the light cone cut function Z(x?, ¢, (), (see Sec-
tion 2) contains or codes the conformal information of the underlying con-
formal structure. It is defined as the intersection of the light cone emanating
from an interior point x* and 1%, the future null boundary attached to an
ASST.

One can show[7] that all the components of the conformal metric are
explicit functions of

A(X®,2,0) = 82Z. (27)

As we will see below, Z and H must be coupled if the holonomy operator
Is associated with the space-time metric connection. However, at this point
it is convenient to think that H is associated with an independent SO(3,1)
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Yang-Mills connection whereas Z(x?2, ¢, ) is assumed to be a known function
that describes the conformal gravitational background.

One shows[4], using a non-abelian version of Stoke’s theorem, that H is
related to the Yang-Mills curvature tensor in the following way,

1
H=  (F5+Fg) PM%s=h™M +H®O (28)

H= (Fi+F7) BM%s=H®™ +hO), (29)
So

where the H and h with the plus and minus signs denote the self-dual and
antiself-dual parts of H and H, and are defined in the obvious manner from
the integrals of the F’s with the plus and minus signs.

One can invert these equations and reexpress F and F_, in terms of H
and H[4]. This relation is symbolically written as

Fp=FLz(H®,hO) (30)

with an analogous equation for F_;. If we now impose Eq. (24), i.e., *F,, =
on Eq. (30), then H®) and h™) are no longer independent variables. They
become related by[4]

*Fo(HO, h) =0, (31)

or in detail,
07O +8[0AMD L = [0 AMHD] + [0 HDL  (32)

W\yere r denotes a radial parameter defined by Z on the null geodesic, § =
(' g—=1/Ar,qg=1—ANA A\, and A(X, ¢, ¢) is the function introduced in Eq.
(27). Note that all these quantities are obtained from the assumed known Z.

One can explicitly solve this equation for h™) by quadratures and write
the solution as h(?) = J[H)], a linear functional of H™). In this sense, we
consider h(™) as derived from H), with H™ our basic variable.

Finally, we address the issue of obtaining field equations for H™). The
idea is to integrate the Bianchi identities, which become field equations by
virtue of (24), on the infinitesimally narrow but infinitely long volume AV
bounded by a cap on 1" and the triangular regions A (¢, {), Ax(¢, { + dQ),
Dy (C,0) and Ay (C +dg, Q) (i.e., a pyramid-like figure with apex at x? and
base at infinity). Integrating (22) over AV, we obtain[4]

JHO =3O — ALY+ [HO — AL WO — A1 =0 (33)
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with

AL = AD(Z,2,7)

and AM)(u, Z, 7) the “free data” at 1*. That is, Ag is the restriction of the
Yang-Mills data to the light cone cut. The idea then, is to find solutions of
this equation that are regular on the cut. The non-Huygens nature of the
original field equations is explicitly exhibited in h(?) which is an integral func-
tional of H™), Equation (33) is equivalent to the anti-self dual Yang-Mills
equations for an O(3,1) gauge group on an asymptotically simple background
given by Z(x, ¢, ().

We now assume that H is the holonomy operator associated with the
metric connection of the ASST and that the metric of the space-time sat-
isfies the vacuum equations. It is well known[11] that for ASST, the spin
coe [ciehts have a very simple asymptotic form, with only one complex de-
gree of freedom. Thus, the free data A, which is an asymptotic component of
the connection y, assumes a very restrictive form, given by A = A® + A

with
“4 0 0 -z
“_E 0 -1 0
AiTTFEd 1 0 o (34)
6Gs 0 0 0
and
o'o -1 0o M
_ oo 0 0
A =FEdo oo (39)
00 00

with og the gravitational data[4]. On the other hand, these equations are
clearly incomplete since the cut function that would enter into the equations
for H should be obtained from knowledge of the very metric we are trying to
solve for.
The idea then, is to relate the two variables H and Z. This relationship
completes our set of equations equivalent to the vacuum Einstein equations.
A sketch of the derivation of this relationship begins with the equations[4]

Jek = (HY — A )el,  dek = (HY — AK))el, (36)
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a requirement that the null space-time tetrad eX is parallel propagated from
I * to the field point x® along a null geodesic LJ{Z, ) using the Yang-Mills
connection y* + y~. The next step is to relate this tetrad to the natural
gradient basis

(Z,2,882.4.82,2.8Z.2)

This is done by choosing one of the “legs” as
e =0LI=2Z.,. (37)
It immediately follows from Eq. (34) that
370 =m, +H%L = m, + HO% L+ HO.m, + HO_m,, (38)

and _ _ _ _ _
dZ,=m,+H% =m, +H% L+ H% m, + H°_m,. (39)

Taking d of (36) or d of (37) and using (34) yields
887 =na— LH (H™; + dHC + HO(H — A))el. (40)

Equations (37)-(40) are the needed relationship between the gradient basis
and the null tetrad. This allows us to go back and forth between these two
basis. We now address the final issue of relating Z and H. Observe that if
we take d of (38), use (36), and eliminate the null tetrad via (37)-(40), we
obtain an equation solely involving Z (and derivatives) and H. (In a similar
form the conjugate equation is obtained.) This equation is explicitely given
in the next appendix.

Appendix B

We present here our final set of equations in full detail. They are given
in terms of Z, H®) and h®) pearing in mind that the latter is expressed
completely in terms of H®™),

First recall that

Hij = h$? +H{” (41)
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Since the symbols (+) and (—) represent self-dual and antiself-dual indices
in the internal space, several components of (H™), h(™) H™® h() are equal
to zero. Using a null basis in the internal (i, j) space and denoting the range
of i,j by (0,1, +,—), the non-trivial components are given by

HO HS HD)Y (0,082, hD) (43)

HOHEOHDY (0,02, hED) (44)

Note that when the internal indices are raised or lowered, the 0 goes into 1,
and the + into — with a change in sign. Similar changes exist for the other
two components.

The explicit form of the self-dual SO(3,1) equations (33) for H in terms
of those components are:

IHE — 8h5Y + HEPRD — hPHED + HEY — hD — GeHO =0 (45)
D —3n2 —21n2 +2hgl)Hl_ —2H$ =0 (46)
— dhg,) — 2HG hfy + 2§ HG + 2hGy + 265 Hg,) = —35s. (47)

and

JHS) — g h$p + H(+)h(+) h$OHT + HEP —h{D —65HT) =0 (48)
éH("‘) ("‘) ("‘)h("‘) + 2h(+) ("‘) _ 2H(+) =0 (49)
JHED —anfD - +)h(+) + 2h(+) &7 +2n) + 2oBH§1) = —dds. (50)

where we have used Egs. (34) and (35), the explicit form of A.
The equations relating H and Z are

32Z,,=2HONY + 1jn, +

dh{Y —2HS —2h{PH (_)]ma +[FHD — 2HOh{ M, + (51)
[(65 +he2) (1 +hi?) — HiZ = 3hGy — dHG + (hGy + Ho')? + HiZHG ]G
with
Q: 21 a (52)
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my = éZ,a - Hooz,a _H0+ma - HO_ma’ (53)

Ma = 3Z . — H%Z,a —H®, My — HO_ M, (54)

Na=08Z4+Z,a—(H i +dH% + HO (H — A)Xpel. (55)

These last equations are simply Eqgs. (37)-(40) which have been reorganized
in a fashion more suitable for a perturbation expansion.

Acknowledgements: We thank L. Mason for many stimulating and
enlightening discussions.
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