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Instructor: Prof. Cesar Aguilar
Department of Mathematics, SUNY Geneseo
South 325A, aguilar@geneseo.edu

1. Comparison Tests

The direct Comparison Test has two parts.

Comparison Test. Suppose that {an} and {bn} are sequences that are non-negative, in
other words, an ≥ 0 and bn ≥ 0. Suppose further that an ≤ bn for all n ≥ 1.

(i) If
∑

bn converges then
∑

an also converges.

(ii) If
∑

an diverges then
∑

bn also diverges.

The Comparison Test is very intuitive. For example, if
∑

bn = B converges and an ≤ bn then
∑

an ≤ B.

So the sum
∑

an is finite and less than or equal to B. On the other hand, if
∑

an diverges then since

an ≥ 0 then
∑

an = ∞. Therefore, since an ≤ bn then the sum
∑

bn also diverges. These are not

precise mathematical statements but they capture the main idea. The proof of the Comparison Test

would use partial sums of the sequences.

The truth about the Comparison Test: To be frank, the Comparison Test is a good method to

apply when you already have a pretty good idea about whether the series you are given converges or

diverges. If you have a pretty good idea that
∑

an converges, then to apply the Comparison test, you

want to find a series
∑

bn that you know converges and also that an ≤ bn. Similarly, if instead you

have a pretty good idea that
∑

an diverges then you want to find a series
∑

bn that you know diverges

and also an ≤ bn. By now, you should have a list of series that you know converge or diverge.

Example 1: Determine if the series converges or diverges.

∞∑

n=1

n+ 2

3n2 + 1

Solution: As a first test, we compute that

lim
n→∞

(
n + 2

3n2 + 1

)

= 0,

and so we cannot conclude based on this that the series diverges. Now, when n is very large, n+2 ≈ n

and 3n2 + 1 ≈ 3n2. Thus, when n is very large

n+ 2

3n2 + 1
≈ n

3n2
=

1

3n

We know that
∑∞

n=1
1
3n

diverges because it is a constant multiple of the Harmonic series. So, we have

a good idea that the series we are given probably diverges. Let’s now be precise and find a sequence
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cn such that cn ≤ n+2
3n2+1

and such that
∑

cn diverges. First of all, n < n + 2 and therefore

n

3n2 + 1
<

n+ 2

3n2 + 1
Inequality (1)

Now, 3n2 + 1 ≤ 3n2 + n2 for all n = 1, 2, 3, . . .. Then, 1
3n2+n2 ≤ 1

3n2+1
for all n, and multiplying both

sides by n we get
n

3n2 + n2
≤ n

3n2 + 1
Inequality (2)

Combining Inequality (1) and (2), we get

n

3n2 + n2
≤ n

3n2 + 1
<

n+ 2

3n2 + 1
.

Now,
n

3n2 + n2
=

n

4n2
=

1

4n
and thus

1

4n
≤ n

3n2 + 1
.

The series
∑

1
4n

diverges and therefore by Part (ii) of the Comparison test,
∑

n
3n2+1

also diverges.

Example 2: Determine if the given sequence is convergent of divergent.

∞∑

n=1

1

n +
√
n

Solution: We first compute that limn→∞
1

n+
√
n
= 0, and so the sequence might be convergent. Now,

when n is very (very) large,
√
n is very small compared to n. So, when n is large

1

n +
√
n
≈ 1

n
.

So, we have reason to believe that
∑

1
n+

√
n
is divergent. To be precise about this, it is clear that√

n ≤ n for all n = 1, 2, 3, . . .. Therefore, n+
√
n ≤ n + n = 2n, and therefore,

1

2n
≤ 1

n+
√
n
.

The series
∑

1
2n

is divergent, and therefore by Part (ii) of the Comparison Test, the series
∑

1
n+

√
n
is

also divergent.

Example 3: Determine if the given sequence converges or diverges.

∞∑

n=1

1

n3n
.

Solution: The denominator n3n grows faster than 3n and we know that the Geometric series
∑∞

n=1
1
3n

converges. So, we have good reason to believe that the given series converges. To see this, we first note

that 3n ≤ n3n for n = 1, 2, 3, . . .. Thus,
1

n3n
≤ 1

3n
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The series
∑∞

n=1
1
3n

is a convergent Geometric series, and thus by Part (i) of the Comparison Test, the

given series
∑∞

n=1
1

n3n
is also convergent.

From the examples above, we can see that applying the Comparison Test takes some ingenuity and

insight. The next test for convergence/divergence, called the Limit Comparison Test, is a direct appli-

cation of the Comparison Test but is a bit more easy to apply provided you can do limits. The Limit

Comparison Test is particularly useful for series
∑

an where an is a rational function of n.

The Limit Comparison Test. Suppose that an > 0 and bn > 0 for all n. Compute

lim
n→∞

an
bn

= c

(i) If c > 0 then
∑

an and
∑

bn both converge or both diverge.

(ii) If c = 0 and
∑

bn converges then
∑

an converges.

(iii) If c = ∞ and
∑

bn diverges then
∑

an diverges.

Let’s now use the Limit Comparison Test to redo the three previous examples where we used the

Comparison Test. You can decide which test is easier to apply.

Example 4: Determine if the given series converges or diverges.

∞∑

n=1

n+ 2

3n2 + 1

Solution: Here an = n+2
3n2+1

. When n is very large, n+2
3n2+1

≈ n
3n2 = 1

3n
, and we know that

∑
1
3n

diverges.

So we have good reason to believe the given series diverges. Let bn = 1
3n
. Then

lim
n→∞

an
bn

= lim
n→∞

n+2
3n2+1

1
3n

= lim
n→∞

(n + 2)3n

3n2 + 1

= lim
n→∞

3n2 + 6n

3n2 + 1

= 1

Therefore, since
∑

1
3n

diverges, then by Part (i) of the Limit Comparison Test,
∑∞

n=1
n+2

3n2+1
diverges

also.

Example 5: Determine if the given sequence is convergent of divergent.

∞∑

n=1

1

n +
√
n
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Solution: Here an = 1
n+

√
n
. When n is very large,

√
n is much smaller than n, so n+

√
n ≈ n. Hence,

when n is large, an = 1
n+

√
n
≈ 1

n
, and we know that

∑
1
n
diverges. Now,

lim
n→∞

an
1
n

= lim
n→∞

n

n+
√
n

= lim
n→∞

n

n(1 + 1√
n
)

= lim
n→∞

1

1(1 + 1√
n
)

= 1 could’ve used L.H.R. also

Therefore, since
∑

1
n
diverges, then by Part (i) of the Limit Comparison Test,

∑∞
n=1

1
n+

√
n
also diverges.

Example 6: Determine if the given sequence converges or diverges.

∞∑

n=1

1

n3n
.

Solution: Here an = 1
n3n

. Let bn = 1
3n
. Then

lim
n→∞

an
bn

= lim
n→∞

1
n3n

1
3n

= lim
n→∞

3n

n3n

= lim
n→∞

1

n

= 0

Therefore, since
∑

1
3n

converges, then by Part (ii) of the Limit Comparison Test,
∑

1
n3n

also converges.

Example 7: Determine if the given sequence converges or diverges.

∞∑

n=1

2n + n

7n2n

Solution: Here an = 2n+n
7n2n

. Let’s first test for divergence:

lim
n→∞

an = lim
n→∞

2n + n

7n2n

= lim
n→∞

2n(1 + n
2n
)

7n2n

= lim
n→∞

(1 + n
2n
)

7n

= 0
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Thus, we cannot conclude that the given series diverges and we need to do further analysis. Now, when

n is large 2n + n ≈ 2n because exponentials grow much faster than polynomials. So, when n is large

an = 2n+n
7n2n

≈ 2n

7n2n
= 1

7n
. We know that

∑
1
7n

diverges so we have good reason to believe that the given

series diverges. Let bn = 1
7n
. Then

lim
n→∞

an
bn

= lim
n→∞

2n+n
7n2n

1
7n

= lim
n→∞

(2n + n)7n

7n2n

= lim
n→∞

2n + n

2n

= lim
n→∞

2n(1 + n
2n
)

2n

= lim
n→∞

(

1 +
n

2n

)

= 1

Therefore, since
∑

1
7n

diverges, then by Part (i) of the Limit Comparison Test, the given series
∑∞

n=1
2n+n
7n2n

also diverges.

Example 8: Determine if the given sequence converges or diverges.

∞∑

n=1

(lnn)2

n3

Solution: Here an = (lnn)2

n3 . Let’s first test for divergence:

lim
n→∞

an = lim
n→∞

(lnn)2

n3

∞
∞ so use L.H.R.

= lim
n→∞

2(lnn) 1
n

3n2

= lim
n→∞

2(lnn)

3n3

∞
∞ again so use L.H.R.

= lim
n→∞

2 1
n

9n2

= lim
n→∞

2

9n3

= 0

So, we cannot conclude that the series diverges and we need to do further analysis. A useful fact

that we can use is that for every n > 0, it holds that ln(n) <
√
n. The graph of f(x) = ln(x)

and g(x) =
√
x on the interval [1, 10] are shown in Figure 1.
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Figure 1: Graph of f(x) = ln(x) (red-solid graph) and g(x) =
√
x (blue-dashed graph)

Therefore, since ln(n) <
√
n then squaring both sides yields (lnn)2 < n. Therefore,

an =
(lnn)2

n3
<

n

n3
=

1

n2
.

The series
∑

1
n2 converges, and therefore, by the Comparison Test Part (i), the given series

∑ (lnn)2

n3

also converges.

Example 9: Determine if the given series converges or diverges.

∞∑

n=1

1

n1/2

Solution: The given series is a p-series
∑

1
np with p = 1

2
. We know that a p-series converges only

if p > 1, so this series diverges. Let’s use the Limit Comparison test to show this. The series
∑

1
n

diverges and

lim
n→∞

1
n1/2

1
n

= lim
n→∞

n

n1/2

= lim
n→∞

n1/2

= ∞

Therefore, by Part (iii) of the Limit Comparison test, the series
∑

1
n1/2 diverges. In fact, this same

procedure shows that if 0 < p < 1 then the p-series
∑

1
np diverges because

lim
n→∞

1
np

1
n

= lim
n→∞

n

np
= lim

n→∞
n1−p = ∞

whenever 1− p > 0, which is the same as saying that p < 1.
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2. Absolute Convergence Test

Consider the series
∑∞

n=1
(−1)n

n2 , so that here an = (−1)n

n2 . This is an example of an alternating series;

the terms of the series alternate between positive and negative. This series is not Geometric, we cannot

apply the Integral Test because some of the series terms are negative (go read the Integral Test to

see), and we cannot apply the comparison tests because they require that the series terms also be

non-negative (go read the comparison tests to see). However, we know that the series of the absolute

values
∑∞

n=1 |an| =
∑∞

n=1
1
n2 converges and so we might use this fact to conclude that the original series

∑∞
n=1 an converges. This is in fact true and it is called the Absolute Convergence Test.

Absolute Convergence Test. Let
∑

an be a given series. If the series of absolute values
∑

|an| converges then
∑

an also converges.

The Absolute Convergence Test is useful when some of the terms of the series
∑

an are negative, which

is the case for alternating series. Because the series
∑

|an| has non-negative terms, we may use the

Integral Test or the Comparison Tests on the series
∑

|an| to show that it converges, if possible.

Example 10: Determine whether the given series converges.

∞∑

n=1

(−1)n

n2

Solution: Here an = (−1)n

n2 and thus |an| = |(−1)n|
|n2| = 1

n2 . The p-series
∑∞

n=1
1
n2 converges. Therefore,

by the Absolute Convergence test, the series
∑∞

n=1
(−1)n

n2 also converges.

A series
∑

an for which
∑ |an| converges is somewhat special; not only does

∑ |an| converge but by

the Absolute Convergence Test,
∑

an also converges. Hence, for such a series, we will say that
∑

an is

absolutely convergent or that it converges absolutely.

Example 11: Determine whether the given series converges.

∞∑

n=0

8(−1)n

(3 + (1/n))2n

Solution: The series contains negative terms so we cannot apply the Integral Test or any of the

Comparison Tests. It is clear that limn→∞ an = 0, so we cannot conclude that the series diverges.

Consider the absolute value series

∞∑

n=0

|an| =
∞∑

n=1

8

(3 + (1/n))2n

When n is large 1
n
≈ 0, and so the terms of the series behave like

8

(3 + (1/n))2n
≈ 8

(3 + 0)2n
=

8

32n
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We know that the series
∑

8
32n

converges (it is Geometric with r = 1
32
) and so we have good reason to

believe that
∑ |an| converges. In fact, by direct comparison

8

(3 + (1/n))2n
<

8

32n

The series
∑

8
32n

converges and therefore by the Comparison Test Part (i), the series
∑

|an| =
∑

8
(3+(1/n))2n

also converges. Thus, by the Absolute Convergence test, the series
∑

an =
∑ 8(−1)n

(3+(1/n))2n

converges also.

Example 12: Determine whether the given series converges.

∞∑

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ · · ·

Solution: This is an alternating Harmonic series. The absolute value series
∑∞

n=1 |an| =
∑∞

n=1
1
n

diverges but we cannot conclude that
∑∞

n=1
(−1)n

n
diverges because the Absolute Convergence

Test is a test for convergence and not for divergence. Thus, we cannot conclude anything

about the given series with the known tests thus far.

Example 13: Determine whether the given series converges or diverges.

∞∑

n=1

cos(n)

n2

Solution: Because cos(n) takes on both negative and positive values for n = 1, 2, 3, . . ., we cannot

apply the Integral Test or the Comparison Test. Using the Squeeze Theorem, we can show that

lim
n→∞

cos(n)

n2
= 0

and therefore we cannot conclude that the series diverges. Consider the series of absolute values
∑

|an| =
∑ | cos(n)|

n2 . For all n = 1, 2, 3, . . . , it holds that | cos(n)| ≤ 1 and therefore dividing this

inequality by n2 we obtain
| cos(n)|

n2
≤ 1

n2

The series
∑

1
n2 converges and therefore by Part (i) of the Comparison Test, the series

∑ | cos(n)|
n2

converges. Therefore, the series
∑ cos(n)

n2 is absolutely convergent.
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3. The Ratio Test

The Ratio Test can be applied to any series, it does not matter if it takes on negative values. However,

the test is not full proof; in some cases it is inconclusive. The Ratio Test is also very useful when

factorials n! are present in the series.

The Ratio Test. Let
∑

an be any given series and suppose that

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= ρ

The following hold:

(a) If ρ < 1 then the series
∑

an converges absolutely.

(b) If ρ > 1 or if ρ = ∞ then the series
∑

an diverges.

(c) If ρ = 1 then the test is inconclusive; it may converge or it may diverge and further
analysis is necessary.

Example 14: Determine whether the given series converges or diverges.

∞∑

n=1

2n

n!

Solution: Here an = 2n

n!
and therefore an+1 =

2n+1

(n+1)!
. Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

2n+1

(n+1)!

2n

n!

∣
∣
∣
∣
∣

all terms are positive

= lim
n→∞

2n+1n!

2n(n+ 1)!

= lim
n→∞

2n · 2 · n!
2n(n+ 1) · n!

= lim
n→∞

2

n + 1

= 0

Therefore, since ρ = 0 < 1, by the Ratio Test, the given series is convergent.

Example 15: Determine whether the given series converges or diverges.

∞∑

n=1

n3

en
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Solution: Here an = n3

en
and therefore an+1 =

(n+1)3

en+1 . Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)3

en+1
÷ n3

en

∣
∣
∣
∣

= lim
n→∞

(n + 1)3en

en+1n3

= lim
n→∞

(n + 1)3

e · n3

= lim
n→∞

n3 + 3n2 + 3n+ 1

e · n3

=
1

e
.

Since ρ = 1
e
< 1, by the Ratio Test, the given series converges.

Example 16: Determine whether the given series converges or diverges.

∞∑

n=1

n22n(−1)n

3n

Solution: Here an = n22n(−1)n

3n
and therefore an+1 =

(n+1)22n+1(−1)n+1

3n+1 . Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)22n+1(−1)n+1

3n+1
÷ n22n(−1)n

3n

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(n+ 1)22n+1(−1)n+1

3n+1
× 3n

n22n(−1)n

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(n+ 1)2 · 2 · (−1)

3n2

∣
∣
∣
∣

= lim
n→∞

2(n+ 1)2

3n2

=
2

3

Therefore, since ρ = 2
3
< 1, by the Ratio Test the given series converges.

Example 17: Determine whether the given series converges or diverges.

∞∑

n=1

(−1)n(2n)!

n!(n+ 1)!

Solution: Here an = (−1)n(2n)!
n!(n+1)!

and therefore

an+1 =
(−1)n+1(2(n+ 1))!

(n+ 1)!((n+ 1) + 1)!
=

(−1)n+1(2n+ 2)!

(n + 1)!(n+ 2)!
.
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Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(−1)n+1(2n+ 2)!

(n+ 1)!(n+ 2)!
÷ (−1)n(2n)!

n!(n+ 1)!

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(−1)n+1(2n+ 2)!

(n+ 1)!(n+ 2)!
× n!(n+ 1)!

(−1)n(2n)!

∣
∣
∣
∣

= lim
n→∞

(2n+ 2)! · n!
(n+ 2)! · (2n)!

= lim
n→∞

(2n+ 2)(2n+ 1)(2n)! · n!
(n+ 2)(n+ 1)n! · (2n)!

= lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 2)(n+ 1)

= lim
n→∞

4n2 + 4n + 2

n2 + 3n+ 2

= 4

Therefore, by the Ratio Test, since ρ = 4 > 1, the given series diverges. Note that here we used that

fact that (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)! and similarly that (n+ 2)! = (n + 2)(n+ 1)n!.

Example 18: Determine whether the given series converges or diverges.
∞∑

n=1

n!

nn

Solution: It is not clear whether limn→∞
n!
nn = 0 because n! grows very fast but nn grows faster. In

fact, for n ≥ 2, it holds that n! < nn and therefore n!
nn < 1 for n = 2, 3, . . . ,, and so it is possible that

limn→∞
n!
nn = 0. To see that n! < nn:

n! = 1 · 2 · 3 · · ·n < n · n · n · · ·n
︸ ︷︷ ︸

n times

= nn

Anyways, let’s try the Ratio Test. Here an = n!
nn and therefore an+1 =

(n+1)!
(n+1)n+1 . Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)!

(n+ 1)n+1
÷ n!

nn

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(n+ 1)!

(n+ 1)n+1
× nn

n!

∣
∣
∣
∣

= lim
n→∞

(n+ 1)n!nn

(n+ 1)n(n+ 1)n!

= lim
n→∞

nn

(n+ 1)n

= lim
n→∞

(
n

n+ 1

)n

get indeterminate power 1∞
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The last limit gives the indeterminate power 1∞, so we consider

lim
n→∞

ln

(
n

n+ 1

)n

= lim
n→∞

n ln

(
n

n+ 1

)

get ∞ · 0, so rewrite

= lim
n→∞

ln
(

n
n+1

)

1
n

now get
0

0
, so apply L.H.R.

= lim
n→∞

1
n
− 1

n+1

− 1
n2

= lim
n→∞

−n2

n(n+ 1)

= −1

Therefore,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= e−1 =

1

e
.

Hence, since ρ = 1
e
< 1, then by the Ratio Test, the given series converges. Note that this means that

indeed we have that lim
n→∞

an = lim
n→∞

n!

nn
= 0.
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