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Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics

by Humpherys, Jarvis and Evans. This manual begins with an introduction to Python [VD10]

from scratch, which only requires a basic understanding of general programming concepts (variables,

functions, etc.). Later labs introduce several Python packages that are essential for mathematical

and scienti�c computing in Python.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.

You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.

All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as

well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs

as the original source of this work.

To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,

USA.
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1 Introduction to Python

Lab Objective: Python is a powerful, general-purpose programming language. It can be used

interactively, allowing for very rapid development. Python has many powerful scienti�c computing

tools, making it an ideal language for applied and computational mathematics. In this introductory

lab we introduce Python syntax, data types, functions, and control �ow tools. These Python basics

are an essential part of almost every problem you will solve and almost every program you will write.

Getting Started
Python is quickly gaining momentum as a fundamental tool in scienti�c computing. Anaconda is

a free distribution service by Continuum Analytics, Inc., that includes the cross-platform Python

interpreter (the software that actually executes Python code) and many Python libraries that are

commonly used for applied and computational mathematics. To install Python via Anaconda, go to

https://www.anaconda.com/download/, download the installer for Python 3.8 corresponding to

your operating system, and follow the on-screen instructions.

Running Python

Python �les are saved with a .py extension. For beginners, we strongly recommend using a simple text

editor for writing Python �les. However, many free IDEs (Integrated Development Environments�

large applications that facilitate code development with some sophisticated tools) are also compatible

with Python. For now, the simpler the coding environment, the better.

A plain Python �le looks similar to the following code.

# filename.py

"""This is the file header.

The header contains basic information about the file.

"""

if __name__ == "__main__":

pass # 'pass' is a temporary placeholder.

3

https://www.anaconda.com/download/


4 Lab 1. Introduction to Python

The # character creates a single-line comment. Comments are ignored by the interpreter and

serve as annotations for the accompanying source code. A pair of three quotes, """ """ or ''' ''',

creates a multi-line string literal, which may also be used as a multi-line comment. A triple-quoted

string literal at the top of the �le serves as the header for the �le. The header typically identi�es the

author and includes instructions on using the �le. Executable Python code comes after the header.

Problem 1. Open the �le named python_intro.py (or create the �le in a text editor if you

don't have it). Add your information to the header at the top, then add the following code.

if __name__ == "__main__":

print("Hello, world!") # Indent with four spaces (NOT a tab).

Open a command prompt (Terminal on Linux or Mac and Command Prompt or GitBash

on Windows) and navigate to the directory where the new �le is saved. Use the command ls

to list the �les and folders in the current directory, pwd to print the working directory, and cd

to change directories.

$ pwd # Print the working directory.

/Users/Guest

$ ls # List the files and folders here.

Desktop Documents Downloads Pictures Music

$ cd Documents # Navigate to a different folder.

$ pwd

/Users/Guest/Documents

$ ls # Check to see that the file is here.

python_intro.py

Now the Python �le can be executed with the following command:

$ python python_intro.py

If Hello, world! is displayed on the screen, you have just successfully executed your

�rst Python program!

IPython

Python can be run interactively using several interfaces. The most basic of these is the Python

interpreter. In this and subsequent labs, the triple brackets >>> indicate that the given code is being

executed one line at a time via the Python interpreter.

$ python # Start the Python interpreter.

>>> print("This is plain Python.") # Execute some code.

This is plain Python.

There are, however, more useful interfaces. Chief among these is IPython,1 [PG07, jup] which

is included with the Anaconda distribution. To execute a script in IPython, use the %run command.

1See https://ipython.org/ and https://jupyter.org/.

https://ipython.org/
https://jupyter.org/
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>>> exit() # Exit the Python interpreter.

$ ipython # Start IPython.

In [1]: print("This is IPython!") # Execute some code.

This is IPython!

In [2]: %run python_intro.py # Run a particular Python script.

Hello, world!

One of the biggest advantages of IPython is that it supports object introspection, whereas the

regular Python interpreter does not. Object introspection quickly reveals all methods and attributes

associated with an object. IPython also has a built-in help() function that provides interactive help.

# A list is a basic Python data structure. To see the methods associated with

# a list, type the object name (list), followed by a period, and press tab.

In [1]: list. # Press 'tab'.

append() count() insert() remove()

clear() extend() mro() reverse()

copy() index() pop() sort()

# To learn more about a specific method, use a '?' and hit 'Enter'.

In [1]: list.append?

Docstring: L.append(object) -> None -- append object to end

Type: method_descriptor

In [2]: help() # Start IPython's interactive help utility.

help> list # Get documentation on the list class.

Help on class list in module __builtin__:

class list(object)

| list() -> new empty list

| # ... # Press 'q' to exit the info screen.

help> quit # End the interactive help session.

Note

Use IPython side-by-side with a text editor to quickly test syntax and small code snippets.

Testing small pieces of code in IPython before putting it into a program reveals errors and

greatly speeds up the coding process. Consult the internet with questions; stackoverflow.com

is a particularly valuable resource for answering common programming questions.

The best way to learn a new coding language is by actually writing code. Follow along

with the examples in the yellow code boxes in this lab by executing them in an IPython console.

Avoid copy and paste for now; your �ngers need to learn the language as well.

http://stackoverflow.com/


6 Lab 1. Introduction to Python

Python Basics
Arithmetic

Python can be used as a calculator with the regular +, -, *, and / operators. Use ** for exponentiation

and % for modular division.

>>> 3**2 + 2*5 # Python obeys the order of operations.

19

>>> 13 % 3 # The modulo operator % calculates the

1 # remainder: 13 = (3*4) + 1.

In most Python interpreters, the underscore character _ is a variable with the value of the

previous command's output, like the ANS button on many calculators.

>>> 12 * 3

36

>>> _ / 4

9.0

Data comparisons like < and > act as expected. The == operator checks for numerical equality

and the <= and >= operators correspond to ≤ and ≥, respectively. To connect multiple boolean

expressions, use the operators and, or, and not.2

>>> 3 > 2.99

True

>>> 1.0 <= 1 or 2 > 3

True

>>> 7 == 7 and not 4 < 4

True

>>> True and True and True and True and True and False

False

>>> False or False or False or False or False or True

True

>>> True or not True

True

Variables

Variables are used to temporarily store data. A single equals sign = assigns one or more values (on

the right) to one or more variable names (on the left). A double equals sign == is a comparison

operator that returns True or False, as in the previous code block.

Unlike many programming languages, Python does not require a variable's data type to be

speci�ed upon initialization. Because of this, Python is called a dynamically typed language.

2In many other programming languages, the and, or, and not operators are written as &&, ||, and !, respectively.

Python's convention is much more readable and does not require parentheses.
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>>> x = 12 # Initialize x with the integer 12.

>>> y = 2 * 6 # Initialize y with the integer 2*6 = 12.

>>> x == y # Compare the two variable values.

True

>>> x, y = 2, 4 # Give both x and y new values in one line.

>>> x == y

False

Functions

To de�ne a function, use the def keyword followed by the function name, a parenthesized list of

parameters, and a colon. Then indent the function body using exactly four spaces.

>>> def add(x, y):

... return x + y # Indent with four spaces.

Achtung!

Many other languages use the curly braces {} to delimit blocks, but Python uses whitespace

indentation. In fact, whitespace is essentially the only thing that Python is particularly picky

about compared to other languages: mixing tabs and spaces confuses the interpreter

and causes problems. Most text editors have a setting to set the indentation type to spaces

so you can use the tab key on your keyboard to insert four spaces (sometimes called soft tabs).

For consistency, never use tabs; always use spaces.

Functions are de�ned with parameters and are called with arguments, although the terms are

often used interchangeably. Below, width and height are parameters for the function area(). The

values 2 and 5 are the arguments that are passed when calling the function.

>>> def area(width, height): # Define the function.

... return width * height

...

>>> area(2, 5) # Call the function.

10

Python functions can also return multiple values.

>>> def arithmetic(a, b):

... return a - b, a * b # Separate return values with commas.

...

>>> x, y = arithmetic(5, 2) # Unpack the returns into two variables.

>>> print(x, y)

3 10
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The keyword lambda is a shortcut for creating one-line functions. For example, the polynomials

f(x) = 6x3 + 4x2 − x+ 3 and g(x, y, z) = x+ y2 − z3 can be de�ned as functions in one line each.

# Define the polynomials the usual way using 'def'.

>>> def f(x):

... return 6*x**3 + 4*x**2 - x + 3

>>> def g(x, y, z):

... return x + y**2 - z**3

# Equivalently, define the polynomials quickly using 'lambda'.

>>> f = lambda x: 6*x**3 + 4*x**2 - x + 3

>>> g = lambda x, y, z: x + y**2 - z**3

Note

Documentation is important in every programming language. Every function should have a

docstring�a string literal in triple quotes just under the function declaration�that describes

the purpose of the function, the expected inputs and return values, and any other notes that

are important to the user. Short docstrings are acceptable for very simple functions, but more

complicated functions require careful and detailed explanations.

>>> def add(x, y):

... """Return the sum of the two inputs."""

... return x + y

>>> def area(width, height):

... """Return the area of the rectangle with the specified width

... and height.

... """

... return width * height

...

>>> def arithmetic(a, b):

... """Return the difference and the product of the two inputs."""

... return a - b, a * b

Lambda functions cannot have custom docstrings, so the lambda keyword should only be

used as a shortcut for very simple or intuitive functions that do not need additional labeling.

Problem 2. The volume of a sphere with radius r is V = 4
3πr

3. In your Python �le from

Problem 1, de�ne a function called sphere_volume() that accepts a single parameter r. Return

the volume of the sphere of radius r, using 3.14159 as an approximation for π (for now). Also

write an appropriate docstring for your function.

To test your function, call it under the if __name__ == "__main__" clause and print the

returned value. Run your �le to see if your answer is what you expect it to be.
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Achtung!

The return statement instantly ends the function call and passes the return value to the

function caller. However, functions are not required to have a return statement. A function

without a return statement implicitly returns the Python constant None, which is similar to

the special value null of many other languages. Calling print() at the end of a function does

not cause a function to return any values.

>>> def oops(i):

... """Increment i (but forget to return anything)."""

... print(i + 1)

...

>>> def increment(i):

... """Increment i."""

... return i + 1

...

>>> x = oops(1999) # x contains 'None' since oops()

2000 # doesn't have a return statement.

>>> y = increment(1999) # However, y contains a value.

>>> print(x, y)

None 2000

If you have any intention of using the results of a function, use a return statement.

It is also possible to specify default values for a function's parameters. In the following example,

the function pad() has three parameters, and the value of c defaults to 0. If it is not speci�ed in the

function call, the variable c will contain the value 0 when the function is executed.

>>> def pad(a, b, c=0):

... """Print the arguments, plus a zero if c is not specified."""

... print(a, b, c)

...

>>> pad(1, 2, 3) # Specify each parameter.

1 2 3

>>> pad(1, 2) # Specify only non-default parameters.

1 2 0

Arguments are passed to functions based on position or name, and positional arguments must

be de�ned before named arguments. For example, a and b must come before c in the function

de�nition of pad(). Examine the following code blocks demonstrating how positional and named

arguments are used to call a function.

# Try defining printer with a named argument before a positional argument.

>>> def pad(c=0, a, b):

... print(a, b, c)

...

SyntaxError: non-default argument follows default argument



10 Lab 1. Introduction to Python

# Correctly define pad() with the named argument after positional arguments.

>>> def pad(a, b, c=0):

... """Print the arguments, plus a zero if c is not specified."""

... print(a, b, c)

...

# Call pad() with 3 positional arguments.

>>> pad(2, 4, 6)

2 4 6

# Call pad() with 3 named arguments. Note the change in order.

>>> pad(b=3, c=5, a=7)

7 3 5

# Call pad() with 2 named arguments, excluding c.

>>> pad(b=1, a=2)

2 1 0

# Call pad() with 1 positional argument and 2 named arguments.

>>> pad(1, c=2, b=3)

1 3 2

Problem 3. The built-in print() function has the useful keyword arguments sep and end.

It accepts any number of positional arguments and prints them out with sep inserted between

values (defaulting to a space), then prints end (defaulting to the newline character '\n').

Write a function called isolate() that accepts �ve arguments. Print the �rst three

separated by 5 spaces, then print the rest with a single space between each output. For example,

>>> isolate(1, 2, 3, 4, 5)

1 2 3 4 5

Data Types and Structures

Numerical Types

Python has four numerical data types: int, long, float, and complex. Each stores a di�erent kind

of number. The built-in function type() identi�es an object's data type.

>>> type(3) # Numbers without periods are integers.

int

>>> type(3.0) # Floats have periods (3. is also a float).

float
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Python has two types of division: integer and �oat. The / operator performs �oat division

(true fractional division), and the // operator performs integer division, which rounds the result

down to the next integer. If both operands for // are integers, the result will be an int. If one or

both operands are �oats, the result will be a float. Regular division with / always returns a float.

>>> 15 / 4 # Float division performs as expected.

3.75

>>> 15 // 4 # Integer division rounds the result down.

3

>>> 15. // 4

3.0

Python also supports computations of complex numbers by pairing two numbers as the real

and imaginary parts. Use the letter j, not i, for the imaginary part.

>>> x = complex(2,3) # Create a complex number this way...

>>> y = 4 + 5j # ...or this way, using j (not i).

>>> x.real # Access the real part of x.

2.0

>>> y.imag # Access the imaginary part of y.

5.0

Strings

In Python, strings are created with either single or double quotes. To concatenate two or more

strings, use the + operator between string variables or literals.

>>> str1 = "Hello"

>>> str2 = 'world'

>>> my_string = str1 + " " + str2 + '!'

>>> my_string

'Hello world!'

Parts of a string can be accessed using slicing, which is indicated by square brackets [ ]. Slicing

syntax is [start:stop:step]. The parameters start and stop default to the beginning and end of

the string, respectively. The parameter step defaults to 1.

>>> my_string = "Hello world!"

>>> my_string[4] # Indexing begins at 0.

'o'

>>> my_string[-1] # Negative indices count backward from the end.

'!'

# Slice from the 0th to the 5th character (not including the 5th character).

>>> my_string[:5]

'Hello'

# Slice from the 6th character to the end.
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>>> my_string[6:]

'world!'

# Slice from the 3rd to the 8th character (not including the 8th character).

>>> my_string[3:8]

'lo wo'

# Get every other character in the string.

>>> my_string[::2]

'Hlowrd'

Problem 4. Write two new functions called first_half() and backward().

1. first_half() should accept a parameter and return the �rst half of it, excluding the

middle character if there is an odd number of characters.

(Hint: the built-in function len() returns the length of the input.)

2. The backward() function should accept a parameter and reverse the order of its characters

using slicing, then return the reversed string.

(Hint: The step parameter used in slicing can be negative.)

Use IPython to quickly test your syntax for each function.

Lists

A Python list is created by enclosing comma-separated values with square brackets [ ]. Entries

of a list do not have to be of the same type. Access entries in a list by using the same indexing or

slicing operations as used with strings.

>>> my_list = ["Hello", 93.8, "world", 10]

>>> my_list[0]

'Hello'

>>> my_list[-2]

'world'

>>> my_list[:2]

['Hello', 93.8]

Common list methods (functions) include append(), insert(), remove(), and pop(). Consult

IPython for details on each of these methods using object introspection.

>>> my_list = [1, 2] # Create a simple list of two integers.

>>> my_list.append(4) # Append the integer 4 to the end.

>>> my_list.insert(2, 3) # Insert 3 at location 2.

>>> my_list

[1, 2, 3, 4]

>>> my_list.remove(3) # Remove 3 from the list.

>>> my_list.pop() # Remove (and return) the last entry.
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4

>>> my_list

[1, 2]

Slicing is also very useful for replacing values in a list.

>>> my_list = [10, 20, 30, 40, 50]

>>> my_list[0] = -1

>>> my_list[3:] = [8, 9]

>>> print(my_list)

[-1, 20, 30, 8, 9]

The in operator quickly checks if a given value is in a list (or another iterable, including strings).

>>> my_list = [1, 2, 3, 4, 5]

>>> 2 in my_list

True

>>> 6 in my_list

False

>>> 'a' in "xylophone" # 'in' also works on strings.

False

Tuples

A Python tuple is an ordered collection of elements, created by enclosing comma-separated values

with parentheses ( and ). Tuples are similar to lists, but they are much more rigid, have less built-

in operations, and cannot be altered after creation. Therefore, lists are preferable for managing

dynamic, ordered collections of objects.

When multiple objects are returned by a function, they are returned as a tuple. For example,

recall that the arithmetic() function returns two values.

>>> x, y = arithmetic(5,2) # Get each value individually,

>>> print(x, y)

3 10

>>> both = arithmetic(5,2) # or get them both as a tuple.

>>> print(both)

(3, 10)

Problem 5. Write a function called list_ops(). De�ne a list with the entries "bear", "ant",

"cat", and "dog", in that order. Then perform the following operations on the list:

1. Append "eagle".

2. Replace the entry at index 2 with "fox".

3. Remove (or pop) the entry at index 1.
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4. Sort the list in reverse alphabetical order.

5. Replace "eagle" with "hawk".

(Hint: the list's index() method may be helpful.)

6. Add the string "hunter" to the last entry in the list.

Return the resulting list.

Work out (on paper) what the result should be, then check that your function returns the

correct list. Consider printing the list at each step to see the intermediate results.

Sets

A Python set is an unordered collection of distinct objects. Objects can be added to or removed

from a set after its creation. Initialize a set with curly braces { } and separate the values by commas,

or use set() to create an empty set. Like mathematical sets, Python sets have operations such as

union, intersection, di�erence, and symmetric di�erence.

# Initialize some sets. Note that repeats are not added.

>>> gym_members = {"Doe, John", "Doe, John", "Smith, Jane", "Brown, Bob"}

>>> print(gym_members)

{'Doe, John', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.add("Lytle, Josh") # Add an object to the set.

>>> gym_members.discard("Doe, John") # Delete an object from the set.

>>> print(gym_members)

{'Lytle, Josh', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.intersection({"Lytle, Josh", "Henriksen, Ian", "Webb, Jared"})

{'Lytle, Josh'}

>>> gym_members.difference({"Brown, Bob", "Sharp, Sarah"})

{'Lytle, Josh', 'Smith, Jane'}

Dictionaries

Like a set, a Python dict (dictionary) is an unordered data type. A dictionary stores key-value

pairs, called items. The values of a dictionary are indexed by its keys. Dictionaries are initialized

with curly braces, colons, and commas. Use dict() or {} to create an empty dictionary.

>>> my_dictionary = {"business": 4121, "math": 2061, "visual arts": 7321}

>>> print(my_dictionary["math"])

2061

# Add a value indexed by 'science' and delete the 'business' keypair.

>>> my_dictionary["science"] = 6284

>>> my_dictionary.pop("business") # Use 'pop' or 'popitem' to remove.

4121

>>> print(my_dictionary)
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{'math': 2061, 'visual arts': 7321, 'science': 6284}

# Display the keys and values.

>>> my_dictionary.keys()

dict_keys(['math', 'visual arts', 'science'])

>>> my_dictionary.values()

dict_values([2061, 7321, 6284])

As far as data access goes, lists are like dictionaries whose keys are the integers 0, 1, . . . , n− 1,

where n is the number of items in the list. The keys of a dictionary need not be integers, but they

must be immutable, which means that they must be objects that cannot be modi�ed after creation.

We will discuss mutability more thoroughly in the Standard Library lab.

Type Casting

The names of each of Python's data types can be used as functions to cast a value as that type. This

is particularly useful for converting between integers and �oats.

# Cast numerical values as different kinds of numerical values.

>>> x = int(3.0)

>>> y = float(3)

>>> z = complex(3)

>>> print(x, y, z)

3 3.0 (3+0j)

# Cast a list as a set and vice versa.

>>> set([1, 2, 3, 4, 4])

{1, 2, 3, 4}

>>> list({'a', 'a', 'b', 'b', 'c'})

['a', 'c', 'b']

# Cast other objects as strings.

>>> str(['a', str(1), 'b', float(2)])

"['a', '1', 'b', 2.0]"

>>> str(list(set([complex(float(3))])))

'[(3+0j)]'

Control Flow Tools
Control �ow blocks dictate the order in which code is executed. Python supports the usual control

�ow statements including if statements, while loops, and for loops.

The If Statement

An if statement executes the indented code if (and only if) the given condition holds. The elif

statement is short for �else if� and can be used multiple times following an if statement, or not at

all. The else keyword may be used at most once at the end of a series of if/elif statements.



16 Lab 1. Introduction to Python

>>> food = "bagel"

>>> if food == "apple": # As with functions, the colon denotes

... print("72 calories") # the start of each code block.

... elif food == "banana" or food == "carrot":

... print("105 calories")

... else:

... print("calorie count unavailable")

...

calorie count unavailable

Problem 6. Write a function called pig_latin(). Accept a parameter word, translate it into

Pig Latin, then return the translation. Speci�cally, if word starts with a vowel, add �hay� to

the end; if word starts with a consonant, take the �rst character of word, move it to the end,

and add �ay�.

(Hint: use the in operator to check if the �rst letter is a vowel.)

The While Loop

A while loop executes an indented block of code while the given condition holds.

>>> i = 0

>>> while i < 10:

... print(i, end=' ') # Print a space instead of a newline.

... i += 1 # Shortcut syntax for i = i+1.

...

0 1 2 3 4 5 6 7 8 9

There are two additional useful statements to use inside of loops:

1. break manually exits the loop, regardless of which iteration the loop is on or if the termination

condition is met.

2. continue skips the current iteration and returns to the top of the loop block if the termination

condition is still not met.

>>> i = 0

>>> while True:

... print(i, end=' ')

... i += 1

... if i >= 10:

... break # Exit the loop.

...

0 1 2 3 4 5 6 7 8 9

>>> i = 0



17

>>> while i < 10:

... i += 1

... if i % 3 == 0:

... continue # Skip multiples of 3.

... print(i, end=' ')

1 2 4 5 7 8 10

The For Loop

A for loop iterates over the items in any iterable. Iterables include (but are not limited to) strings,

lists, sets, and dictionaries.

>>> colors = ["red", "green", "blue", "yellow"]

>>> for entry in colors:

... print(entry + "!")

...

red!

green!

blue!

yellow!

The break and continue statements also work in for loops. A continue in a for loop will

automatically increment the index or item, whereas a continue in a while loop makes no automatic

changes to any variable.

>>> for word in ["It", "definitely", "looks", "pretty", "bad", "today"]:

... if word == "definitely":

... continue

... elif word == "bad":

... break

... print(word, end=' ')

...

It looks pretty

In addition, Python has some very useful built-in functions that can be used in conjunction

with the for statement:

1. range(start, stop, step): Produces a sequence of integers, following slicing syntax. If

only one argument is speci�ed, it produces a sequence of integers from 0 to the argument,

incrementing by one. This function is used very often.

2. zip(): Joins multiple sequences so they can be iterated over simultaneously.

3. enumerate(): Yields both a count and a value from the sequence. Typically used to get both

the index of an item and the actual item simultaneously.

4. reversed(): Reverses the order of the iteration.

5. sorted(): Returns a new list of sorted items that can then be used for iteration.
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Each of these functions, except for sorted(), returns an iterator, an object that is built speci�cally

for looping but not for creating actual lists. To put the items of the sequence in a collection, use

list(), set(), or tuple().

# Strings and lists are both iterables.

>>> vowels = "aeiou"

>>> colors = ["red", "yellow", "white", "blue", "purple"]

# Iterate by index.

>>> for i in range(5):

... print(i, vowels[i], colors[i])

...

0 a red

1 e yellow

2 i white

3 o blue

4 u purple

# Iterate through both sequences at once.

>>> for letter, word in zip(vowels, colors):

... print(letter, word)

...

a red

e yellow

i white

o blue

u purple

# Get the index and the item simultaneously.

>>> for i, color in enumerate(colors):

... print(i, color)

...

0 red

1 yellow

2 white

3 blue

4 purple

# Iterate through the list in sorted (alphabetical) order.

>>> for item in sorted(colors):

... print(item, end=' ')

...

blue purple red white yellow

# Iterate through the list backward.

>>> for item in reversed(colors):

... print(item, end=' ')

...

purple blue white yellow red
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# range() arguments follow slicing syntax.

>>> list(range(10)) # Integers from 0 to 10, exclusive.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(4, 8)) # Integers from 4 to 8, exclusive.

[4, 5, 6, 7]

>>> set(range(2, 20, 3)) # Every third integer from 2 to 20, ←↩
exclusive.

{2, 5, 8, 11, 14, 17}

Problem 7. This problem originates from https://projecteuler.net, an excellent resource

for math-related coding problems.

A palindromic number reads the same both ways. The largest palindrome made from

the product of two 2-digit numbers is 9009 = 91 × 99. Write a function called palindrome()

that �nds and returns the largest palindromic number made from the product of two 3-digit

numbers.

List Comprehension

A list comprehension uses for loop syntax between square brackets to create a list. This is a powerful,

e�cient way to build lists. The code is concise and runs quickly.

>>> [float(n) for n in range(5)]

[0.0, 1.0, 2.0, 3.0, 4.0]

List comprehensions can be thought of as �inverted loops�, meaning that the body of the loop

comes before the looping condition. The following loop and list comprehension produce the same

list, but the list comprehension takes only about two-thirds the time to execute.

>>> loop_output = []

>>> for i in range(5):

... loop_output.append(i**2)

...

>>> list_output = [i**2 for i in range(5)]

Tuple, set, and dictionary comprehensions can be done in the same way as list comprehensions

by using the appropriate style of brackets on the end.

>>> colors = ["red", "blue", "yellow"]

>>> {c[0]:c for c in colors}

{'r': 'red', 'b': 'blue', 'y': 'yellow'}

>>> {"bright " + c for c in colors}

https://projecteuler.net
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{'bright blue', 'bright red', 'bright yellow'}

Problem 8. The alternating harmonic series is de�ned as follows.

∞∑
n=1

(−1)(n+1)

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln(2)

Write a function called alt_harmonic() that accepts an integer n. Use a list comprehension

to quickly compute the sum of the �rst n terms of this series (be careful not to compute only

n−1 terms). The sum of the �rst 500,000 terms of this series approximates ln(2) to �ve decimal

places.

(Hint: consider using Python's built-in sum() function.)
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Additional Material

Further Reading

Refer back to this and other introductory labs often as you continue getting used to Python syntax

and data types. As you continue your study of Python, we strongly recommend the following readings.

� The o�cial Python tutorial: http://docs.python.org/3.6/tutorial/introduction.html

(especially chapters 3, 4, and 5).

� Section 1.2 of the SciPy lecture notes: http://scipy-lectures.github.io/.

� PEP8 - Python style guide: http://www.python.org/dev/peps/pep-0008/.

Generalized Function Input

On rare occasion, it is necessary to de�ne a function without knowing exactly what the parameters

will be like or how many there will be. This is usually done by de�ning the function with the

parameters *args and **kwargs. Here *args is a list of the positional arguments and **kwargs is

a dictionary mapping the keywords to their argument. This is the most general form of a function

de�nition.

>>> def report(*args, **kwargs):

... for i, arg in enumerate(args):

... print("Argument " + str(i) + ":", arg)

... for key in kwargs:

... print("Keyword", key, "-->", kwargs[key])

...

>>> report("TK", 421, exceptional=False, missing=True)

Argument 0: TK

Argument 1: 421

Keyword exceptional --> False

Keyword missing --> True

See https://docs.python.org/3.6/tutorial/controlflow.html for more on this topic.

Function Decorators

A function decorator is a special function that �wraps� other functions. It takes in a function as

input and returns a new function that pre-processes the inputs or post-processes the outputs of the

original function.

>>> def typewriter(func):

... """Decorator for printing the type of output a function returns"""

... def wrapper(*args, **kwargs):

... output = func(*args, **kwargs) # Call the decorated function.

... print("output type:", type(output)) # Process before finishing.

... return output # Return the function output.

... return wrapper

http://docs.python.org/3.6/tutorial/introduction.html
http://scipy-lectures.github.io/
http://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3.6/tutorial/controlflow.html
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The outer function, typewriter(), returns the new function wrapper(). Since wrapper()

accepts *args and **kwargs as arguments, the input function func() accepts any number of

positional or keyword arguments.

Apply a decorator to a function by tagging the function's de�nition with an @ symbol and the

decorator name.

>>> @typewriter

... def combine(a, b, c):

... return a*b // c

Placing the tag above the de�nition is equivalent to adding the following line of code after the

function de�nition:

>>> combine = typewriter(combine)

Now, calling combine() actually calls wrapper(), which then calls the original combine().

>>> combine(3, 4, 6)

output type: <class 'int'>

2

>>> combine(3.0, 4, 6)

output type: <class 'float'>

2.0

Function decorators can also be customized with arguments. This requires another level of

nesting: the outermost function must de�ne and return a decorator that de�nes and returns a

wrapper.

>>> def repeat(times):

... """Decorator for calling a function several times."""

... def decorator(func):

... def wrapper(*args, **kwargs):

... for _ in range(times):

... output = func(*args, **kwargs)

... return output

... return wrapper

... return decorator

...

>>> @repeat(3)

... def hello_world():

... print("Hello, world!")

...

>>> hello_world()

Hello, world!

Hello, world!

Hello, world!

See https://www.python.org/dev/peps/pep-0318/ for more details.

https://www.python.org/dev/peps/pep-0318/
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Lab Objective: Python is designed to make it easy to implement complex tasks with little code.

To that end, every Python distribution includes several built-in functions for accomplishing common

tasks. In addition, Python is designed to import and reuse code written by others. A Python �le with

code that can be imported is called a module. All Python distributions include a collection of modules

for accomplishing a variety of tasks, collectively called the Python Standard Library. In this lab we

explore some built-in functions, learn how to create, import, and use modules, and become familiar

with the standard library.

Built-in Functions

Python has several built-in functions that may be used at any time. IPython's object introspection

feature makes it easy to learn about these functions: start IPython from the command line and use

? to bring up technical details on each function.

In [1]: min?

Docstring:

min(iterable, *[, default=obj, key=func]) -> value

min(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its smallest item. The

default keyword-only argument specifies an object to return if

the provided iterable is empty.

With two or more arguments, return the smallest argument.

Type: builtin_function_or_method

In [2]: len?

Signature: len(obj, /)

Docstring: Return the number of items in a container.

Type: builtin_function_or_method

23
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Function Returns

abs() The absolute value of a real number, or the magnitude

of a complex number.

min() The smallest element of a single iterable, or the smallest

of several arguments. Strings are compared based on

lexicographical order: numerical characters �rst, then

upper-case letters, then lower-case letters.

max() The largest element of a single iterable, or the largest

of several arguments.

len() The number of items of a sequence or collection.

round() A �oat rounded to a given precision in decimal digits.

sum() The sum of a sequence of numbers.

Table 2.1: Common built-in functions for numerical calculations.

# abs() can be used with real or complex numbers.

>>> print(abs(-7), abs(3 + 4j))

7 5.0

# min() and max() can be used on a list, string, or several arguments.

# String characters are ordered lexicographically.

>>> print(min([4, 2, 6]), min("aXbYcZ"), min('1', 'a', 'A'))

2 X 1

>>> print(max([4, 2, 6]), max("aXbYcZ"), max('1', 'a', 'A'))

6 c a

# len() can be used on a string, list, set, dict, tuple, or other iterable.

>>> print(len([2, 7, 1]), len("abcdef"), len({1, 'a', 'a'}))

3 6 2

# sum() can be used on iterables containing numbers, but not strings.

>>> my_list = [1, 2, 3]

>>> my_tuple = (4, 5, 6)

>>> my_set = {7, 8, 9}

>>> sum(my_list) + sum(my_tuple) + sum(my_set)

45

>>> sum([min(my_list), max(my_tuple), len(my_set)])

10

# round() is particularly useful for formatting data to be printed.

>>> round(3.14159265358979323, 2)

3.14

See https://docs.python.org/3/library/functions.html for more detailed documentation

on all of Python's built-in functions.

https://docs.python.org/3/library/functions.html
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Problem 1. Write a function that accepts a list L and returns the minimum, maximum, and

average of the entries of L in that order as multiple values (separated by a comma). Can you

implement this function in a single line?

Namespaces
Whenever a Python object�a number, data structure, function, or other entity�is created, it is

stored somewhere in computer memory. A name (or variable) is a reference to a Python object, and

a namespace is a dictionary that maps names to Python objects.

# The number 4 is the object, 'number_of_students' is the name.

>>> number_of_sudents = 4

# The list is the object, and 'beatles' is the name.

>>> beatles = ["John", "Paul", "George", "Ringo"]

# Python statements defining a function also form an object.

# The name for this function is 'add_numbers'.

>>> def add_numbers(a, b):

... return a + b

...

A single equals sign assigns a name to an object. If a name is assigned to another name, that

new name refers to the same object as the original name.

>>> beatles = ["John", "Paul", "George", "Ringo"]

>>> band_members = beatles # Assign a new name to the list.

>>> print(band_members)

['John', 'Paul', 'George', 'Ringo']

To see all of the names in the current namespace, use the built-in function dir(). To delete a

name from the namespace, use the del keyword (with caution!).

# Add 'stem' to the namespace.

>>> stem = ["Science", "Technology", "Engineering", "Mathematics"]

>>> dir()

['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',

'__package__', '__spec__', 'stem']

# Remove 'stem' from the namespace.

>>> del stem

>>> "stem" in dir()

False

>>> print(stem)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'stem' is not defined
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Note

Many programming languages distinguish between variables and pointers. A pointer refers to

a variable by storing the address in memory where the corresponding object is stored. Python

names are essentially pointers, and traditional pointer operations and cleanup are done auto-

matically. For example, Python automatically deletes objects in memory that have no names

assigned to them (no pointers referring to them). This feature is called garbage collection.

Mutability

Every Python object type falls into one of two categories: a mutable object, which may be altered at

any time, or an immutable object, which cannot be altered once created. Attempting to change an

immutable object creates a new object in memory. If two names refer to the same mutable object, any

changes to the object are re�ected in both names since they still both refer to that same object. On

the other hand, if two names refer to the same immutable object and one of the values is �changed,�

then one name will refer to the original object, and the other will refer to a new object in memory.

Achtung!

Failing to correctly copy mutable objects can cause subtle problems. For example, consider a

dictionary that maps items to their base prices. To make a similar dictionary that accounts for

a small sales tax, we might try to make a copy by assigning a new name to the �rst dictionary.

>>> holy = {"moly": 1.99, "hand_grenade": 3, "grail": 1975.41}

>>> tax_prices = holy # Try to make a copy for processing.

>>> for item, price in tax_prices.items():

... # Add a 7 percent tax, rounded to the nearest cent.

... tax_prices[item] = round(1.07 * price, 2)

...

# Now the base prices have been updated to the total price.

>>> print(tax_prices)

{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

# However, dictionaries are mutable, so 'holy' and 'tax_prices' actually

# refer to the same object. The original base prices have been lost.

>>> print(holy)

{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

To avoid this problem, explicitly create a copy of the object by casting it as a new structure.

Changes made to the copy will not change the original object, since they are distinct objects

in memory. To �x the above code, replace the second line with the following:

>>> tax_prices = dict(holy)
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Then, after running the same procedure, the two dictionaries will be di�erent.

Problem 2. Determine which Python object types are mutable and which are immutable by

repeating the following experiment for an int, str, list, tuple, and set.

1. Create an object of the given type and assign a name to it.

2. Assign a new name to the �rst name.

3. Alter the object via only one of the names (for tuples, use my_tuple += (1,)).

4. Check to see if the two names are equal. If they are, then changing one name also changes

the other. Thus, both names refer to the same object and the object type is mutable.

Otherwise, the names refer to di�erent objects�meaning a new object was created in

step 2�and therefore the object type is immutable.

For example, the following experiment shows that dict is a mutable type.

>>> dict_1 = {1: 'x', 2: 'b'} # Create a dictionary.

>>> dict_2 = dict_1 # Assign it a new name.

>>> dict_2[1] = 'a' # Change the 'new' dictionary.

>>> dict_1 == dict_2 # Compare the two names.

True # Both names changed!

Print a statement of your conclusions that clearly indicates which object types are mutable and

which are immutable.

Achtung!

Mutable objects cannot be put into Python sets or used as keys in Python dictionaries. However,

the values of a dictionary may be mutable or immutable.

>>> a_dict = {"key": "value"} # Dictionaries are mutable.

>>> broken = {1, 2, 3, a_dict, a_dict} # Try putting a dict in a set.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'dict'

>>> okay = {1: 2, "3": a_dict} # Try using a dict as a value.
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Modules
A module is a Python �le containing code that is meant to be used in some other setting, and not

necessarily run directly.1 The import statement loads code from a speci�ed Python �le. Importing a

module containing some functions, classes, or other objects makes those functions, classes, or objects

available for use by adding their names to the current namespace.

All import statements should occur at the top of the �le, below the header but before any other

code. There are several ways to use import:

1. import <module> makes the speci�ed module available under the alias of its own name.

>>> import math # The name 'math' now gives

>>> math.sqrt(2) # access to the math module.

1.4142135623730951

2. import <module> as <name> creates an alias for an imported module. The alias is added to

the current namespace, but the module name itself is not.

>>> import numpy as np # The name 'np' gives access to the numpy

>>> np.sqrt(2) # module, but the name 'numpy' does not.

1.4142135623730951

>>> numpy.sqrt(2)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'numpy' is not defined

3. from <module> import <object> loads the speci�ed object into the namespace without load-

ing anything else in the module or the module name itself. This is used most often to access

speci�c functions from a module. The as statement can also be tacked on to create an alias.

>>> from random import randint # The name 'randint' gives access to the

>>> r = randint(0, 10000) # randint() function, but the rest of

>>> random.seed(r) # the random module is unavailable.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'random' is not defined

In each case, the �nal word of the import statement is the name that is added to the namespace.

Running and Importing

Consider the following simple Python module, saved as example1.py.

# example1.py

data = list(range(4))

1Python �les that are primarily meant to be executed, not imported, are often called scripts.
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def display():

print("Data:", data)

if __name__ == "__main__":

display()

print("This file was executed from the command line or an interpreter.")

else:

print("This file was imported.")

Executing the �le from the command line executes the �le line by line, including the code under

the if __name__ == "__main__" clause.

$ python example1.py

Data: [0, 1, 2, 3]

This file was executed from the command line or an interpreter.

Executing the �le with IPython's special %run command executes each line of the �le and also

adds the module's names to the current namespace. This is the quickest way to test individual

functions via IPython.

In [1]: %run example1.py

Data: [0, 1, 2, 3]

This file was executed from the command line or an interpreter.

In [2]: display()

Data: [0, 1, 2, 3]

Importing the �le also executes each line,2 but only adds the indicated alias to the namespace.

Also, code under the if __name__ == "__main__" clause is not executed when a �le is imported.

In [1]: import example1 as ex

This file was imported.

# The module's names are not directly available...

In [2]: display()

---------------------------------------------------------------------------

NameError Traceback (most recent call last)

<ipython-input-2-795648993119> in <module>()

----> 1 display()

NameError: name 'display' is not defined

# ...unless accessed via the module's alias.

In [3]: ex.display()

Data: [0, 1, 2, 3]

2Try importing the this or antigravity modules. Importing these modules actually executes some code.
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Problem 3. Create a module called calculator.py. Write a function that returns the sum

of two arguments and a function that returns the product of two arguments. Also use import

to add the sqrt() function from the math module to the namespace. When this �le is either

run or imported, nothing should be executed.

In your solutions �le, import your new custom module. Write a function that accepts two

numbers representing the lengths of the sides of a right triangle. Using only the functions from

calculator.py, calculate and return the length of the hypotenuse of the triangle.

Achtung!

If a module has been imported in IPython and the source code then changes, using import again

does not refresh the name in the IPython namespace. Use run instead to correctly refresh the

namespace. Consider this example where we test the function sum_of_squares(), saved in the

�le example2.py.

# example2.py

def sum_of_squares(x):

"""Return the sum of the squares of all positive integers

less than or equal to x.

"""

return sum([i**2 for i in range(1,x)])

In IPython, run the �le and test sum_of_squares().

# Run the file, adding the function sum_of_squares() to the namespace.

In [1]: %run example2

In [2]: sum_of_squares(3)

Out[2]: 5 # Should be 14!

Since 12+22+32 = 14, not 5, something has gone wrong. Modify the source �le to correct

the mistake, then run the �le again in IPython.

# example2.py

def sum_of_squares(x):

"""Return the sum of the squares of all positive integers

less than or equal to x.

"""

return sum([i**2 for i in range(1,x+1)]) # Include the final term.

# Run the file again to refresh the namespace.

In [3]: %run example2
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# Now sum_of_squares() is updated to the new, corrected version.

In [4]: sum_of_squares(3)

Out[4]: 14 # It works!

Remember that running or importing a �le executes any freestanding code snippets, but

any code under an if __name__ == "__main__" clause will only be executed when the �le is

run (not when it is imported).

The Python Standard Library
All Python distributions include a collection of modules for accomplishing a variety of common tasks,

collectively called the Python standard library. Some commonly standard library modules are listed

below, and the complete list is at https://docs.python.org/3/library/.

Module Description

cmath Mathematical functions for complex numbers.

itertools Tools for iterating through sequences in useful ways.

math Standard mathematical functions and constants.

random Random variable generators.

string Common string literals.

sys Tools for interacting with the interpreter.

time Time value generation and manipulation.

Use IPython's object introspection to quickly learn about how to use the various modules and

functions in the standard library. Use ? or help() for information on the module or one of its names.

To see the entire module's namespace, use the tab key.

In [1]: import math

In [2]: math?

Type: module

String form: <module 'math' from '~/anaconda/lib/python3.6/ # ...

File: ~/anaconda/lib/python3.6/lib-dynload/ # ...

Docstring:

This module is always available. It provides access to the

mathematical functions defined by the C standard.

# Type the module name, a period, then press tab to see the module's namespace.

In [3]: math. # Press 'tab'.

acos() cos() factorial() isclose() log2() tan()

acosh() cosh() floor() isfinite() modf() tanh()

asin() degrees() fmod() isinf() nan tau

asinh() e frexp() isnan() pi trunc()

atan() erf() fsum() ldexp() pow()

atan2() erfc() gamma() lgamma() radians()

atanh() exp() gcd() log() sin()

https://docs.python.org/3/library/
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ceil() expm1() hypot() log10() sinh()

copysign() fabs() inf log1p() sqrt()

In [3]: math.sqrt?

Docstring:

sqrt(x)

Return the square root of x.

Type: builtin_function_or_method

The Itertools Module

The itertools module makes it easy to iterate over one or more collections in specialized ways.

Function Description

chain() Iterate over several iterables in sequence.

cycle() Iterate over an iterable repeatedly.

combinations() Return successive combinations of elements in an iterable.

permutations() Return successive permutations of elements in an iterable.

product() Iterate over the Cartesian product of several iterables.

>>> from itertools import chain, cycle # Import multiple names.

>>> list(chain("abc", ['d', 'e'], ('f', 'g'))) # Join several

['a', 'b', 'c', 'd', 'e', 'f', 'g'] # sequences together.

>>> for i,number in enumerate(cycle(range(4))): # Iterate over a single

... if i > 10: # sequence over and over.

... break

... print(number, end=' ')

...

0 1 2 3 0 1 2 3 0 1 2

A k-combination is a set of k elements from a collection where the ordering is unimportant.

Thus the combination (a, b) and (b, a) are equivalent because they contain the same elements. One

the other hand, a k-permutation is a sequence of k elements from a collection where the ordering

matters. Even though (a, b) and (b, a) contain the same elements, they are counted as di�erent

permutations.

>>> from itertools import combinations, permutations

# Get all combinations of length 2 from the iterable "ABC".

>>> list(combinations("ABC", 2))

[('A', 'B'), ('A', 'C'), ('B', 'C')]

# Get all permutations of length 2 from "ABC". Note that order matters here.

>>> list(permutations("ABC", 2))
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[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 'B')]

Problem 4. The power set of a set A, denoted P(A) or 2A, is the set of all subsets of A,

including the empty set ∅ and A itself. For example, the power set of the set A = {a, b, c} is
2A = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Write a function that accepts an iterable A. Use an itertools function to compute the

power set of A as a list of sets (why couldn't it be a set of sets in Python?). The empty set

should be returned as set().
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The Random Module

Many real-life events can be simulated by taking random samples from a probability distribution.

For example, a coin �ip can be simulated by randomly choosing between the integers 1 (for heads)

and 0 (for tails). The random module includes functions for sampling from probability distributions

and generating random data.

Function Description

choice() Choose a random element from a non-empty sequence, such as a list.

randint() Choose a random integer integer over a closed interval.

random() Pick a �oat from the interval [0, 1).

sample() Choose several unique random elements from a non-empty sequence.

seed() Seed the random number generator.

shuffle() Randomize the ordering of the elements in a list.

Some of the most common random utilities involve picking random elements from iterables.

>>> import random

>>> numbers = list(range(1,11)) # Get the integers from 1 to 10.

>>> print(numbers)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(numbers) # Mix up the ordering of the list.

>>> print(numbers) # Note that shuffle() returns nothing.

[5, 9, 1, 3, 8, 4, 10, 6, 2, 7]

>>> random.choice(numbers) # Pick a single element from the list.

5

>>> random.sample(numbers, 4) # Pick 4 unique elements from the list.

[5, 8, 3, 2]

>>> random.randint(1,10) # Pick a random number between 1 and 10.

10

The Time Module

The time module in the standard library include functions for dealing with time. In particular, the

time() function measures the number of seconds from a �xed starting point, called �the Epoch�

(January 1, 1970 for Unix machines).

>>> import time

>>> time.time()

1495243696.645818

The time() function is useful for measuring how long it takes for code to run: record the time

just before and just after the code in question, then subtract the �rst measurement from the second

to get the number of seconds that have passed.
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>>> def time_for_loop(iters):

... """Time how long it takes to iterate 'iters' times."""

... start = time.time() # Clock the starting time.

... for _ in range(int(iters)):

... pass

... end = time.time() # Clock the ending time.

... return end - start # Report the difference.

...

>>> time_for_loop(1e5) # 1e5 = 100000.

0.005570173263549805

>>> time_for_loop(1e7) # 1e7 = 10000000.

0.26819777488708496

The Sys Module

The sys (system) module includes methods for interacting with the Python interpreter. For example,

sys.argv is a list of arguments passed to the interpreter when it runs a Python �le.

# example3.py

"""Read a single command line argument and print it in all caps."""

import sys

if len(sys.argv) == 2:

print(sys.argv[1].upper())

else:

print("Exactly one extra command line argument is required")

print("System Arguments:", sys.argv)

Now provide command line arguments for the program to process.

$ python example3.py # No extra command line arguments.

Exactly one extra command line argument is required

System Arguments: ['example3.py']

$ python example3.py hello # One extra command line argument.

HELLO

$ python example3.py with 2 many arguments

Exactly one extra command line argument is required

System Arguments: ['example3.py', 'with', '2', 'many', 'arguments']

Note that the �rst command line argument is always the �lename, and that sys.argv is always

a list of strings, even if a number is provided on the command line. In IPython, command line

arguments are speci�ed after the %run command.

In [1]: %run example3.py hello

HELLO
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Another way to get input from the program user is to prompt the user for text. The built-in

function input() pauses the program and waits for the user to type something. Like command line

arguments, the user's input is parsed as a string.

>>> x = input("Enter a value for x: ")

Enter a value for x: 20 # Type '20' and press 'enter.'

>>> x

'20' # Note that x contains a string.

>> y = int(input("Enter an integer for y: "))

Enter an integer for y: 16 # Type '16' and press 'enter.'

>>> y

16 # Note that y contains an integer.

Problem 5. Shut the box is a popular British pub game that is used to help children learn

arithmetic. The player starts with the numbers 1 through 9, and the goal of the game is to

eliminate as many of these numbers as possible. At each turn the player rolls two dice, then

chooses a set of integers from the remaining numbers that sum up to the sum of the dice

roll. These numbers are removed, and the dice are then rolled again. The game ends when

none of the remaining integers can be combined to the sum of the dice roll, and the player's

�nal score is the sum of the numbers that could not be eliminated. For a demonstration, see

https://www.youtube.com/watch?v=mwURQC7mjDI.

Modify your solutions �le so that when the �le is run with the correct command line

arguments (but not when it is imported), the user plays a game of shut the box. The provided

module box.py contains some functions that will be useful in your implementation of the game.

You do not need to understand exactly how the functions work, but you do need to be able to

import and use them correctly. Your game should match the following speci�cations:

� Require three total command line arguments: the �le name (included by default), the

player's name, and a time limit in seconds. If there are not exactly three command line

arguments, do not start the game.

� Track the player's remaining numbers, starting with 1 through 9.

� Use the random module to simulate rolling two six-sided dice. However, if the sum of the

player's remaining numbers is 6 or less, role only one die.

� The player wins if they have no numbers left, and they lose if they are out of time or if

they cannot choose numbers to match the dice roll.

� If the game is not over, print the player's remaining numbers, the sum of the dice roll,

and the number of seconds remaining. Prompt the user for numbers to eliminate. The

input should be one or more of the remaining integers, separated by spaces. If the user's

input is invalid, prompt them for input again before rolling the dice again.

(Hint: use round() to format the number of seconds remaining nicely.)

https://www.youtube.com/watch?v=mwURQC7mjDI
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� When the game is over, display the player's name, their score, and the total number of

seconds since the beginning of the game. Congratulate or mock the player appropriately.

(Hint: Before you start coding, write an outline for the entire program, adding one feature

at a time. Only start implementing the game after you are completely �nished designing it.)

Your game should look similar to the following examples. The characters in red are typed

inputs from the user.

$ python standard_library.py LuckyDuke 60

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Roll: 12

Seconds left: 60.0

Numbers to eliminate: 3 9

Numbers left: [1, 2, 4, 5, 6, 7, 8]

Roll: 9

Seconds left: 53.51

Numbers to eliminate: 8 1

Numbers left: [2, 4, 5, 6, 7]

Roll: 7

Seconds left: 51.39

Numbers to eliminate: 7

Numbers left: [2, 4, 5, 6]

Roll: 2

Seconds left: 48.24

Numbers to eliminate: 2

Numbers left: [4, 5, 6]

Roll: 11

Seconds left: 45.16

Numbers to eliminate: 5 6

Numbers left: [4]

Roll: 4

Seconds left: 42.76

Numbers to eliminate: 4

Score for player LuckyDuke: 0 points

Time played: 15.82 seconds

Congratulations!! You shut the box!

The next two examples show di�erent ways that a player could lose (which they usually

do), as well as examples of invalid user input. Use the box module's parse_input() to detect

invalid input.
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$ python standard_library.py ShakySteve 10

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Roll: 7

Seconds left: 10.0

Numbers to eliminate: Seven # Must enter a number.

Invalid input

Seconds left: 7.64

Numbers to eliminate: 1, 2, 4 # Do not use commas.

Invalid input

Seconds left: 4.55

Numbers to eliminate: 1 2 3 # Numbers don't sum to the roll.

Invalid input

Seconds left: 2.4

Numbers to eliminate: 1 2 4

Numbers left: [3, 5, 6, 7, 8, 9]

Roll: 8

Seconds left: 0.31

Numbers to eliminate: 8

Game over! # Time is up!

Score for player ShakySteve: 30 points

Time played: 11.77 seconds

Better luck next time >:)

$ python standard_library.py SnakeEyesTom 10000

Numbers left: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Roll: 2

Seconds left: 10000.0

Numbers to eliminate: 2

Numbers left: [1, 3, 4, 5, 6, 7, 8, 9]

Roll: 2

Game over! # Numbers cannot match roll.

Score for player SnakeEyesTom: 43 points

Time played: 1.53 seconds

Better luck next time >:)
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Additional Material

More Built-in Functions

The following built-in functions are worth knowing, especially for working with iterables and writing

very readable conditional statements.

Function Description

all() Return True if bool(entry) evaluates to True for every entry in

the input iterable.

any() Return True if bool(entry) evaluates to True for any entry in the

input iterable.

bool() Evaluate a single input object as True or False.

eval() Execute a string as Python code and return the output.

map() Apply a function to every item of the input iterable and return

an iterable of the results.

>>> from random import randint

# Get 5 random numbers between 1 and 10, inclusive.

>>> numbers = [randint(1,10) for _ in range(5)]

# If all of the numbers are less than 8, print the list.

>>> if all([num < 8 for num in numbers]):

... print(numbers)

...

[1, 5, 6, 3, 3]

# If none of the numbers are divisible by 3, print the list.

>>> if not any([num % 3 == 0 for num in numbers]):

... print(numbers)

...

Two-Player Shut the Box

Consider modifying your shut the box program so that it pits two players against each other (one

player tries to shut the box while the other tries to keep it open). The �rst player plays a regular

round as described in Problem 5. Suppose he or she eliminates every number but 2, 3, and 6. The

second player then begins a round with the numbers 1, 4, 5, 7, 8, and 9, the numbers that the �rst

player had eliminated. If the second player loses, the �rst player gets another round to try to shut

the box with the numbers that the second player had eliminated. Play continues until one of the

players eliminates their entire list. In addition, each player should have their own time limit that

only ticks down during their turn. If time runs out on your turn, you lose no matter what.
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Python Packages

Large programming projects often have code spread throughout several folders and �les. In order

to get related �les in di�erent folders to communicate properly, the associated directories must

be organized into a Python packages. This is a common procedure when creating smart phone

applications and other programs that have graphical user interfaces (GUIs).

A package is simply a folder that contains a �le called __init__.py. This �le is always executed

�rst whenever the package is used. A package must also have a �le called __main__.py in order to

be executable. Executing the package will run __init__.py and then __main__.py, but importing

the package will only run __init__.py.

Use the regular syntax to import a module or subpackage that is in the current package, and

use from <subpackage.module> import <object> to load a module within a subpackage. Once a

name has been loaded into a package's __init__.py, other �les in the same package can load the

same name with from . import <object>. To access code in the directory one level above the

current directory, use the syntax from .. import <object> This tells the interpreter to go up one

level and import the object from there. This is called an explicit relative import and cannot be done

in �les that are executed directly (like __main__.py).

Finally, to execute a package, run Python from the shell with the �ag -m (for �module-name�)

and exclude the extension .py.

$ python -m package_name

See https://docs.python.org/3/tutorial/modules.html#packages for examples and more

details.

https://docs.python.org/3/tutorial/modules.html#packages


3 Introduction to NumPy

Lab Objective: NumPy is a powerful Python package for manipulating data with multi-dimensional

vectors. Its versatility and speed makes Python an ideal language for applied and computational

mathematics. In this lab we introduce basic NumPy data structures and operations as a �rst step to

numerical computing in Python.

Arrays
In many algorithms, data can be represented mathematically as a vector or a matrix. Conceptually,

a vector is just a list of numbers and a matrix is a two-dimensional list of numbers (a list of lists).

However, even basic linear algebra operations like matrix multiplication are cumbersome to implement

and slow to execute when data is stored this way. The NumPy module1 [Oli06, ADH+01, Oli07] o�ers

a much better solution.

The basic object in NumPy is the array, which is conceptually similar to a matrix. The NumPy

array class is called ndarray (for �n-dimensional array�). The simplest way to explicitly create a 1-D

ndarray is to de�ne a list, then cast that list as an ndarray with NumPy's array() function.

>>> import numpy as np

# Create a 1-D array by passing a list into NumPy's array() function.

>>> np.array([8, 4, 6, 0, 2])

array([8, 4, 6, 0, 2])

# The string representation has no commas or an array() label.

>>> print(np.array([1, 3, 5, 7, 9]))

[1 3 5 7 9]

The alias �np� for numpy is standard in the Python community.

An ndarray can have arbitrarily many dimensions. A 2-D array is a 1-D array of 1-D arrays

(like a list of lists), a 3-D array is a 1-D array of 2-D arrays (a list of lists of lists), and, more generally,

an n-dimensional array is a 1-D array of (n− 1)-dimensional arrays (a list of lists of lists of lists...).

Each dimension is called an axis. For a 2-D array, the 0-axis indexes the rows and the 1-axis indexes

the columns. Elements are accessed using brackets and indices, with the axes separated by commas.

1NumPy is not part of the standard library, but it is included in most Python distributions.

41



42 Lab 3. Introduction to NumPy

# Create a 2-D array by passing a list of lists into array().

>>> A = np.array( [ [1, 2, 3],[4, 5, 6] ] )

>>> print(A)

[[1 2 3]

[4 5 6]]

# Access elements of the array with brackets.

>>> print(A[0, 1], A[1, 2])

2 6

# The elements of a 2-D array are 1-D arrays.

>>> A[0]

array([1, 2, 3])

Problem 1. There are two main ways to perform matrix multiplication in NumPy: with

NumPy's dot() function (np.dot(A, B)), or with the @ operator (A @ B). Write a function

that de�nes the following matrices as NumPy arrays.

A =

[
3 −1 4

1 5 −9

]
B =

 2 6 −5 3

5 −8 9 7

9 −3 −2 −3


Return the matrix product AB.

For examples of array initialization and matrix multiplication, use object introspection in

IPython to look up the documentation for np.ndarray, np.array() and np.dot().

In [1]: import numpy as np

In [2]: np.array? # press 'enter'

Achtung!

The @ operator was not introduced until Python 3.5. It triggers the __matmul__() magic

method,a which for the ndarray is essentially a wrapper around np.dot(). If you are using a

previous version of Python, always use np.dot() to perform basic matrix multiplication.

aSee the lab on Object Oriented Programming for an overview of magic methods.

Basic Array Operations

NumPy arrays behave di�erently with respect to the binary arithmetic operators + and * than Python

lists do. For lists, + concatenates two lists and * replicates a list by a scalar amount (strings also

behave this way).
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# Addition concatenates lists together.

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

# Mutliplication concatenates a list with itself a given number of times.

>>> [1, 2, 3] * 4

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

NumPy arrays act like mathematical vectors and matrices: + and * perform component-wise

addition or multiplication.

>>> x, y = np.array([1, 2, 3]), np.array([4, 5, 6])

# Addition or multiplication by a scalar acts on each element of the array.

>>> x + 10 # Add 10 to each entry of x.

array([11, 12, 13])

>>> x * 4 # Multiply each entry of x by 4.

array([ 4, 8, 12])

# Add two arrays together (component-wise).

>>> x + y

array([5, 7, 9])

# Multiply two arrays together (component-wise).

>>> x * y

array([ 4, 10, 18])

Problem 2. Write a function that de�nes the following matrix as a NumPy array.

A =

 3 1 4

1 5 9

−5 3 1


Return the matrix −A3 + 9A2 − 15A.

In this context, A2 = AA (the matrix product, not the component-wise square). The

somewhat surprising result is a demonstration of the Cayley-Hamilton theorem.

Array Attributes

An ndarray object has several attributes, some of which are listed below.

Attribute Description

dtype The type of the elements in the array.

ndim The number of axes (dimensions) of the array.

shape A tuple of integers indicating the size in each dimension.

size The total number of elements in the array.
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>>> A = np.array([[1, 2, 3],[4, 5, 6]])

# 'A' is a 2-D array with 2 rows, 3 columns, and 6 entries.

>>> print(A.ndim, A.shape, A.size)

2 (2, 3) 6

Note that ndim is the number of entries in shape, and that the size of the array is the product

of the entries of shape.

Array Creation Routines

In addition to casting other structures as arrays via np.array(), NumPy provides e�cient ways to

create certain commonly-used arrays.

Function Returns

arange() Array of sequential integers (like list(range())).

eye() 2-D array with ones on the diagonal and zeros elsewhere.

ones() Array of given shape and type, �lled with ones.

ones_like() Array of ones with the same shape and type as a given array.

zeros() Array of given shape and type, �lled with zeros.

zeros_like() Array of zeros with the same shape and type as a given array.

full() Array of given shape and type, �lled with a speci�ed value.

full_like() Full array with the same shape and type as a given array.

Each of these functions accepts the keyword argument dtype to specify the data type. Common

types include np.bool_, np.int64, np.float64, and np.complex128.

# A 1-D array of 5 zeros.

>>> np.zeros(5)

array([ 0., 0., 0., 0., 0.])

# A 2x5 matrix (2-D array) of integer ones.

>>> np.ones((2,5), dtype=np.int) # The shape is specified as a tuple.

array([[1, 1, 1, 1, 1],

[1, 1, 1, 1, 1]])

# The 2x2 identity matrix.

>>> I = np.eye(2)

>>> print(I)

[[ 1. 0.]

[ 0. 1.]]

# Array of 3s the same size as 'I'.

>>> np.full_like(I, 3) # Equivalent to np.full(I.shape, 3).

array([[ 3., 3.],

[ 3., 3.]])
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Unlike native Python data structures, all elements of a NumPy array must be of the

same data type. To change an existing array's data type, use the array's astype() method.

# A list of integers becomes an array of integers.

>>> x = np.array([0, 1, 2, 3, 4])

>>> print(x)

[0 1 2 3 4]

>>> x.dtype

dtype('int64')

# Change the data type to one of NumPy's float types.

>>> x = x.astype(np.float64) # Equivalent to x = np.float64(x).

>>> print(x)

[ 0. 1. 2. 3. 4.] # Floats are displayed with periods.

>>> x.dtype

dtype('float64')

The following functions are for dealing with the diagonal, upper, or lower portion of an array.

Function Description

diag() Extract a diagonal or construct a diagonal array.

tril() Get the lower-triangular portion of an array by replacing entries above

the diagonal with zeros.

triu() Get the upper-triangular portion of an array by replacing entries below

the diagonal with zeros.

>>> A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Get only the upper triangular entries of 'A'.

>>> np.triu(A)

array([[1, 2, 3],

[0, 5, 6],

[0, 0, 9]])

# Get the diagonal entries of 'A' as a 1-D array.

>>> np.diag(A)

array([1, 5, 9])

# diag() can also be used to create a diagonal matrix from a 1-D array.

>>> np.diag([1, 11, 111])

array([[ 1, 0, 0],

[ 0, 11, 0],

[ 0, 0, 111]])

See http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html for the

o�cial documentation on NumPy's array creation routines.

http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
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Problem 3. Write a function that de�nes the following matrices as NumPy arrays using the

functions presented in this section (not np.array()). Calculate the matrix product ABA.

Change the data type of the resulting matrix to np.int64, then return it.

A =



1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1


B =



−1 5 5 5 5 5 5

−1 −1 5 5 5 5 5

−1 −1 −1 5 5 5 5

−1 −1 −1 −1 5 5 5

−1 −1 −1 −1 −1 5 5

−1 −1 −1 −1 −1 −1 5

−1 −1 −1 −1 −1 −1 −1



Data Access

Array Slicing

Indexing for a 1-D NumPy array uses the slicing syntax x[start:stop:step]. If there is no colon,

a single entry of that dimension is accessed. With a colon, a range of values is accessed. For multi-

dimensional arrays, use a comma to separate slicing syntax for each axis.

# Make an array of the integers from 0 to 10 (exclusive).

>>> x = np.arange(10)

>>> x

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

# Access elements of the array with slicing syntax.

>>> x[3] # The element at index 3.

3

>>> x[:3] # Everything before index 3.

array([0, 1, 2])

>>> x[3:] # Everything from index 3 on.

array([3, 4, 5, 6, 7, 8, 9])

>>> x[3:8] # Everything between index 3 and index 8 (←↩
exclusive).

array([3, 4, 5, 6, 7])

>>> A = np.array([[0,1,2,3,4],[5,6,7,8,9]])

>>> A

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

# Use a comma to separate the dimensions for multi-dimensional arrays.

>>> A[1, 2] # The element at row 1, column 2.

7

>>> A[:, 2:] # All of the rows, from column 2 on.

array([[2, 3, 4],

[7, 8, 9]])
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Note

Indexing and slicing operations return a view of the array. Changing a view of an array also

changes the original array. In other words, arrays are mutable. To create a copy of an array,

use np.copy() or the array's copy() method. Changes to a copy of an array does not a�ect

the original array, but copying an array uses more time and memory than getting a view.

Fancy Indexing

So-called fancy indexing is a second way to access or change the elements of an array. Instead of

using slicing syntax, provide either an array of indices or an array of boolean values (called a mask)

to extract speci�c elements.

>>> x = np.arange(0, 50, 10) # The integers from 0 to 50 by tens.

>>> x

array([ 0, 10, 20, 30, 40])

# An array of integers extracts the entries of 'x' at the given indices.

>>> index = np.array([3, 1, 4]) # Get the 3rd, 1st, and 4th elements.

>>> x[index] # Same as np.array([x[i] for i in index]).

array([30, 10, 40])

# A boolean array extracts the elements of 'x' at the same places as 'True'.

>>> mask = np.array([True, False, False, True, False])

>>> x[mask] # Get the 0th and 3rd entries.

array([ 0, 30])

Fancy indexing is especially useful for extracting or changing the values of an array that meet

some sort of criterion. Use comparison operators like < and == to create masks.

>>> y = np.arange(10, 20, 2) # Every other integers from 10 to 20.

>>> y

array([10, 12, 14, 16, 18])

# Extract the values of 'y' larger than 15.

>>> mask = y > 15 # Same as np.array([i > 15 for i in y]).

>>> mask

array([False, False, False, True, True], dtype=bool)

>>> y[mask] # Same as y[y > 15]

array([16, 18])

# Change the values of 'y' that are larger than 15 to 100.

>>> y[mask] = 100

>>> print(y)

[10 12 14 100 100]
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While indexing and slicing always return a view, fancy indexing always returns a copy.

Problem 4. Write a function that accepts a single array as input. Make a copy of the array,

then use fancy indexing to set all negative entries of the copy to 0. Return the copy.

Array Manipulation

Shaping

An array's shape attribute describes its dimensions. Use np.reshape() or the array's reshape()

method to give an array a new shape. The total number of entries in the old array and the new

array must be the same in order for the shaping to work correctly. Using a -1 in the new shape tuple

makes the speci�ed dimension as long as necessary.

>>> A = np.arange(12) # The integers from 0 to 12 (exclusive).

>>> print(A)

[ 0 1 2 3 4 5 6 7 8 9 10 11]

# 'A' has 12 entries, so it can be reshaped into a 3x4 matrix.

>>> A.reshape((3,4)) # The new shape is specified as a tuple.

array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11]])

# Reshape 'A' into an array with 2 rows and the appropriate number of columns.

>>> A.reshape((2,-1))

array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11]])

Use np.ravel() to �atten a multi-dimensional array into a 1-D array and np.transpose() or

the T attribute to transpose a 2-D array in the matrix sense.

>>> A = np.arange(12).reshape((3,4))

>>> A

array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11]])

# Flatten 'A' into a one-dimensional array.

>>> np.ravel(A) # Equivalent to A.reshape(A.size)

array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

# Transpose the matrix 'A'.

>>> A.T # Equivalent to np.transpose(A).

array([[ 0, 4, 8],
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[ 1, 5, 9],

[ 2, 6, 10],

[ 3, 7, 11]])

Note

By default, all NumPy arrays that can be represented by a single dimension, including column

slices, are automatically reshaped into ��at� 1-D arrays. For example, by default an array will

have 10 elements instead of 10 arrays with one element each. Though we usually represent

vectors vertically in mathematical notation, NumPy methods such as dot() are implemented

to purposefully work well with 1-D �row arrays�.

>>> A = np.arange(10).reshape((2,5))

>>> A

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

# Slicing out a column of A still produces a "flat" 1-D array.

>>> x = A[:,1] # All of the rows, column 1.

>>> x

array([1, 6]) # Not array([[1],

>>> x.shape # [6]])

(2,)

>>> x.ndim

1

However, it is occasionally necessary to change a 1-D array into a �column array�. Use

np.reshape(), np.vstack(), or slice the array and put np.newaxis on the second axis. Note

that np.transpose() does not alter 1-D arrays.

>>> x = np.arange(3)

>>> x

array([0, 1, 2])

>>> x.reshape((-1,1)) # Or x[:,np.newaxis] or np.vstack(x).

array([[0],

[1],

[2]])

Do not force a 1-D vector to be a column vector unless necessary.

Stacking

NumPy has functions for stacking two or more arrays with similar dimensions into a single block

matrix. Each of these methods takes in a single tuple of arrays to be stacked in sequence.
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Function Description

concatenate() Join a sequence of arrays along an existing axis

hstack() Stack arrays in sequence horizontally (column wise).

vstack() Stack arrays in sequence vertically (row wise).

column_stack() Stack 1-D arrays as columns into a 2-D array.

>>> A = np.arange(6).reshape((2,3))

>>> B = np.zeros((4,3))

# vstack() stacks arrays vertically (row-wise).

>>> np.vstack((A,B,A))

array([[ 0., 1., 2.], # A

[ 3., 4., 5.],

[ 0., 0., 0.], # B

[ 0., 0., 0.],

[ 0., 0., 0.],

[ 0., 0., 0.],

[ 0., 1., 2.], # A

[ 3., 4., 5.]])

>>> A = A.T

>>> B = np.ones((3,4))

# hstack() stacks arrays horizontally (column-wise).

>>> np.hstack((A,B,A))

array([[ 0., 3., 1., 1., 1., 1., 0., 3.],

[ 1., 4., 1., 1., 1., 1., 1., 4.],

[ 2., 5., 1., 1., 1., 1., 2., 5.]])

# column_stack() stacks arrays horizontally, including 1-D arrays.

>>> np.column_stack((A, np.zeros(3), np.ones(3), np.full(3, 2)))

array([[ 0., 3., 0., 1., 2.],

[ 1., 4., 0., 1., 2.],

[ 2., 5., 0., 1., 2.]])

See http://docs.scipy.org/doc/numpy-1.10.1/reference/routines.array-manipulation.html

for more array manipulation routines and documentation.

Problem 5. Write a function that de�nes the following matrices as NumPy arrays.

A =

[
0 2 4

1 3 5

]
B =

 3 0 0

3 3 0

3 3 3

 C =

 −2 0 0

0 −2 0

0 0 −2



http://docs.scipy.org/doc/numpy-1.10.1/reference/routines.array-manipulation.html
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Use NumPy's stacking functions to create and return the block matrix: 0 AT I

A 0 0

B 0 C

 ,
where I is the 3× 3 identity matrix and each 0 is a matrix of all zeros of appropriate size.

A block matrix of this form is used in the interior point method for linear optimization.

Array Broadcasting

Many matrix operations make sense only when the two operands have the same shape, such as

element-wise addition. Array broadcasting extends such operations to accept some (but not all)

operands with di�erent shapes, and occurs automatically whenever possible.

Suppose, for example, that we would like to add di�erent values to the columns of an m × n
matrix A. Adding a 1-D array x with the n entries to A will automatically do this correctly. To add

di�erent values to the di�erent rows of A, �rst reshape a 1-D array of m values into a column array.

Broadcasting then correctly takes care of the operation.

Broadcasting can also occur between two 1-D arrays, once they are reshaped appropriately.

>>> A = np.arange(12).reshape((4,3))

>>> x = np.arange(3)

>>> A

array([[ 0, 1, 2],

[ 3, 4, 5],

[ 6, 7, 8],

[ 9, 10, 11]])

>>> x

array([0, 1, 2])

# Add the entries of 'x' to the corresponding columns of 'A'.

>>> A + x

array([[ 0, 2, 4],

[ 3, 5, 7],

[ 6, 8, 10],

[ 9, 11, 13]])

>>> y = np.arange(0, 40, 10).reshape((4,1))

>>> y

array([[ 0],

[10],

[20],

[30]])

# Add the entries of 'y' to the corresponding rows of 'A'.

>>> A + y

array([[ 0, 1, 2],

[13, 14, 15],
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[26, 27, 28],

[39, 40, 41]])

# Add 'x' and 'y' together with array broadcasting.

>>> x + y

array([[ 0, 1, 2],

[10, 11, 12],

[20, 21, 22],

[30, 31, 32]])

Numerical Computing with NumPy
Universal Functions

A universal function is one that operates on an entire array element-wise. Universal functions are

signi�cantly more e�cient than using a loop to operate individually on each element of an array.

Function Description

abs() or absolute() Calculate the absolute value element-wise.

exp() / log() Exponential (ex) / natural log element-wise.

maximum() / minimum() Element-wise maximum / minimum of two arrays.

sqrt() The positive square-root, element-wise.

sin(), cos(), tan(), etc. Element-wise trigonometric operations.

>>> x = np.arange(-2,3)

>>> print(x, np.abs(x)) # Like np.array([abs(i) for i in x]).

[-2 -1 0 1 2] [2 1 0 1 2]

>>> np.sin(x) # Like np.array([math.sin(i) for i in x]).

array([-0.90929743, -0.84147098, 0. , 0.84147098, 0.90929743])

See http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs for a

more comprehensive list of universal functions.

Achtung!

The math module has many useful functions for numerical computations. However, most of

these functions can only act on single numbers, not on arrays. NumPy functions can act on

either scalars or entire arrays, but math functions tend to be a little faster for acting on scalars.

>>> import math

# Math and NumPy functions can both operate on scalars.

>>> print(math.exp(3), np.exp(3))

20.085536923187668 20.0855369232

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs


53

# However, math functions cannot operate on arrays.

>>> x = np.arange(-2, 3)

>>> np.tan(x)

array([ 2.18503986, -1.55740772, 0. , 1.55740772, -2.18503986])

>>> math.tan(x)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: only length-1 arrays can be converted to Python scalars

Always use universal NumPy functions, not the math module, when working with arrays.

Other Array Methods

The np.ndarray class itself has many useful methods for numerical computations.

Method Returns

all() True if all elements evaluate to True.

any() True if any elements evaluate to True.

argmax() Index of the maximum value.

argmin() Index of the minimum value.

argsort() Indices that would sort the array.

clip() restrict values in an array to �t within a given range

max() The maximum element of the array.

mean() The average value of the array.

min() The minimum element of the array.

sort() Return nothing; sort the array in-place.

std() The standard deviation of the array.

sum() The sum of the elements of the array.

var() The variance of the array.

Each of these np.ndarray methods has an equivalent NumPy function. For example, A.max()

and np.max(A) operate the same way. The one exception is the sort() function: np.sort() returns

a sorted copy of the array, while A.sort() sorts the array in-place and returns nothing.

Every method listed can operate along an axis via the keyword argument axis. If axis is

speci�ed for a method on an n-D array, the return value is an (n − 1)-D array, the speci�ed axis

having been collapsed in the evaluation process. If axis is not speci�ed, the return value is usually

a scalar. Refer to the NumPy Visual Guide in the appendix for more visual examples.

>>> A = np.arange(9).reshape((3,3))

>>> A

array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

# Find the maximum value in the entire array.

>>> A.max()

8
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# Find the minimum value of each column.

>>> A.min(axis=0) # np.array([min(A[:,i]) for i in range(3)])

array([0, 1, 2])

# Compute the sum of each row.

>>> A.sum(axis=1) # np.array([sum(A[i,:]) for i in range(3)])

array([3, 12, 21])

See http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html for a

more comprehensive list of array methods.

Problem 6. A matrix is called row-stochastica if its rows each sum to 1. Stochastic matrices

are fundamentally important for �nite discrete random processes and some machine learning

algorithms.

Write a function than accepts a matrix (as a 2-D array). Divide each row of the matrix by

the row sum and return the new row-stochastic matrix. Use array broadcasting and the axis

argument instead of a loop.

aSimilarly, a matrix is called column-stochastic if its columns each sum to 1.

Problem 7. This problem comes from https://projecteuler.net.

In the 20× 20 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08

49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00

81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65

52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91

22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80

24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50

32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70

67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21

24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72

21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95

78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92

16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57

86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58

19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40

04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66

88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69

04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36

20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16

20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54

01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
https://projecteuler.net
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The product of these numbers is 26 × 63 × 78 × 14 = 1788696. Write a function that

returns the greatest product of four adjacent numbers in the same direction (up, down, left,

right, or diagonally) in the grid.

For convenience, this array has been saved in the �le grid.npy. Use the following syntax

to extract the array:

>>> grid = np.load("grid.npy")

One way to approach this problem is to iterate through the rows and columns of the array,

checking small slices of the array at each iteration and updating the current largest product.

Array slicing, however, provides a much more e�cient solution.

The naïve method for computing the greatest product of four adjacent numbers in a

horizontal row might be as follows:

>>> winner = 0

>>> for i in range(20):

... for j in range(17):

... winner = max(np.prod(grid[i,j:j+4]), winner)

...

>>> winner

48477312

Instead, use array slicing to construct a single array where the (i, j)th entry is the product

of the four numbers to the right of the (i, j)th entry in the original grid. Then �nd the largest

element in the new array.

>>> np.max(grid[:,:-3] * grid[:,1:-2] * grid[:,2:-1] * grid[:,3:])

48477312

Use slicing to similarly �nd the greatest products of four vertical, right diagonal, and left

diagonal adjacent numbers.

(Hint: Consider drawing the portions of the grid that each slice in the above code covers, like

the examples in the visual guide. Then draw the slices that produce vertical, right diagonal, or

left diagonal sequences, and translate the pictures into slicing syntax.)

Achtung!

All of the examples in this lab use NumPy arrays, objects of type np.ndarray. NumPy also

has a �matrix� data structure called np.matrix that was built speci�cally for MATLAB users

who are transitioning to Python and NumPy. It behaves slightly di�erently than the regular

array class, and can cause some unexpected and subtle problems.

For consistency (and your sanity), never use a NumPy matrix; always use NumPy arrays.

If necessary, cast a matrix object as an array with np.array().
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Additional Material

Random Sampling

The submodule np.random holds many functions for creating arrays of random values chosen from

probability distributions such as the uniform, normal, and multinomial distributions. It also contains

some utility functions for getting non-distributional random samples, such as random integers or

random samples from a given array.

Function Description

choice() Take random samples from a 1-D array.

random() Uniformly distributed �oats over [0, 1).

randint() Random integers over a half-open interval.

random_integers() Random integers over a closed interval.

randn() Sample from the standard normal distribution.

permutation() Randomly permute a sequence / generate a random sequence.

Function Distribution

beta() Beta distribution over [0, 1].

binomial() Binomial distribution.

exponential() Exponential distribution.

gamma() Gamma distribution.

geometric() Geometric distribution.

multinomial() Multivariate generalization of the binomial distribution.

multivariate_normal() Multivariate generalization of the normal distribution.

normal() Normal / Gaussian distribution.

poisson() Poisson distribution.

uniform() Uniform distribution.

Note that many of these functions have counterparts in the standard library's random module.

These NumPy functions, however, are much better suited for working with large collections of random

samples.

# 5 uniformly distributed values in the interval [0, 1).

>>> np.random.random(5)

array([ 0.21845499, 0.73352537, 0.28064456, 0.66878454, 0.44138609])

# A 2x5 matrix (2-D array) of integers in the interval [10, 20).

>>> np.random.randint(10, 20, (2,5))

array([[17, 12, 13, 13, 18],

[16, 10, 12, 18, 12]])

Saving and Loading Arrays

It is often useful to save an array as a �le for later use. NumPy provides several easy methods for

saving and loading array data.
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Function Description

save() Save a single array to a .npy �le.

savez() Save multiple arrays to a .npz �le.

savetxt() Save a single array to a .txt �le.

load() Load and return an array or arrays from a .npy or .npz �le.

loadtxt() Load and return an array from a text �le.

# Save a 100x100 matrix of uniformly distributed random values.

>>> x = np.random.random((100,100))

>>> np.save("uniform.npy", x) # Or np.savetxt("uniform.txt", x).

# Read the array from the file and check that it matches the original.

>>> y = np.load("uniform.npy") # Or np.loadtxt("uniform.txt").

>>> np.allclose(x, y) # Check that x and y are close entry-wise.

True

To save several arrays to a single �le, specify a keyword argument for each array in np.savez().

Then np.load() will return a dictionary-like object with the keyword parameter names from the

save command as the keys.

# Save two 100x100 matrices of normally distributed random values.

>>> x = np.random.randn(100,100)

>>> y = np.random.randn(100,100)

>>> np.savez("normal.npz", first=x, second=y)

# Read the arrays from the file and check that they match the original.

>>> arrays = np.load("normal.npz")

>>> np.allclose(x, arrays["first"])

True

>>> np.allclose(y, arrays["second"])

True
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4 Object-oriented
Programming

Lab Objective: Python is a class-based language. A class is a blueprint for an object that binds

together speci�ed variables and routines. Creating and using custom classes is often a good way to

write clean, e�cient, well-designed programs. In this lab we learn how to de�ne and use Python

classes. In subsequent labs we will often create customized classes for use in algorithms.

Classes
A Python class is a code block that de�nes a custom object and determines its behavior. The class

key word de�nes and names a new class. Other statements follow, indented below the class name, to

determine the behavior of objects instantiated by the class.

A class needs a method called a constructor that is called whenever the class instantiates a new

object. The constructor speci�es the initial state of the object. In Python, a class's constructor is

always named __init__(). For example, the following code de�nes a class for storing information

about backpacks.

class Backpack:

"""A Backpack object class. Has a name and a list of contents.

Attributes:

name (str): the name of the backpack's owner.

contents (list): the contents of the backpack.

"""

def __init__(self, name): # This function is the constructor.

"""Set the name and initialize an empty list of contents.

Parameters:

name (str): the name of the backpack's owner.

"""

self.name = name # Initialize some attributes.

self.contents = []

59
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An attribute is a variable stored within an object. The Backpack class has two attributes: name

and contents. In the body of the class de�nition, attributes are assigned and accessed via the name

self. This name refers to the object internally once it has been created.

Instantiation

The class code block above only de�nes a blueprint for backpack objects. To create an actual

backpack object, call the class name like a function. This triggers the constructor and returns a new

instance of the class, an object whose type is the class.

# Import the Backpack class and instantiate an object called 'my_backpack'.

>>> from object_oriented import Backpack

>>> my_backpack = Backpack("Fred")

>>> type(my_backpack)

<class 'object_oriented.Backpack'>

# Access the object's attributes with a period and the attribute name.

>>> print(my_backpack.name, my_backpack.contents)

Fred []

# The object's attributes can be modified after instantiation.

>>> my_backpack.name = "George"

>>> print(my_backpack.name, my_backpack.contents)

George []

Note

Every object in Python has some built-in attributes. For example, modules have a __name__

attribute that identi�es the scope in which it is being executed. If the module is being run

directly, and not imported, then __name__ is set to "__main__". Therefore, any commands

under an if __name__ == "__main__": clause are ignored when the module is imported.

Methods

In addition to storing variables as attributes, classes can have functions attached to them. A function

that belongs to a speci�c class is called a method.

class Backpack:

# ...

def put(self, item):

"""Add an item to the backpack's list of contents."""

self.contents.append(item) # Use 'self.contents', not just 'contents'.

def take(self, item):

"""Remove an item from the backpack's list of contents."""

self.contents.remove(item)
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The �rst argument of each method must be self, to give the method access to the attributes

and other methods of the class. The self argument is only included in the declaration of the class

methods, not when calling the methods on an instantiation of the class.

# Add some items to the backpack object.

>>> my_backpack.put("notebook") # my_backpack is passed implicitly to

>>> my_backpack.put("pencils") # Backpack.put() as the first argument.

>>> my_backpack.contents

['notebook', 'pencils']

# Remove an item from the backpack. # This is equivalent to

>>> my_backpack.take("pencils") # Backpack.take(my_backpack, "pencils")

>>> my_backpack.contents

['notebook']

Problem 1. Expand the Backpack class to match the following speci�cations.

1. Modify the constructor so that it accepts three total arguments: name, color, and

max_size (in that order). Make max_size a keyword argument that defaults to 5. Store

each input as an attribute.

2. Modify the put() method to check that the backpack does not go over capacity. If there

are already max_size items or more, print �No Room!� and do not add the item to the

contents list.

3. Write a new method called dump() that resets the contents of the backpack to an empty

list. This method should not receive any arguments (except self).

4. Documentation is especially important in classes so that the user knows what an ob-

ject's attributes represent and how to use methods appropriately. Update (or write) the

docstrings for the __init__(), put(), and dump() methods, as well as the actual class

docstring (under class but before __init__()) to re�ect the changes from parts 1-3 of

this problem.

To ensure that your class works properly, write a test function outside of the Backpack

class that instantiates and analyzes a Backpack object.

def test_backpack():

testpack = Backpack("Barry", "black") # Instantiate the object.

if testpack.name != "Barry": # Test an attribute.

print("Backpack.name assigned incorrectly")

for item in ["pencil", "pen", "paper", "computer"]:

testpack.put(item) # Test a method.

print("Contents:", testpack.contents)

# ...
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Inheritance
To create a new class that is similar to one that already exists, it is often better to inherit the methods

and attributes from an existing class rather than create a new class from scratch. This creates a

class hierarchy : a class that inherits from another class is called a subclass, and the class that a

subclass inherits from is called a superclass. To de�ne a subclass, add the name of the superclass as

an argument at the end of the class declaration.

For example, since a knapsack is a kind of backpack (but not all backpacks are knapsacks), we

create a special Knapsack subclass that inherits the structure and behaviors of the Backpack class

and adds some extra functionality.

# Inherit from the Backpack class in the class definition.

class Knapsack(Backpack):

"""A Knapsack object class. Inherits from the Backpack class.

A knapsack is smaller than a backpack and can be tied closed.

Attributes:

name (str): the name of the knapsack's owner.

color (str): the color of the knapsack.

max_size (int): the maximum number of items that can fit inside.

contents (list): the contents of the backpack.

closed (bool): whether or not the knapsack is tied shut.

"""

def __init__(self, name, color, max_size=3):

"""Use the Backpack constructor to initialize the name, color,

and max_size attributes. A knapsack only holds 3 item by default.

Parameters:

name (str): the name of the knapsack's owner.

color (str): the color of the knapsack.

max_size (int): the maximum number of items that can fit inside.

"""

Backpack.__init__(self, name, color, max_size)

self.closed = True

A subclass may have new attributes and methods that are unavailable to the superclass, such

as the closed attribute in the Knapsack class. If methods from the superclass need to be changed

for the subclass, they can be overridden by de�ning them again in the subclass. New methods can

be included normally.

class Knapsack(Backpack):

# ...

def put(self, item): # Override the put() method.

"""If the knapsack is untied, use the Backpack.put() method."""

if self.closed:

print("I'm closed!")

else: # Use Backpack's original put().

Backpack.put(self, item)
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def take(self, item): # Override the take() method.

"""If the knapsack is untied, use the Backpack.take() method."""

if self.closed:

print("I'm closed!")

else:

Backpack.take(self, item)

def weight(self): # Define a new method just for knapsacks.

"""Calculate the weight of the knapsack by counting the length of the

string representations of each item in the contents list.

"""

return sum(len(str(item)) for item in self.contents)

Since Knapsack inherits from Backpack, a knapsack object is a backpack object. All methods

de�ned in the Backpack class are available as instances of the Knapsack class. For example, the

dump() method is available even though it is not de�ned explicitly in the Knapsack class.

The built-in function issubclass() shows whether or not one class is derived from another.

Similarly, isinstance() indicates whether or not an object belongs to a speci�ed class hierarchy.

Finally, hasattr() shows whether or not a class or object has a speci�ed attribute or method.

>>> from object_oriented import Knapsack

>>> my_knapsack = Knapsack("Brady", "brown")

# A Knapsack is a Backpack, but a Backpack is not a Knapsack.

>>> print(issubclass(Knapsack, Backpack), issubclass(Backpack, Knapsack))

True False

>>> isinstance(my_knapsack, Knapsack) and isinstance(my_knapsack, Backpack)

True

# The put() and take() method now require the knapsack to be open.

>>> my_knapsack.put('compass')

I'm closed!

# Open the knapsack and put in some items.

>>> my_knapsack.closed = False

>>> my_knapsack.put("compass")

>>> my_knapsack.put("pocket knife")

>>> my_knapsack.contents

['compass', 'pocket knife']

# The Knapsack class has a weight() method, but the Backpack class does not.

>>> print(hasattr(my_knapsack, 'weight'), hasattr(my_backpack, 'weight'))

True False

# The dump method is inherited from the Backpack class.

>>> my_knapsack.dump()

>>> my_knapsack.contents

[]
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Problem 2. Write a Jetpack class that inherits from the Backpack class.

1. Override the constructor so that in addition to a name, color, and maximum size, it also

accepts an amount of fuel. Change the default value of max_size to 2, and set the default

value of fuel to 10. Store the fuel as an attribute.

2. Add a fly() method that accepts an amount of fuel to be burned and decrements the

fuel attribute by that amount. If the user tries to burn more fuel than remains, print �Not

enough fuel!� and do not decrement the fuel.

3. Override the dump() method so that both the contents and the fuel tank are emptied.

4. Write clear, detailed docstrings for the class and each of its methods.

Note

All classes are subclasses of the built-in object class, even if no parent class is speci�ed in

the class de�nition. In fact, the syntax �class ClassName(object):� is not uncommon (or

incorrect) for the class declaration, and is equivalent to the simpler �class ClassName:�.

Magic Methods
A magic method is a special method used to make an object behave like a built-in data type. Magic

methods begin and end with two underscores, like the constructor __init__(). Every Python object

is automatically endowed with several magic methods, which can be revealed through IPython.

In [1]: %run object_oriented.py

In [2]: b = Backpack("Oscar", "green")

In [3]: b. # Press 'tab' to see standard methods and attributes.

color max_size take()

contents name

dump() put()

In [3]: b.__ # Press 'tab' to see magic methods and hidden attributes.

__add__() __getattribute__ __new__()

__class__ __gt__ __reduce__()

__delattr__ __hash__ __reduce_ex__()

__dict__ __init__() __repr__

__dir__() __init_subclass__() __setattr__

__doc__ __le__ __sizeof__()

__eq__ __lt__() __str__

__format__() __module__ __subclasshook__()

__ge__ __ne__ __weakref__
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Note

Many programming languages distinguish between public and private variables. In Python, all

attributes are public, period. However, attributes that start with an underscore are hidden

from the user, which is why magic methods do not show up at �rst in the preceding code box.

The more common magic methods de�ne how an object behaves with respect to addition and

other binary operations. For example, how should addition be de�ned for backpacks? A simple

option is to add the number of contents. Then if backpack A has 3 items and backpack B has 5 items,

A + B should return 8. To incorporate this idea, we implement the __add__() magic method.

class Backpack:

# ...

def __add__(self, other):

"""Add the number of contents of each Backpack."""

return len(self.contents) + len(other.contents)

Using the + binary operator on two Backpack objects calls the class's __add__() method. The

object on the left side of the + is passed in to __add__() as self and the object on the right side of

the + is passed in as other.

>>> pack1 = Backpack("Rose", "red")

>>> pack2 = Backpack("Carly", "cyan")

# Put some items in the backpacks.

>>> pack1.put("textbook")

>>> pack2.put("water bottle")

>>> pack2.put("snacks")

# Add the backpacks together.

>>> pack1 + pack2 # Equivalent to pack1.__add__(pack2).

3

Comparisons

Magic methods also facilitate object comparisons. For example, the __lt__() method corresponds

to the < operator. Suppose one backpack is considered �less� than another if it has fewer items in its

list of contents.

class Backpack(object)

# ...

def __lt__(self, other):

"""If 'self' has fewer contents than 'other', return True.

Otherwise, return False.

"""

return len(self.contents) < len(other.contents)
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Using the < binary operator on two Backpack objects calls __lt__(). As with addition, the

object on the left side of the < operator is passed to __lt__() as self, and the object on the right

is passed in as other.

>>> pack1, pack2 = Backpack("Maggy", "magenta"), Backpack("Yolanda", "yellow")

>>> pack1 < pack2 # Equivalent to pack1.__lt__(pack2).

False

>>> pack2.put('pencils')

>>> pack1 < pack2

True

Comparison methods should return either True or False, while methods like __add__() might

return a numerical value or another kind of object.

Method Arithmetic Operator

__add__() +

__sub__() -

__mul__() *

__pow__() **

__truediv__() /

__floordiv__() //

Method Comparison Operator

__lt__() <

__le__() <=

__gt__() >

__ge__() >=

__eq__() ==

__ne__() !=

Table 4.1: Common magic methods for arithmetic and comparisons. What each of these operations

do is up to the programmer and should be carefully documented. For more methods and details, see

https://docs.python.org/3/reference/datamodel.html#special-method-names.

Problem 3. Endow the Backpack class with two additional magic methods:

1. The __eq__() magic method is used to determine if two objects are equal, and is invoked

by the == operator. Implement the __eq__() magic method for the Backpack class so

that two Backpack objects are equal if and only if they have the same name, color, and

number of contents.

2. The __str__()magic method returns the string representation of an object. This method

is invoked by str() and used by print(). Implement the __str__() method in the

Backpack class so that printing a Backpack object yields the following output (that is,

construct and return the following string).

Owner: <name>

Color: <color>

Size: <number of items in contents>

Max Size: <max_size>

Contents: [<item1>, <item2>, ...]

(Hint: Use the tab and newline characters '\t' and '\n' to align output nicely.)

https://docs.python.org/3/reference/datamodel.html#special-method-names
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Achtung!

Magic methods for comparison are not automatically related. For example, even though the

Backpack class implements the magic methods for < and ==, two Backpack objects cannot

respond to the <= operator unless __le__() is explicitly de�ned. The exception to this rule is

the != operator: as long as __eq__() is de�ned, A!=B is False if and only if A==B is True.

Problem 4. Write a ComplexNumber class from scratch.

1. Complex numbers are denoted a+ bi where a, b ∈ R and i =
√
−1. Write the constructor

so it accepts two numbers. Store the �rst as self.real and the second as self.imag.

2. The complex conjugate of a+bi is de�ned as a+ bi = a−bi. Write a conjugate() method

that returns the object's complex conjugate as a new ComplexNumber object.

3. Add the following magic methods:

(a) Implement __str__() so that a+ bi is printed out as (a+bj) for b ≥ 0 and (a-bj)

for b < 0.

(b) The magnitude of a + bi is |a + bi| =
√
a2 + b2. The __abs__() magic method

determines the output of the built-in abs() function (absolute value). Implement

__abs__() so that it returns the magnitude of the complex number.

(c) Implement __eq__() so that two ComplexNumber objects are equal if and only if

they have the same real and imaginary parts.

(d) Implement __add__(), __sub__(), __mul__(), and __truediv__() appropriately.

Each of these should return a new ComplexNumber object.

Write a function to test your class by comparing it to Python's built-in complex type.

def test_ComplexNumber(a, b):

py_cnum, my_cnum = complex(a, b), ComplexNumber(a, b)

# Validate the constructor.

if my_cnum.real != a or my_cnum.imag != b:

print("__init__() set self.real and self.imag incorrectly")

# Validate conjugate() by checking the new number's imag attribute.

if py_cnum.conjugate().imag != my_cnum.conjugate().imag:

print("conjugate() failed for", py_cnum)

# Validate __str__().

if str(py_cnum) != str(my_cnum):

print("__str__() failed for", py_cnum)

# ...
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Additional Material
Static Attributes

Attributes that are accessed through self are called instance attributes because they are bound to

a particular instance of the class. In contrast, a static attribute is one that is shared between all

instances of the class. To make an attribute static, declare it inside of the class block but outside of

any of the class's methods, and do not use self. Since the attribute is not tied to a speci�c instance

of the class, it may be accessed or changed via the class name without even instantiating the class

at all.

class Backpack:

# ...

brand = "Adidas" # Backpack.brand is a static attribute.

>>> pack1, pack2 = Backpack("Bill", "blue"), Backpack("William", "white")

>>> print(pack1.brand, pack2.brand, Backpack.brand)

Adidas Adidas Adidas

# Change the brand name for the class to change it for all class instances.

>>> Backpack.brand = "Nike"

>>> print(pack1.brand, pack2.brand, Backpack.brand)

Nike Nike Nike

Static Methods

Individual class methods can also be static. A static method cannot be dependent on the attributes

of individual instances of the class, so there can be no references to self inside the body of the

method and self is not listed as an argument in the function de�nition. Thus static methods only

have access to static attributes and other static methods. Include the tag @staticmethod above the

function de�nition to designate a method as static.

class Backpack:

# ...

@staticmethod

def origin(): # Do not use 'self' as a parameter.

print("Manufactured by " + Backpack.brand + ", inc.")

# Static methods can be called without instantiating the class.

>>> Backpack.origin()

Manufactured by Nike, inc.

# The method can also be accessed by individual class instances.

>>> pack = Backpack("Larry", "lime")

>>> pack.origin()

Manufactured by Nike, inc.
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To practice these principles, consider adding a static attribute to the Backpack class to serve as

a counter for a unique ID. In the constructor for the Backpack class, add an instance variable called

self.ID. Set this ID based on the static ID variable, then increment the static ID so that the next

Backpack object will have a di�erent ID.

More Magic Methods

Consider how the following methods might be implemented for the Backpack class. These methods

are particularly important for custom data structure classes.

Method Operation Trigger Function

__bool__() Truth value bool()

__len__() Object length or size len()

__repr__() Object representation repr()

__getitem__() Indexing and slicing self[index]

__setitem__() Assignment via indexing self[index] = x

__iter__() Iteration over the object iter()

__reversed__() Reverse iteration over the object reversed()

__contains__() Membership testing in

See https://docs.python.org/3/reference/datamodel.html#special-method-names for more

details and documentation on all magic methods.

Hashing

A hash value is an integer that uniquely identi�es an object. The built-in hash() function calculates

an object's hash value by calling its __hash__() magic method.

In Python, the built-in set and dict structures use hash values to store and retrieve objects

in memory quickly. If an object is unhashable, it cannot be put in a set or be used as a key in a

dictionary. See https://docs.python.org/3/glossary.html#term-hashable for details.

If the __hash__() method is not de�ned, the default hash value is the object's memory address

(accessible via the built-in function id()) divided by 16, rounded down to the nearest integer. How-

ever, two objects that compare as equal via the __eq__() magic method must have the same hash

value. The following simple __hash__() method for the Backpack class conforms to this rule and

returns an integer.

class Backpack:

# ...

def __hash__(self):

return hash(self.name) ^ hash(self.color) ^ hash(len(self.contents))

The caret operator � is a bitwise XOR (exclusive or). The bitwise AND operator & and the

bitwise OR operator | are also good choices to use.

See https://docs.python.org/3/reference/datamodel.html#object.__hash__ for more on

hashing.

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/reference/datamodel.html#object.__hash__
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5 Introduction to
Matplotlib

Lab Objective: Matplotlib is the most commonly used data visualization library in Python. Being

able to visualize data helps to determine patterns and communicate results and is a key component

of applied and computational mathematics. In this lab we introduce techniques for visualizing data

in 1, 2, and 3 dimensions. The plotting techniques presented here will be used in the remainder of

the labs in the manual.

Line Plots
Raw numerical data is rarely helpful unless it can be visualized. The quickest way to visualize a

simple 1-dimensional array is with a line plot. The following code creates an array of outputs of the

function f(x) = x2, then visualizes the array using the matplotlib module1 [Hun07].

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> y = np.arange(-5,6)**2

>>> y

array([25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25])

# Visualize the plot.

>>> plt.plot(y) # Draw the line plot.

[<matplotlib.lines.Line2D object at 0x1084762d0>]

>>> plt.show() # Reveal the resulting plot.

The result is shown in Figure 5.1a. Just as np is a standard alias for NumPy, plt is a standard

alias for matplotlib.pyplot in the Python community.

The call plt.plot(y) creates a �gure and draws straight lines connecting the entries of y

relative to the y-axis. The x-axis is (by default) the index of the array, which in this case is the

integers from 0 to 10. Calling plt.show() then displays the �gure.

1Like NumPy, Matplotlib is not part of the Python standard library, but it is included in most Python distributions.

See https://matplotlib.org/ for the complete Matplotlib documentation.
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(a) plt.plot(y) uses the indices of

the array for the x-axis.
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(b) plt.plot(x,y) speci�es both the

domain and the range.

Figure 5.1: Plots of f(x) = x2 over the interval [−5, 5].

Problem 1. NumPy's random module has tools for sampling from probability distributions.

For instance, np.random.normal() draws samples from the normal (Gaussian) distribution.

The size parameter speci�es the shape of the resulting array.

>>> np.random.normal(size=(2,3)) # Get a 2x3 array of samples.

array([[ 1.65896515, -0.43236783, -0.99390897],

[-0.35753688, -0.76738306, 1.29683025]])

Write a function that accepts an integer n as input.

1. Use np.random.normal() to create an n× n array of values randomly sampled from the

standard normal distribution.

2. Compute the mean of each row of the array.

(Hint: Use np.mean() and specify the axis keyword argument.)

3. Return the variance of these means.

(Hint: Use np.var() to calculate the variance).

De�ne another function that creates an array of the results of the �rst function with inputs

n = 100, 200, . . . , 1000. Plot (and show) the resulting array.

Specifying a Domain

An obvious problem with Figure 5.1a is that the x-axis does not correspond correctly to the y-axis

for the function f(x) = x2 that is being drawn. To correct this, de�ne an array x for the domain,

then use it to calculate the image y = f(x). The command plt.plot(x,y) plots x against y by

drawing a line between the consecutive points (x[i], y[i]).

Another problem with Figure 5.1a is its poor resolution: the curve is visibly bumpy, especially

near the bottom of the curve. NumPy's linspace() function makes it easy to get a higher-resolution

domain. Recall that np.arange() returns an array of evenly-spaced values in a given interval, where
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the spacing between the entries is speci�ed. In contrast, np.linspace() creates an array of evenly-

spaced values in a given interval where the number of elements is speci�ed.

# Get 4 evenly-spaced values between 0 and 32 (including endpoints).

>>> np.linspace(0, 32, 4)

array([ 0. , 10.66666667, 21.33333333, 32. ])

# Get 50 evenly-spaced values from -5 to 5 (including endpoints).

>>> x = np.linspace(-5, 5, 50)

>>> y = x**2 # Calculate the range of f(x) = x**2.

>>> plt.plot(x, y)

>>> plt.show()

The resulting plot is shown in Figure 5.1b. This time, the x-axis correctly matches up with the

y-axis. The resolution is also much better because x and y have 50 entries each instead of only 10.

Subsequent calls to plt.plot() modify the same �gure until plt.show() is executed, which

displays the current �gure and resets the system. This behavior can be altered by specifying separate

�gures or axes, which we will discuss shortly.

Note

Plotting can seem a little mystical because the actual plot doesn't appear until plt.show() is

executed. Matplotlib's interactive mode allows the user to see the plot be constructed one piece

at a time. Use plt.ion() to turn interactive mode on and plt.ioff() to turn it o�. This is

very useful for quick experimentation. Try executing the following commands in IPython:

In [1]: import numpy as np

In [2]: from matplotlib import pyplot as plt

# Turn interactive mode on and make some plots.

In [3]: plt.ion()

In [4]: x = np.linspace(1, 4, 100)

In [5]: plt.plot(x, np.log(x))

In [6]: plt.plot(x, np.exp(x))

# Clear the figure, then turn interactive mode off.

In [7]: plt.clf()

In [8]: plt.ioff()

Use interactive mode only with IPython. Using interactive mode in a non-interactive

setting may freeze the window or cause other problems.

Problem 2. Write a function that plots the functions sin(x), cos(x), and arctan(x) on the

domain [−2π, 2π] (use np.pi for π). Make sure the domain is re�ned enough to produce a

�gure with good resolution.
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Plot Customization
plt.plot() receives several keyword arguments for customizing the drawing. For example, the color

and style of the line are speci�ed by the following string arguments.

Key Color

'b' blue

'g' green

'r' red

'c' cyan

'k' black

Key Style

'-' solid line

'--' dashed line

'-.' dash-dot line

':' dotted line

'o' circle marker

Specify one or both of these string codes as the third argument to plt.plot() to change from

the default color and style. Other plt functions further customize a �gure.

Function Description

legend() Place a legend in the plot

title() Add a title to the plot

xlim() / ylim() Set the limits of the x- or y-axis

xlabel() / ylabel() Add a label to the x- or y-axis

>>> x1 = np.linspace(-2, 4, 100)

>>> plt.plot(x1, np.exp(x1), 'g:', linewidth=6, label="Exponential")

>>> plt.title("This is the title.", fontsize=18)

>>> plt.legend(loc="upper left") # plt.legend() uses the 'label' argument of

>>> plt.show() # plt.plot() to create a legend.

>>> x2 = np.linspace(1, 4, 100)

>>> plt.plot(x2, np.log(x2), 'r*', markersize=4)

>>> plt.xlim(0, 5) # Set the visible limits of the x axis.

>>> plt.xlabel("The x axis") # Give the x axis a label.

>>> plt.show()
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Problem 3. Write a function to plot the curve f(x) = 1
x−1 on the domain [−2, 6].

1. Although f(x) has a discontinuity at x = 1, a single call to plt.plot() in the usual way

will make the curve look continuous. Split up the domain into [−2, 1) and (1, 6]. Plot the

two sides of the curve separately so that the graph looks discontinuous at x = 1.

2. Plot both curves with a dashed magenta line. Set the keyword argument linewidth (or

lw) of plt.plot() to 4 to make the line a little thicker than the default setting.

3. Use plt.xlim() and plt.ylim() to change the range of the x-axis to [−2, 6] and the

range of the y-axis to [−6, 6].

The plot should resemble the �gure below.
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Figures, Axes, and Subplots

The window that plt.show() reveals is called a �gure, stored in Python as a plt.Figure object.

A space on a �gure where a plot is drawn is called an axes, a plt.Axes object. A �gure can have

multiple axes, and a single program may create several �gures. There are several ways to create or

grab �gures and axes with plt functions.

Function Description

axes() Add an axes to the current �gure

figure() Create a new �gure or grab an existing �gure

gca() Get the current axes

gcf() Get the current �gure

subplot() Add a single subplot to the current �gure

subplots() Create a �gure and add several subplots to it

Usually when a �gure has multiple axes, they are organized into non-overlapping subplots.

The command plt.subplot(nrows, ncols, plot_number) creates an axes in a subplot grid where

nrows is the number of rows of subplots in the �gure, ncols is the number of columns, and

plot_number speci�es which subplot to modify. If the inputs for plt.subplot() are all integers, the

commas between the entries can be omitted. For example, plt.subplot(3,2,2) can be shortened

to plt.subplot(322).
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1 2 3

4 5 6
Figure 5.3: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the

index pictured above. The outer border is the �gure that the axes belong to.

>>> x = np.linspace(.1, 2, 200)

# Create a subplot to cover the left half of the figure.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, np.exp(x), 'k', lw=2)

>>> ax1.plot(x, np.exp(2*x), 'b', lw=2)

>>> plt.title("Exponential", fontsize=18)

# Create another subplot to cover the right half of the figure.

>>> ax2 = plt.subplot(122)

>>> ax2.plot(x, np.log(x), 'k', lw=2)

>>> ax2.plot(x, np.log(2*x), 'b', lw=2)

>>> ax2.set_title("Logarithmic", fontsize=18)

>>> plt.show()
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Note

Plotting functions such as plt.plot() are shortcuts for accessing the current axes on the current

�gure and calling a method on that Axes object. Calling plt.subplot() changes the current

axis, and calling plt.figure() changes the current �gure. Use plt.gca() to get the current

axes and plt.gcf() to get the current �gure. Compare the following equivalent strategies for

producing a �gure with two subplots.

>>> x = np.linspace(-5, 5, 100)

# 1. Use plt.subplot() to switch the current.

>>> plt.subplot(121)

>>> plt.plot(x, 2*x)

>>> plt.subplot(122)

>>> plt.plot(x, x**2)

# 2. Use plt.subplot() to explicitly grab the two subplot axes.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, 2*x)

>>> ax2 = plt.subplot(122)

>>> ax2.plot(x, x**2)

# 3. Use plt.subplots() to get the figure and all subplots simultaneously.

>>> fig, axes = plt.subplots(1, 2)

>>> axes[0].plot(x, 2*x)

>>> axes[1].plot(x, x**2)

Problem 4. Write a function that plots the functions sin(x), sin(2x), 2 sin(x), and 2 sin(2x)

on the domain [0, 2π], each in a separate subplot of a single �gure.

1. Arrange the plots in a 2× 2 grid of subplots.

2. Set the limits of each subplot to [0, 2π]× [−2, 2].
(Hint: Consider using plt.axis([xmin, xmax, ymin, ymax]) instead of plt.xlim()

and plt.ylim() to set all boundaries simultaneously.)

3. Use plt.title() or ax.set_title() to give each subplot an appropriate title.

4. Use plt.suptitle() or fig.suptitle() to give the overall �gure a title.

5. Use the following colors and line styles.

sin(x): green solid line. sin(2x): red dashed line.

2 sin(x): blue dashed line. 2 sin(2x): magenta dotted line.
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Achtung!

Be careful not to mix up the following functions.

1. plt.axes() creates a new place to draw on the �gure, while plt.axis() (or ax.axis())

sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current �gure, while

plt.subplots() (plural) creates a new �gure and adds a collection of subplots to it.

Other Kinds of Plots
Line plots are not always the most illuminating choice of graph to describe a set of data. Matplotlib

provides several other easy ways to visualize data.

� A scatter plot plots two 1-dimensional arrays against each other without drawing lines between

the points. Scatter plots are particularly useful for data that is not correlated or ordered.

To create a scatter plot, use plt.plot() and specify a point marker (such as 'o' or '*') for

the line style, or use plt.scatter() (or ax.scatter()). Beware that plt.scatter() has

slightly di�erent arguments and syntax than plt.plot().

� A histogram groups entries of a 1-dimensional data set into a given number of intervals, called

bins. Each bin has a bar whose height indicates the number of values that fall in the range of

the bin. Histograms are best for displaying distributions, relating data values to frequency.

To create a histogram, use plt.hist() (or ax.hist()). Use the argument bins to specify the

edges of the bins or to choose a number of bins. The range argument speci�es the outer limits

of the �rst and last bins.

# Get 500 random samples from two normal distributions.

>>> x = np.random.normal(scale=1.5, size=500)

>>> y = np.random.normal(scale=0.5, size=500)

# Draw a scatter plot of x against y, using transparent circle markers.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, y, 'o', markersize=5, alpha=.5)

# Draw a histogram to display the distribution of the data in x.

>>> ax2 = plt.subplot(122)

>>> ax2.hist(x, bins=np.arange(-4.5, 5.5)) # Or, equivalently,

# ax2.hist(x, bins=9, range=[-4.5, 4.5])

>>> plt.show()
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Problem 5. The Fatality Analysis Reporting System (FARS) is a nationwide census that

provides yearly data regarding fatal injuries su�ered in motor vehicle tra�c crashes.a The

array contained in FARS.npy is a small subset of the FARS database from 2010�2014. Each of

the 148,206 rows in the array represents a di�erent car crash; the columns represent the hour

(in military time, as an integer), the longitude, and the latitude, in that order.

Write a function to visualize the data in FARS.npy. Use np.load() to load the data, then

create a single �gure with two subplots:

1. A scatter plot of longitudes against latitudes. Because of the large number of data points,

use black pixel markers (use "k," as the third argument to plt.plot()). Label both axes

using plt.xlabel() and plt.ylabel() (or ax.set_xlabel() and ax.set_ylabel()).

(Hint: Use plt.axis("equal") or ax.set_aspect("equal") so that the x- and y-axis

are scaled the same way.

2. A histogram of the hours of the day, with one bin per hour. Set the limits of the x-axis

appropriately. Label the x-axis. You should be able to clearly see which hours of the day

experience more tra�c.

aSee http://www.nhtsa.gov/FARS.

Matplotlib also has tools for creating other kinds of plots for visualizing 1-dimensional data,

including bar plots and box plots. See the Matplotlib Appendix for examples and syntax.

Visualizing 3-D Surfaces

Line plots, histograms, and scatter plots are good for visualizing 1- and 2-dimensional data, including

the domain and range of a function f : R→ R. However, visualizing 3-dimensional data or a function

g : R2 → R (two inputs, one output) requires a di�erent kind of plot. The process is similar to creating

a line plot but requires slightly more setup: �rst construct an appropriate domain, then calculate

the image of the function on that domain.

NumPy's np.meshgrid() function is the standard tool for creating a 2-dimensional domain

in the Cartesian plane. Given two 1-dimensional coordinate arrays, np.meshgrid() creates two

corresponding coordinate matrices. See Figure 5.6.

http://www.nhtsa.gov/FARS
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Figure 5.6: np.meshgrid(x, y), returns the arrays X and Y. The returned arrays give the x- and

y-coordinates of the points in the grid formed by x and y. Speci�cally, the arrays X and Y satisfy

(X[i,j], Y[i,j]) = (x[i],y[j]).

>>> x, y = [0, 1, 2], [3, 4, 5] # A rough domain over [0,2]x[3,5].

>>> X, Y = np.meshgrid(x, y) # Combine the 1-D data into 2-D data.

>>> for xrow, yrow in zip(X,Y):

... print(xrow, yrow, sep='\t')

...

[0 1 2] [3 3 3]

[0 1 2] [4 4 4]

[0 1 2] [5 5 5]

With a 2-dimensional domain, g(x, y) is usually visualized with two kinds of plots.

� A heat map assigns a color to each point in the domain, producing a 2-dimensional colored

picture describing a 3-dimensional shape. Darker colors typically correspond to lower values

while lighter colors typically correspond to higher values.

Use plt.pcolormesh() to create a heat map.

� A contour map draws several level curves of g on the 2-dimensional domain. A level curve

corresponding to the constant c is the collection of points {(x, y) | c = g(x, y)}. Coloring the

space between the level curves produces a discretized version of a heat map. Including more

and more level curves makes a �lled contour plot look more and more like the complete, blended

heat map.

Use plt.contour() to create a contour plot and plt.contourf() to create a �lled contour

plot. Specify either the number of level curves to draw, or a list of constants corresponding to

speci�c level curves.

These functions each receive the keyword argument cmap to specify a color scheme (some of

the better schemes are "viridis", "magma", and "coolwarm"). For the list of all Matplotlib color

schemes, see http://matplotlib.org/examples/color/colormaps_reference.html.

Finally, plt.colorbar() draws the color scale beside the plot to indicate how the colors relate

to the values of the function.

http://matplotlib.org/examples/color/colormaps_reference.html
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# Create a 2-D domain with np.meshgrid().

>>> x = np.linspace(-np.pi, np.pi, 100)

>>> y = x.copy()

>>> X, Y = np.meshgrid(x, y)

>>> Z = np.sin(X) * np.sin(Y) # Calculate g(x,y) = sin(x)sin(y).

# Plot the heat map of f over the 2-D domain.

>>> plt.subplot(131)

>>> plt.pcolormesh(X, Y, Z, cmap="viridis")

>>> plt.colorbar()

>>> plt.xlim(-np.pi, np.pi)

>>> plt.ylim(-np.pi, np.pi)

# Plot a contour map of f with 10 level curves.

>>> plt.subplot(132)

>>> plt.contour(X, Y, Z, 10, cmap="coolwarm")

>>> plt.colorbar()

# Plot a filled contour map, specifying the level curves.

>>> plt.subplot(133)

>>> plt.contourf(X, Y, Z, [-1, -.8, -.5, 0, .5, .8, 1], cmap="magma")

>>> plt.colorbar()

>>> plt.show()
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Problem 6. Write a function to plot g(x, y) = sin(x) sin(y)
xy on the domain [−2π, 2π]× [−2π, 2π].

1. Create 2 subplots: one with a heat map of g, and one with a contour map of g. Choose

an appropriate number of level curves, or specify the curves yourself.

2. Set the limits of each subplot to [−2π, 2π]× [−2π, 2π].

3. Choose a non-default color scheme.

4. Include the color scale bar for each subplot.
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Additional Material

Further Reading and Tutorials

Plotting takes some getting used to. See the following materials for more examples.

� https://www.labri.fr/perso/nrougier/teaching/matplotlib/.

� https://matplotlib.org/users/pyplot_tutorial.html.

� http://scipy-lectures.org/intro/matplotlib/.

� The Matplotlib Appendix in this manual.

3-D Plotting

Matplotlib can also be used to plot 3-dimensional surfaces. The following code produces the surface

corresponding to g(x, y) = sin(x) sin(y).

# Create the domain and calculate the range like usual.

>>> x = np.linspace(-np.pi, np.pi, 200)

>>> y = np.copy(x)

>>> X, Y = np.meshgrid(x, y)

>>> Z = np.sin(X) * np.sin(Y)

# Draw the corresponding 3-D plot using some extra tools.

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = fig.add_subplot(1,1,1, projection='3d')

>>> ax.plot_surface(X, Y, Z)

>>> plt.show()
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https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://matplotlib.org/users/pyplot_tutorial.html
http://scipy-lectures.org/intro/matplotlib/
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Animations

Lines and other graphs can be altered dynamically to produce animations. Follow these steps to

create a Matplotlib animation:

1. Calculate all data that is needed for the animation.

2. De�ne a �gure explicitly with plt.figure() and set its window boundaries.

3. Draw empty objects that can be altered dynamically.

4. De�ne a function to update the drawing objects.

5. Use matplotlib.animation.FuncAnimation().

The submodule matplotlib.animation contains the tools for putting together and managing

animations. The function matplotlib.animation.FuncAnimation() accepts the �gure to animate,

the function that updates the �gure, the number of frames to show before repeating, and how fast

to run the animation (lower numbers mean faster animations).

from matplotlib.animation import FuncAnimation

def sine_animation():

# Calculate the data to be animated.

x = np.linspace(0, 2*np.pi, 200)[:-1]

y = np.sin(x)

# Create a figure and set the window boundaries of the axes.

fig = plt.figure()

plt.xlim(0, 2*np.pi)

plt.ylim(-1.2, 1.2)

# Draw an empty line. The comma after 'drawing' is crucial.

drawing, = plt.plot([],[])

# Define a function that updates the line data.

def update(index):

drawing.set_data(x[:index], y[:index])

return drawing, # Note the comma!

a = FuncAnimation(fig, update, frames=len(x), interval=10)

plt.show()

Try using the following function in place of update(). Can you explain why this animation is

di�erent from the original?

def wave(index):

drawing.set_data(x, np.roll(y, index))

return drawing,

To animate multiple objects at once, de�ne the objects separately and make sure the update

function returns both objects.
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def sine_cosine_animation():

x = np.linspace(0, 2*np.pi, 200)[:-1]

y1, y2 = np.sin(x), np.cos(x)

fig = plt.figure()

plt.xlim(0, 2*np.pi)

plt.ylim(-1.2, 1.2)

sin_drawing, = plt.plot([],[])

cos_drawing, = plt.plot([],[])

def update(index):

sin_drawing.set_data(x[:index], y1[:index])

cos_drawing.set_data(x[:index], y2[:index])

return sin_drawing, cos_drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10)

plt.show()

Animations can also be 3-dimensional. The only major di�erence is an extra operation to

set the 3-dimensional component of the drawn object. The code below animates the space curve

parametrized by the following equations:

x(θ) = cos(θ) cos(6θ), y(θ) = sin(θ) cos(6θ), z(θ) = θ
10

def rose_animation_3D():

theta = np.linspace(0, 2*np.pi, 200)

x = np.cos(theta) * np.cos(6*theta)

y = np.sin(theta) * np.cos(6*theta)

z = theta / 10

fig = plt.figure()

ax = fig.gca(projection='3d') # Make the figure 3-D.

ax.set_xlim3d(-1.2, 1.2) # Use ax instead of plt.

ax.set_ylim3d(-1.2, 1.2)

ax.set_aspect("equal")

drawing, = ax.plot([],[],[]) # Provide 3 empty lists.

# Update the first 2 dimensions like usual, then update the 3-D component.

def update(index):

drawing.set_data(x[:index], y[:index])

drawing.set_3d_properties(z[:index])

return drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10, repeat=False)

plt.show()



6 Exceptions and File
Input/Ouput

Lab Objective: In Python, an exception is an error detected during execution. Exceptions are

important for regulating program usage and for correctly reporting problems to the programmer and

end user. An understanding of exceptions is essential to safely read data from and write data to exter-

nal �les. Being able to interact with external �les is important for analyzing data and communicating

results. In this lab we learn exception syntax and �le interaction protocols.

Exceptions
An exception formally indicates an error and terminates the program early. Some of the more common

exception types are listed below, along with the kinds of problems they typically indicate.

Exception Indication

AttributeError An attribute reference or assignment failed.

ImportError An import statement failed.

IndexError A sequence subscript was out of range.

NameError A local or global name was not found.

TypeError An operation or function was applied to an object of

inappropriate type.

ValueError An operation or function received an argument that had

the right type but an inappropriate value.

ZeroDivisionError The second argument of a division or modulo operation was zero.

>>> print(x)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>> [1, 2, 3].fly()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'fly'

85



86 Lab 6. Exceptions and File Input/Output

Raising Exceptions

Most exceptions are due to coding mistakes and typos. However, exceptions can also be used inten-

tionally to indicate a problem to the user or programmer. To create an exception, use the keyword

raise, followed by the name of the exception class. As soon as an exception is raised, the program

stops running unless the exception is handled properly.

>>> if 7 is not 7.0: # Raise an exception with an error message.

... raise Exception("ints and floats are different!")

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

Exception: ints and floats are different!

>>> for x in range(10):

... if x > 5: # Raise a specific kind of exception.

... raise ValueError("'x' should not exceed 5.")

... print(x, end=' ')

...

0 1 2 3 4 5

Traceback (most recent call last):

File "<stdin>", line 3, in <module>

ValueError: 'x' should not exceed 5.

Problem 1. Consider the following arithmetic �magic� trick.

1. Choose a 3-digit number where the �rst and last digits di�er by 2 or more (say, 123).

2. Reverse this number by reading it backwards (321).

3. Calculate the positive di�erence of these numbers (321− 123 = 198).

4. Add the reverse of the result to itself (198 + 891 = 1089).

The result of the last step will always be 1089, regardless of the original number chosen in step

1 (can you explain why?).

The following function prompts the user for input at each step of the magic trick, but

does not check that the user's inputs are correct.

def arithmagic():

step_1 = input("Enter a 3-digit number where the first and last "

"digits differ by 2 or more: ")

step_2 = input("Enter the reverse of the first number, obtained "

"by reading it backwards: ")

step_3 = input("Enter the positive difference of these numbers: ")

step_4 = input("Enter the reverse of the previous result: ")

print(str(step_3), "+", str(step_4), "= 1089 (ta-da!)")
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Modify arithmagic() so that it veri�es the user's input at each step. Raise a ValueError

with an informative error message if any of the following occur:

� The �rst number (step_1) is not a 3-digit number.

� The �rst number's �rst and last digits di�er by less than 2.

� The second number (step_2) is not the reverse of the �rst number.

� The third number (step_3) is not the positive di�erence of the �rst two numbers.

� The fourth number (step_4) is not the reverse of the third number.

(Hint: input() always returns a string, so each variable is a string initially. Use int() to cast

the variables as integers when necessary. The built-in function abs() may also be useful.)

Handling Exceptions

To prevent an exception from halting the program, it must be handled by placing the problematic

lines of code in a try block. An except block then follows with instructions for what to do in the

event of an exception.

# The 'try' block should hold any lines of code that might raise an exception.

>>> try:

... print("Entering try block...")

... raise Exception("for no reason")

... print("No problem!") # This line gets skipped.

... # The 'except' block is executed just after the exception is raised.

... except Exception as e:

... print("There was a problem:", e)

...

Entering try block...

There was a problem: for no reason

>>> # The program then continues on.

In this example, the name e represents the exception within the except block. Printing e

displays its error message. If desired, e can be raised again with raise e or just raise.

The try-except control �ow can be expanded with two other blocks, forming a code structure

similar to a sequence of if-elif-else blocks.

1. The try block is executed until an exception is raised (if at all).

2. An except statement specifying the same kind of exception that was raised in the try block

�catches� the exception, and the block is then executed. There may be multiple except blocks

following a single try block (similiar to having several elif statements following a single if

statement), and a single except statement may specify multiple kinds of exceptions to catch.

3. The else block is executed if an exception was not raised in the try block.

4. The finally block is always executed if it is included.
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>>> try:

... print("Entering try block...", end='')

... house_on_fire = False

... raise ValueError("The house is on fire!")

... # Check for multiple kinds of exceptions using parentheses.

... except (ValueError, TypeError) as e:

... print("caught an exception.")

... house_on_fire = True

... else: # Skipped due to the exception.

... print("no exceptions raised.")

... finally:

... print("The house is on fire:", house_on_fire)

...

Entering try block...caught an exception.

The house is on fire: True

>>> try:

... print("Entering try block...", end='')

... house_on_fire = False

... except ValueError as e: # Skipped because there was no exception.

... print("caught a ValueError.")

... house_on_fire = True

... except TypeError as e: # Also skipped.

... print("caught a TypeError.")

... house_on_fire = True

... else:

... print("no exceptions raised.")

... finally:

... print("The house is on fire:", house_on_fire)

...

Entering try block...no exceptions raised.

The house is on fire: False

The code in the finally block is always executed, even if a return statement or an uncaught

exception occurs in any block following the try statement.

>>> def implode():

... try: # Try to return immediately...

... return

... finally: # ...but 'finally' goes before 'return'.

... print("Goodbye, world!")

...

>>> implode()

Goodbye, world!

See https://docs.python.org/3/tutorial/errors.html for more examples.

https://docs.python.org/3/tutorial/errors.html
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Achtung!

An except statement with no speci�ed exception type catches any exception raised in the

corresponding try block. This approach can mistakenly mask unexpected errors. Always be

speci�c about the kinds of exceptions you expect to encounter.

>>> def divider(x, y):

... try:

... return x / yy # The mispelled yy raises a NameError.

... except: # Catch ANY exception.

... print("y must not equal zero!")

...

>>> divider(2, 3)

y must not equal zero!

>>> def divider(x, y):

... try:

... return x / yy

... except ZeroDivisionError: # Specify an exception type.

... print("y must not equal zero!")

...

>>> divider(2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in divider

NameError: name 'yy' is not defined # Now the mistake is obvious.

Problem 2. A random walk is a path created by a sequence of random steps. The following

function simulates a random walk by repeatedly adding or subtracting 1 to a running total.

from random import choice

def random_walk(max_iters=1e12):

walk = 0

directions = [1, -1]

for i in range(int(max_iters)):

walk += choice(directions)

return walk

A KeyboardInterrupt is a special exception that can be triggered at any time by entering

ctrl+c (on most systems) in the keyboard. Modify random_walk() so that if the user raises a

KeyboardInterrupt by pressing ctrl+c while the program is running, the function catches the

exception and prints �Process interrupted at iteration i�. If no KeyboardInterrupt is raised,

print �Process completed�. In both cases, return walk as before.
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Note

The built-in exceptions are organized into a class hierarchy. For example, the ValueError

class inherits from the generic Exception class. Thus, a ValueError is an Exception, but an

Exception is not a ValueError.

>>> try:

... raise ValueError("caught!")

... except Exception as e: # A ValueError is an Exception.

... print(e)

...

caught! # The exception was caught.

>>> try:

... raise Exception("not caught!")

... except ValueError as e: # A Exception is not a ValueError.

... print(e)

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

Exception: not caught! # The exception wasn't caught!

See https://docs.python.org/3/library/exceptions.html for the complete list of

built-in exceptions and the exception class hierarchy.

File Input and Output
A �le object acts as an interface to a �le stream, meaning, it allows a program to read from or write

to external �les. The built-in function open() creates a �le object. It accepts the name of the �le

to open and an editing mode. The mode determines the kind of access that the user has to the �le.

There are four common modes:

'r': read. Open an existing �le for reading. The �le must already exist, or open() raises a

FileNotFoundError. This is the default mode.

'w': write. Create a new �le or overwrite an existing �le (careful!) and open it for writing.

'x': write new. Create a new �le and open it for writing. If the �le already exists, open() raises

a FileExistsError. This is a safer form of 'w' because it never overwrites existing �les.

'a': append. Open a �le for writing and append new data to the end of the �le if it already exists.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.

>>> print(myfile.read()) # Print the contents of the file.

Hello, # (it's a really small file.)

World!

>>> myfile.close() # Close the file connection.

https://docs.python.org/3/library/exceptions.html
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The With Statement

An IOError indicates that some input or output operation has failed. A simple try-finally control

�ow can ensure that a �le stream is closed safely.

The with statement provides an alternative method for safely opening and closing �les. Use

with open(<filename>, <mode>) as <alias>: to create an indented block in which the �le is open

and available under the speci�ed alias. At the end of the block, the �le is automatically and safely

closed, even in the event of an exception. This is the preferred �le-reading method when a �le only

needs to be accessed brie�y.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.

>>> try:

... contents = myfile.readlines() # Read in the content by line.

... finally:

... myfile.close() # Explicitly close the file.

# Equivalently, use a 'with' statement to take care of errors.

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.readlines()

... # The file is closed automatically.

In both cases, if the �le hello_world.txt does not exist in the current directory, open() raises

a FileNotFoundError. However, errors in the try or with blocks do not prevent the �le from being

safely closed.

Reading and Writing

Open �le objects have an implicit cursor that determines the location in the �le to read from or

write to. After the entire �le has been read once, either the �le must be closed and reopened, or the

cursor must be reset to the beginning of the �le with seek(0) before it can be read again.

Some of the more important �le object attributes and methods are listed below.

Attribute Description

closed True if the object is closed.

mode The access mode used to open the �le object.

name The name of the �le.

Method Description

close() Close the connection to the �le.

read() Read a given number of bytes; with no input, read the entire �le.

readline() Read a line of the �le, including the newline character at the end.

readlines() Call readline() repeatedly and return a list of the resulting lines.

seek() Move the cursor to a new position.

tell() Report the current position of the cursor.

write() Write a single string to the �le (spaces are not added).

writelines() Write a list of strings to the �le (newline characters are not added).

Only strings can be written to �les; to write a non-string type, �rst cast it as a string with

str(). Be mindful of spaces and newlines to separate the data.
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>>> with open("out.txt", 'w') as outfile: # Open 'out.txt' for writing.

... for i in range(10):

... outfile.write(str(i**2)+' ') # Write some strings (and spaces).

...

>>> outfile.closed # The file is closed automatically.

True

Problem 3. De�ne a class called ContentFilter. Implement the constructor so that it accepts

the name of a �le to be read.

1. If the �le name is invalid in any way, prompt the user for another �lename using input().

Continue prompting the user until they provide a valid �lename.

>>> cf1 = ContentFilter("hello_world.txt") # File exists.

>>> cf2 = ContentFilter("not-a-file.txt") # File doesn't exist.

Please enter a valid file name: still-not-a-file.txt

Please enter a valid file name: hello_world.txt

>>> cf3 = ContentFilter([1, 2, 3]) # Not even a string.

Please enter a valid file name: hello_world.txt

(Hint: open() might raise a FileNotFoundError, a TypeError, or an OSError.)

2. Read the �le and store its name and contents as attributes (store the contents as a single

string). Make sure the �le is securely closed.

String Formatting
The str class has several useful methods for parsing and formatting strings. They are particularly

useful for processing data from a source �le and for preparing data to be written to an external �le.

Method Returns

count() The number of times a given substring occurs within the string.

find() The lowest index where a given substring is found.

isalpha() True if all characters in the string are alphabetic (a, b, c, . . . ).

isdigit() True if all characters in the string are digits (0, 1, 2, . . . ).

isspace() True if all characters in the string are whitespace (" ", '\t', '\n').

join() The concatenation of the strings in a given iterable with a

speci�ed separator between entries.

lower() A copy of the string converted to lowercase.

upper() A copy of the string converted to uppercase.

replace() A copy of the string with occurrences of a given substring

replaced by a di�erent speci�ed substring.

split() A list of segments of the string, using a given character or string

as a delimiter.

strip() A copy of the string with leading and trailing whitespace removed.
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The join() method translates a list of strings into a single string by concatenating the entries

of the list and placing the principal string between the entries. Conversely, split() translates the

principal string into a list of substrings, with the separation determined by a single input.

# str.join() puts the string between the entries of a list.

>>> words = ["state", "of", "the", "art"]

>>> "-".join(words)

'state-of-the-art'

# str.split() creates a list out of a string, given a delimiter.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split('\n')

['One fish', 'Two fish', 'Red fish', 'Blue fish', '']

# If no delimiter is provided, the string is split by whitespace characters.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split()

['One', 'fish', 'Two', 'fish', 'Red', 'fish', 'Blue', 'fish']

Can you tell the di�erence between the following routines?

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.readlines()

...

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.read().split('\n')

Problem 4. Add the following methods to the ContentFilter class for writing the contents

of the original �le to new �les. Each method should accept the name of a �le to write to and

a keyword argument mode that speci�es the �le access mode, defaulting to 'w'. If mode is not

'w', 'x', or 'a', raise a ValueError with an informative message.

1. uniform(): write the data to the out�le with uniform case. Include an additional keyword

argument case that defaults to "upper".

If case="upper", write the data in upper case. If case="lower", write the data in lower

case. If case is not one of these two values, raise a ValueError.

2. reverse(): write the data to the out�le in reverse order. Include an additional keyword

argument unit that defaults to "line".

If unit="word", reverse the ordering of the words in each line, but write the lines in the

same order as the original �le. If unit="line", reverse the ordering of the lines, but do

not change the ordering of the words on each individual line. If unit is not one of these

two values, raise a ValueError.

3. transpose(): write a �transposed� version of the data to the out�le. That is, write the

�rst word of each line of the data to the �rst line of the new �le, the second word of each

line of the data to the second line of the new �le, and so on. Viewed as a matrix of words,

the rows of the input �le then become the columns of the output �le, and vice versa. You

may assume that there are an equal number of words on each line of the input �le.
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Also implement the __str__() magic method so that printing a ContentFilter object

yields the following output. You may want to calculate these statistics in the constructor.

Source file: <filename>

Total characters: <The total number of characters in the file>

Alphabetic characters: <The number of letters>

Numerical characters: <The number of digits>

Whitespace characters: <The number of spaces, tabs, and newlines>

Number of lines: <The number of lines>

(Hint: list comprehensions are very useful for some of these functions. For example, what does

[line[::-1] for line in lines] do? What about sum([s.isspace() for s in data])?)

Compare your class to the following example.

# cf_example1.txt

A b C

d E f

>>> cf = ContentFilter("cf_example1.txt")

>>> cf.uniform("uniform.txt", mode='w', case="upper")

>>> cf.uniform("uniform.txt", mode='a', case="lower")

>>> cf.reverse("reverse.txt", mode='w', unit="word")

>>> cf.reverse("reverse.txt", mode='a', unit="line")

>>> cf.transpose("transpose.txt", mode='w')

# uniform.txt

A B C

D E F

a b c

d e f

# reverse.txt

C b A

f E d

d E f

A b C

# transpose.txt

A d

b E

C f
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Additional Material
Custom Exception Classes

Custom exceptions can be de�ned by writing a class that inherits from some existing exception class.

The generic Exception class is typically the parent class of choice.

>>> class TooHardError(Exception):

... pass

...

>>> raise TooHardError("This lab is impossible!")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

__main__.TooHardError: This lab is impossible!

This may seem like a trivial extension of the Exception class, but it is useful to do because

the interpreter never automatically raises a TooHardError. Any TooHardError must have originated

from a hand-written raise command, making it easier to identify the exact source of the problem.

Chaining Exceptions

Sometimes, especially in large programs, it is useful to raise one kind of exception just after catching

another. The two exceptions can be linked together using the from statement. This syntax makes it

possible to see where the error originated from and to �pass it up� to another part of the program.

>>> try:

... raise TooHardError("This lab is impossible!")

... except TooHardError as e:

... raise NotImplementedError("Lab is incomplete") from e

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

__main__.TooHardError: This lab is impossible!

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

NotImplementedError: Lab is incomplete

More String Formatting Tools

Concatenating string values with non-string values can be cumbersome and tedious. The str class's

format() method makes it easier to insert non-string values into the middle of a string. Write

the desired output in its entirety, replacing non-string values with curly braces {}. Then use the

format() method, entering each replaced value in order.

# Join the data using string concatenation.

>>> day, month, year = 10, "June", 2017
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>>> print("Is today", day, str(month) + ',', str(year) + "?")

Is today 10 June, 2017?

# Join the data using str.format().

>>> print("Is today {} {}, {}?".format(day, month, year))

Is today 10 June, 2017?

This method is extremely �exible and provides many convenient ways to format string output

nicely. Consider the following code for printing out a simple progress bar from within a loop.

>>> iters = int(1e7)

>>> chunk = iters // 20

>>> for i in range(iters):

... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1), i),

... end='', flush=True)

...

Here the string "\r[{:<20}]" used in conjunction with the format() method tells the cursor

to go back to the beginning of the line, print an opening bracket, then print the �rst argument of

format() left-aligned with at least 20 total spaces before printing the closing bracket. The comma

after the print command suppresses the automatic newline character, keeping the output of each

individual print statement on the same line.

Printing at each iteration dramatically slows down the progression through the loop. How does

the following code solve that problem?

>>> for i in range(iters):

... if not i % chunk:

... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1),i),

... end='', flush=True)

...

See https://docs.python.org/3/library/string.html#format-string-syntax for more ex-

amples and speci�c syntax for using str.format(). For a more robust progress bar printer, research

the tqdm module.

Standard Library Modules for I/O

The standard library has other tools for input and output operations. For details on each module,

see https://docs.python.org/3/library.

Module Description

csv CSV (comma separated value) �le writing and parsing.

io Support for �le objects and open().

os Communication with the operating system.

os.path Common path operations such as checking for �le existence.

pickle Create portable serialized representations of Python objects.

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library
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Lab Objective: Finding and �xing programming errors can be di�cult and time consuming,

especially in large or complex programs. Unit testing is a formal strategy for �nding and eliminating

errors quickly as a program is constructed and for ensuring that the program still works whenever

it is modi�ed. A single unit test checks a small piece code (usually a function or class method) for

correctness, independent of the rest of the program. A well-written collection of unit tests can ensure

that every unit of code functions as intended, thereby certifying that the program is correct. In this lab

we learn to write unit tests in Python and practice test-driven development. Applying these principles

will greatly speed up the coding process and improve your code quality.

Unit Tests
A unit test veri�es a piece of code by running a series of test cases and comparing actual outputs

with expected outputs. Each test case is usually checked with an assert statement, a shortcut for

raising an AssertionError with an optional error message if a boolean statement is false.

# Store the result of a boolean expression in a variable.

>>> result = str(5)=='5'

# Check the result, raising an error if it is false.

>>> if result is False:

... raise AssertionError("incorrect result")

# Do the same check in one line with an assert statement.

>>> assert result, "incorrect result"

# Asserting a false statement raises an AssertionError.

>>> assert 5=='5', "5 is not a string"

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

AssertionError: 5 is not a string

Now suppose we wanted to test a simple add() function, located in the �le specs.py.

97
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# specs.py

def add(a, b):

"""Add two numbers."""

return a + b

In a corresponding �le called test_specs.py, which should contain all of the unit tests for the

code in specs.py, we write a unit test called test_add() to verify the add() function.

# test_specs.py

import specs

def test_add():

assert specs.add(1, 3) == 4, "failed on positive integers"

assert specs.add(-5, -7) == -12, "failed on negative integers"

assert specs.add(-6, 14) == 8

In this case, running test_add() raises no errors since all three test cases pass. Unit test

functions don't need to return anything, but they should raise an exception if a test case fails.

Note

This style of external testing�checking that certain inputs result in certain outputs�is called

black box testing. The actual structure of the code is not considered, but what it produces is

thoroughly examined. In fact, the author of a black box test doesn't even need to be the person

who eventually writes the program: having one person write tests and another write the code

helps detect problems that one developer or the other may not have caught individually.

PyTest
Python's pytest module1 provides tools for building tests, running tests, and providing detailed

information about the results. To begin, run pytest in the current directory. Without any test �les,

the output should be similar to the following.

$ pytest

============================= test session starts =============================

platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0

rootdir: /Users/Student, inifile:

collected 0 items

========================= no tests ran in 0.02 seconds ========================

Given some test �les, say test_calendar.py and test_google.py, the output of pytest iden-

ti�es failed tests and provides details on why they failed.

1Pytest is not part of the standard libray, but it is included in Anaconda's Python distribution. Install

pytest with [basicstyle=]conda install pytest if needed. The standard library's [basicstyle=]unittest
module also provides a testing framework, but is less popular and straightforward than PyTest.
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$ pytest

============================= test session starts =============================

platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0

rootdir: /Users/Student/example_tests, inifile:

collected 12 items

test_calendar.py ........

test_google.py .F..

================================== FAILURES ===================================

________________________________ test_subtract ________________________________

def test_subtract():

> assert google.subtract(42, 17)==25, "subtract() failed for a > b > 0"

E AssertionError: subtract() failed for a > b > 0

E assert 35 == 25

E + where 35 = <function subtract at 0x102d4eb90>(42, 17)

E + where <function subtract at 0x102d4eb90> = google.subtract

test_google.py:11: AssertionError

===================== 1 failed, 11 passed in 0.02 seconds =====================

Each dot represents a passed test and each F represents a failed test. They show up in order,

so in the example above, only the second of four tests in test_google.py failed.

Achtung!

PyTest will not �nd or run tests if they are not contained in �les named test_*.py or

*_test.py, where * represents any number of characters. In addition, the unit tests them-

selves must be named test_*() or *_test(). If you need to change this behavior, consult the

documentation at http://pytest.org/latest/example/pythoncollection.html.

Problem 1. The following function contains a subtle but important error.

def smallest_factor(n):

"""Return the smallest prime factor of the positive integer n."""

if n == 1: return 1

for i in range(2, int(n**.5)):

if n % i == 0: return i

return n

Write a unit test for this function, including test cases that you suspect might uncover the error

(what are the edge cases for this function?). Use pytest to run your unit test and discover a

test case that fails, then use this information to correct the function.

http://pytest.org/latest/example/pythoncollection.html
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Coverage

Successful unit tests include enough test cases to test the entire program. Coverage refers to the

number of lines of code that are executed by at least one test case. One tool for measuring coverage

is called pytest-cov, an extension of pytest. This tool must be installed separately, as it does not

come bundled with Anaconda. To install, run the following code in a terminal.

$ conda install pytest-cov

Add the �ag --cov to the pytest command to print out code coverage information. Running

pytest --cov in the same directory as specs.py and test_specs.py yields the following output.

$ pytest --cov

============================= test session starts =============================

platform darwin -- Python 3.6.0, pytest-3.0.5, py-1.4.32, pluggy-0.4.0

rootdir: /Users/Student/Testing, inifile:

plugins: cov-2.3.1

collected 7 items

test_specs.py .......

---------- coverage: platform darwin, python 3.6.6-final-0 ----------

Name Stmts Miss Cover

-----------------------------------

specs.py 73 34 53%

test_specs.py 46 0 100%

-----------------------------------

TOTAL 119 34 71%

========================== 7 passed in 0.03 seconds ===========================

Here, Stmts refers to the number of lines of code covered by a unit test, while Miss is the number

of lines that are not currently covered. Notice that the �le test_specs.py has 100% coverage while

specs.py does not. Test �les generally have 100% coverage, since pytest is designed to run these

�les in their entirety. However, specs.py does not have full coverage and requires additional unit

tests. To �nd out which lines are not yet covered, pytest-cov has a useful feature called cov-report

that creates an HTML �le for visualizing the current line coverage.

$ pytest --cov-report html --cov

============================= test session starts =============================

# ...

---------- coverage: platform darwin, python 3.6.6-final-0 ----------

Coverage HTML written to dir htmlcov

Instead of printing coverage statistics, this command creates various �les with coverage details

in a new directory called htmlcov/. The �le htmlcov/specs_py.html, which can be viewed in an

internet browser, highlights in red the lines of specs.py that are not yet covered by any unit tests.
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Note

Statement coverage is categorized as white box testing because it requires an understanding of

the code's structure. While most black box tests can be written before a program is actually

implemented, white box tests should be added to the collection of unit tests after the program

is completed. By designing unit tests so that they cover every statement in a program, you

may discover that some lines of code are unreachable, �nd that a conditional statement isn't

functioning as intended, or uncover problems that accompany edge cases.

Problem 2. With pytest-cov installed, check your coverage of smallest_factor() from

Problem 1. Write additional test cases if necessary to get complete coverage. Then, write a

comprehensive unit test for the following (correctly written) function.

def month_length(month, leap_year=False):

"""Return the number of days in the given month."""

if month in {"September", "April", "June", "November"}:

return 30

elif month in {"January", "March", "May", "July",

"August", "October", "December"}:

return 31

if month == "February":

if not leap_year:

return 28

else:

return 29

else:

return None

Testing Exceptions

Many programs are designed to raise exceptions in response to bad input or an unexpected error. A

good unit test makes sure that the program raises the exceptions that it is expected to raise, but also

that it doesn't raise any unexpected exceptions. The raises() method in pytest is a clean, formal

way of asserting that a program raises a desired exception.

# specs.py

def divide(a, b):

"""Divide two numbers, raising an error if the second number is zero."""

if b == 0:

raise ZeroDivisionError("second input cannot be zero")

return a / b

The corresponding unit tests checks that the function raises the ZeroDivisionError correctly.
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# test_specs.py

import pytest

def test_divide():

assert specs.divide(4,2) == 2, "integer division"

assert specs.divide(5,4) == 1.25, "float division"

pytest.raises(ZeroDivisionError, specs.divide, a=4, b=0)

If calling divide(a=4, b=0) results in a ZeroDivisionError, pytest.raises() catches the

exception and the test case passes. On the other hand, if divide(a=4, b=0) does not raise a

ZeroDivisionError, or if it raises a di�erent kind of exception, the test fails.

To ensure that the ZeroDivisionError is coming from the written raise statement, combine

pytest.raises() and the with statement to check the exception's error message.

def test_divide():

assert specs.divide(4,2) == 2, "integer division"

assert specs.divide(5,4) == 1.25, "float division"

with pytest.raises(ZeroDivisionError) as excinfo:

specs.divide(4, 0)

assert excinfo.value.args[0] == "second input cannot be zero"

Here excinfo is an object containing information about the exception; the actual exception

object is stored in excinfo.value, and hence excinfo.value.args[0] is the error message.

Problem 3. Write a comprehensive unit test for the following function. Make sure that each

exception is raised properly by explicitly checking the exception message. Use pytest-cov and

its cov-report tool to con�rm that you have full coverage for this function.

def operate(a, b, oper):

"""Apply an arithmetic operation to a and b."""

if type(oper) is not str:

raise TypeError("oper must be a string")

elif oper == '+':

return a + b

elif oper == '-':

return a - b

elif oper == '*':

return a * b

elif oper == '/':

if b == 0:

raise ZeroDivisionError("division by zero is undefined")

return a / b

raise ValueError("oper must be one of '+', '/', '-', or '*'")
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Fixtures

Consider the following class for representing rational numbers as reduced fractions.

class Fraction(object):

"""Reduced fraction class with integer numerator and denominator."""

def __init__(self, numerator, denominator):

if denominator == 0:

raise ZeroDivisionError("denominator cannot be zero")

elif type(numerator) is not int or type(denominator) is not int:

raise TypeError("numerator and denominator must be integers")

def gcd(a,b):

while b != 0:

a, b = b, a % b

return a

common_factor = gcd(numerator, denominator)

self.numer = numerator // common_factor

self.denom = denominator // common_factor

def __str__(self):

if self.denom != 1:

return "{} / {}".format(self.numer, self.denom)

else:

return str(self.numer)

def __float__(self):

return self.numer / self.denom

def __eq__(self, other):

if type(other) is Fraction:

return self.numer==other.numer and self.denom==other.denom

else:

return float(self) == other

def __add__(self, other):

return Fraction(self.numer*other.numer + self.denom*other.denom,

self.denom*other.denom)

def __sub__(self, other):

return Fraction(self.numer*other.numer - self.denom*other.denom,

self.denom*other.denom)

def __mul__(self, other):

return Fraction(self.numer*other.numer, self.denom*other.denom)

def __truediv__(self, other):

if self.denom*other.numer == 0:

raise ZeroDivisionError("cannot divide by zero")

return Fraction(self.numer*other.denom, self.denom*other.numer)
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>>> from specs import Fraction

>>> print(Fraction(8, 12)) # 8/12 reduces to 2/3.

2/3

>>> Fraction(1, 5) == Fraction(3, 15) # 3/15 reduces to 1/5.

True

>>> print(Fraction(1, 3) * Fraction(1, 4))

1/12

To test this class, it would be nice to have some ready-made Fraction objects to use in each

unit test. A �xture, a function marked with the @pytest.fixture decorator, sets up variables that

can be used as mock data for multiple unit tests. The individual unit tests take the �xture function

in as input and unpack the constructed tests. Below, we de�ne a �xture that instantiates three

Fraction objects. The unit tests for the Fraction class use these objects as test cases.

@pytest.fixture

def set_up_fractions():

frac_1_3 = specs.Fraction(1, 3)

frac_1_2 = specs.Fraction(1, 2)

frac_n2_3 = specs.Fraction(-2, 3)

return frac_1_3, frac_1_2, frac_n2_3

def test_fraction_init(set_up_fractions):

frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions

assert frac_1_3.numer == 1

assert frac_1_2.denom == 2

assert frac_n2_3.numer == -2

frac = specs.Fraction(30, 42) # 30/42 reduces to 5/7.

assert frac.numer == 5

assert frac.denom == 7

def test_fraction_str(set_up_fractions):

frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions

assert str(frac_1_3) == "1/3"

assert str(frac_1_2) == "1/2"

assert str(frac_n2_3) == "-2/3"

def test_fraction_float(set_up_fractions):

frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions

assert float(frac_1_3) == 1 / 3.

assert float(frac_1_2) == .5

assert float(frac_n2_3) == -2 / 3.

def test_fraction_eq(set_up_fractions):

frac_1_3, frac_1_2, frac_n2_3 = set_up_fractions

assert frac_1_2 == specs.Fraction(1, 2)

assert frac_1_3 == specs.Fraction(2, 6)

assert frac_n2_3 == specs.Fraction(8, -12)
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Problem 4. Add test cases to the unit tests provided above to get full coverage for the

__init__(), __str__(), __float__(), and __eq__() methods. You may modify the �x-

ture function if it helps. Also add unit tests for the magic methods __add__(), __sub__(),

__mul__(), and __truediv__(). Verify that you have full coverage with pytest-cov.

Additionally, two of the Fraction class's methods are implemented incorrectly. Use your

tests to �nd the issues, then correct the methods so that your tests pass.

See http://doc.pytest.org/en/latest/index.html for complete documentation on pytest.

Test-driven Development
Test-driven development (TDD) is the programming style of writing tests before implementing the

actual code. It may sound tedious at �rst, but TDD incentivizes simple design and implementation,

speeds up the actual coding, and gives quanti�able checkpoints for the development process. TDD

can be summarized in the following steps:

1. De�ne with great detail the program speci�cations. Write function declarations, class de�ni-

tions, and especially docstrings, determining exactly what each function or class method should

accept and return.

2. Write a unit test for each unit of the program, usually black box tests.

3. Implement the program code, making changes until all tests pass.

For adding new features or cleaning existing code, the process is similar.

1. Rede�ne program speci�cations to account for planned modi�cations.

2. Add or modify tests to match the new speci�cations.

3. Change the code until all tests pass.

Speci�cations Tests Implementation

If the test cases are su�ciently thorough, then when the tests all pass, the program can be

considered complete. Remember, however, that it is not su�cient to just have tests, but to have

tests that accurately and rigorously test the code. To check that the test cases are su�cient, examine

the test coverage and add additional tests if necessary.

See https://en.wikipedia.org/wiki/Test-driven_development for more discussion on TDD

and https://en.wikipedia.org/wiki/Behavior-driven_development for an overview of Behavior-

driven development (BDD), a close relative of TDD.

Problem 5. Set is a card game about �nding patterns. Each card contains a design with 4

di�erent properties: color (red, green or purple), shape (diamond, oval or squiggly), quantity

(one, two, or three) and pattern (solid, striped or outlined). A set is a group of three cards

which are either all the same or all di�erent for each property. You can try playing Set online

at http://smart-games.org/en/set/start.

http://doc.pytest.org/en/latest/index.html
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
http://smart-games.org/en/set/start
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Here is a group of twelve Set cards.

This collection of cards contains six unique sets:

(a) Same in quantity and shape; di�erent in

pattern and color
(b) Same in color and pattern; di�erent in

shape and quantity

(c) Same in pattern; di�erent in shape,

quantity and color

(d) Same in shape; di�erent in quantity,

pattern and color

(e) Di�erent in all aspects (f) Di�erent in all aspects

Each Set card can be uniquely represented by a 4-bit integer in base 3,a where each digit

represents a di�erent property and each property has three possible values. A full hand in Set is

a group of twelve unique cards, so a hand can be represented by a list of twelve 4-digit integers

in base 3. For example, the hand shown above could be represented by the following list.

hand1 = ["1022", "1122", "0100", "2021",

"0010", "2201", "2111", "0020",

"1102", "0210", "2110", "1020"]

The following function de�nitions provide a framework for partially implementing Set by

calculating the number of sets in a given hand.
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def count_sets(cards):

"""Return the number of sets in the provided Set hand.

Parameters:

cards (list(str)) a list of twelve cards as 4-bit integers in

base 3 as strings, such as ["1022", "1122", ..., "1020"].

Returns:

(int) The number of sets in the hand.

Raises:

ValueError: if the list does not contain a valid Set hand, meaning

- there are not exactly 12 cards,

- the cards are not all unique,

- one or more cards does not have exactly 4 digits, or

- one or more cards has a character other than 0, 1, or 2.

"""

pass

def is_set(a, b, c):

"""Determine if the cards a, b, and c constitute a set.

Parameters:

a, b, c (str): string representations of 4-bit integers in base 3.

For example, "1022", "1122", and "1020" (which is not a set).

Returns:

True if a, b, and c form a set, meaning the ith digit of a, b,

and c are either the same or all different for i=1,2,3,4.

False if a, b, and c do not form a set.

"""

pass

Write unit tests for these functions, but do not implement them yet. Focus on what the

functions should do rather than on how they will be implemented.

(Hint: if three cards form a set, then the �rst digits of the cards are either all the same or all

di�erent. Then the sums of these digits can only be 0, 3, or 6. Thus, a group of cards forms a

set only if for each set of digits��rst digits, second digits, etc.�the sum is a multiple of 3.)

aA 4-bit integer in base 3 contains four digits that are either 0, 1 or 2. For example, 0000 and 1201 are 4-bit

integers in base 3, whereas 000 is not because it has only three digits, and 0123 is not because it contains the

number 3.

Problem 6. After you have written unit tests for the functions in Problem 5, implement the

actual functions. If needed, add additional test cases to get full coverage.

(Hint: The combinations() function from the standard library module itertools may be

useful in implementing count_sets().)
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Additional Material

The Python Debugger

Python has a built in debugger called pdb to aid in �nding mistakes in code during execution. The

debugger can be run either in a terminal or in a Jupyter Notebook.

A break point, set with pdb.set_trace(), is a spot where the program pauses execution. Once

the program is paused, use the following commands to tell the program what to do next.

Command Description

n next: executes the next line

p <var> print: display the value of the speci�ed variable.

c continue: stop debugging and run the program normally to the end.

q quit: terminate the program.

l list: show several lines of code around the current line.

r return: return to the end of a subroutine.

<Enter> Execute the most recent command again.

For example, suppose we have a long loop where the value of a variable changes unpredictably.

# pdb_example.py

import pdb

from random import randint

i = 0

pdb.set_trace() # Set a break point.

while i < 1000000000:

i += randint(1, 10)

print("DONE")

Run the �le in the terminal to begin a debugging session.

$ python pdb_example.py

> /Users/Student/pdb_example.py(7)<module>()

-> while i < 1000000000:

(Pdb) l # Show where we are.

2 import pdb

3 from random import randint

4

5 i = 0

6 pdb.set_trace()

7 -> while i < 1000000000:

8 i += randint(1, 10)

9 print("DONE")

[EOF]

We can check the value of the variable i at any step with p i, and we can even change the

value of i mid-program.
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(Pdb) n # Execute a few lines.

> /Users/Student/pdb_example.py(8)<module>()

-> i += randint(1, 10)

(Pdb) n

> /Users/Student/pdb_example.py(7)<module>()

-> while i < 1000000000:

(Pdb) n

> /Users/Student/pdb_example.py(8)<module>()

-> i += randint(1, 10)

(Pdb) p i # Check the value of i.

8

(Pdb) n # Execute another line.

> /Users/Student/pdb_example.py(7)<module>()

-> while i < 1000000000:

(Pdb) p i # Check i again.

14

(Pdb) i = 999999999 # Change the value of i.

(Pdb) c # Continue the program.

DONE

See https://docs.python.org/3/library/pdb.html for documentation and examples for the

Python debugger.

Other Testing Suites

There are several frameworks other than pytest for writing unit tests. Each shares the same basic

structure, but the setup, syntax, and particular features vary. For more unit testing practice, try

out the standard library's unittest (https://docs.python.org/3/library/unittest.html) or

doctest (https://docs.python.org/3/library/doctest.html), or the third-party nose module

(https://nose.readthedocs.io/en/latest/). For a much larger list of unit testing tools, see

https://wiki.python.org/moin/PythonTestingToolsTaxonomy.

The Fractions Module

The standard library's fractionsmodule (https://docs.python.org/3/library/fractions.html)

has a Fraction class that is similar to the Fraction class presented in this lab. Its structure

and syntax is a little di�erent from this lab's class, but it is a little more robust in that it can

take in �oats, decimals, integers, and strings to its constructor. See also the decimals module

(https://docs.python.org/3/library/decimal.html) for tools relating to decimal arithmetic.

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html
https://nose.readthedocs.io/en/latest/
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
https://docs.python.org/3/library/fractions.html
https://docs.python.org/3/library/decimal.html
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8 Data Visualization

Lab Objective: This lab demonstrates how to communicate information through clean, concise,

and honest data visualization. We recommend completing the exercises in a Jupyter Notebook.

The Importance of Visualizations
Visualizations of data can reveal insights that are not immediately obvious from simple statistics.

The data set in the following exercise is known as Anscombe's quartet. It is famous for demonstrating

the importance of data visualization.

Problem 1. The �le anscombe.npy contains the quartet of data points shown in the table

below. For each section of the quartet,

� Plot the data as a scatter plot on the box [0, 20]× [0, 13].

� Use scipy.stats.linregress() to calculate the slope and intercept of the least squares

regression line for the data and its correlation coe�cient (the �rst three return values).

� Plot the least squares regression line over the scatter plot on the domain x ∈ [0, 20].

� Report the mean and variance in x and y, the slope and intercept of the regression line,

and the correlation coe�cient. Compare these statistics to those of the other sections.

� Describe how the section is similar to the others and how it is di�erent.

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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Improving Specific Types of Visualizations
E�ective data visualizations show speci�c comparisons and relationships in the data. Before designing

a visualization, decide what to look for or what needs to be communicated. Then choose the visual

scheme that makes sense for the data. The following sections demonstrate how to improve commonly

used plots to communicate information visually.

Line Plots
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Figure 8.1: Line plots can be used to visualize and compare mathematical functions. For example,

this �gure shows the �rst nine Chebyshev polynomials in one plot (left) and small multiples (right).

Using small multiples makes comparison easy and shows how each polynomial changes as n increases.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

# Plot the first 9 Chebyshev polynomials in the same plot.

>>> T = np.polynomial.Chebyshev.basis

>>> x = np.linspace(-1, 1, 200)

>>> for n in range(9):

... plt.plot(x, T(n)(x), label="n = "+str(n))

...

>>> plt.axis([-1.1, 1.1, -1.1, 1.1]) # Set the window limits.

>>> plt.legend(loc="right")

A line plot connects ordered (x, y) points with straight lines, and is best for visualizing one or

two ordered arrays, such as functional outputs over an ordered domain or a sequence of values over

time. Sometimes, plotting multiple lines on the same plot helps the viewer compare two di�erent

data sets. However, plotting several lines on top of each other makes the visualization di�cult to

read, even with a legend. For example, Figure 8.1 shows the �rst nine Chebyshev polynomials, a

family of orthogonal polynomials that satis�es the recursive relation

T0(x) = 1, T1(x) = x, Tn+1 = 2xTn(x)− Tn−1(x).
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The plot on the right makes comparison easier by using small multiples. Instead of using a legend,

the �gure makes a separate subplot with a title for each polynomial. Adjusting the �gure size and

the line thickness also makes the information easier to read.

Note

Matplotlib titles and annotations can be formatted with LATEX, a system for creating technical

documents.a To do so, use an r before the string quotation mark and surround the text with

dollar signs. For example, add the following line of code to the loop from the previous example.

... plt.title(r"$T_{}(x)$".format(n))

The format() method inserts the input n at the curly braces. The title of the sixth

subplot, instead of being �n = 5,� will then be �T5(x).�

aSee http://www.latex-project.org/ for more information.

Problem 2. The n+ 1 Bernstein basis polynomials of degree n are de�ned as follows:

bv,n(x) =

(
n

v

)
xv(1− x)n−v, v = 0, 1, . . . , n

Plot the �rst 10 Bernstein basis polynomials (n = 0, 1, 2, 3) as small multiples on the

domain [0, 1]× [0, 1]. Label the subplots for clarity, adjust tick marks and labels for simplicity,

and set the window limits of each plot to be the same. Consider arranging the subplots so that

the rows correspond with n and the columns with v.

Hint: The constant
(
n
v

)
= n!

v!(n−v)! is called the binomial coe�cient and can be e�ciently

computed with scipy.special.comb().

Bar Charts
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Figure 8.2: Bar charts are used to compare quantities between categorical variables. The labels on

the vertical bar chart (left) are more di�cult to read than the labels on the horizontal bar chart

(right). Although the labels can be rotated, horizontal text is much easier to read than vertical text.

http://www.latex-project.org/
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>>> labels = ["Lobster Thermador", "Baked Beans", "Crispy Bacon",

... "Smoked Sausage", "Hannibal Ham", "Eggs", "Spam"]

>>> values = [10, 11, 18, 19, 20, 21, 22]

>>> positions = np.arange(len(labels))

>>> plt.bar(positions, values, align="center") # Vertical bar chart.

>>> plt.xticks(positions, labels)

>>> plt.show()

>>> plt.barh(positions, values, align="center") # Horizontal bar char (better).

>>> plt.yticks(positions, labels)

>>> plt.tight_layout()

>>> plt.show()

A bar chart plots categorical data in a sequence of bars. They are best for small, discrete, one-

dimensional data sets. In Matplotlib, plt.bar() creates a vertical bar chart or plt.barh() creates

a horizontal bar chart. These functions receive the locations of each bar followed by the height of

each bar (as lists or arrays). In most situations, horizontal bar charts are preferable to vertical bar

charts because horizontal labels are easier to read than vertical labels. Data in a bar chart should

also be sorted in a logical way, such as alphabetically, by size, or by importance.

Histograms
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Figure 8.3: Histograms are used to show the distribution of one-dimensional data. Experimenting

with di�erent values for the bin size is important when plotting a histogram. Using only 10 bins

(left) doesn't give a good sense for how the randomly generated data is distributed. However, using

35 bins (right) reveals the shape of a normal distribution.

>>> data = np.random.normal(size=10000)

>>> fig, ax = plt.subplots(1, 2)

>>> ax[0].hist(data, bins=10)

>>> ax[1].hist(data, bins=35)
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A histogram partitions an interval into a number of bins and counts the number of values

that fall into each bin. Histograms are ideal for visualizing how unordered data in a single array

is distributed over an interval. For example, if data are drawn from a probability distribution, a

histogram approximates the distribution's probability density function. Use plt.hist() to create

a histogram. The arguments bins and range specify the number of bins to draw and over what

domain. A histogram with too few or too many bins will not give a clear view of the distribution.

Scatter Plots
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Figure 8.4: Scatter plots show correlations between variables by plotting markers at coordinate

points. The �gure above displays randomly perturbed data that is visualized using two scatter plots

with alpha=.5 and edgecolor='none'. The default (left) makes it harder to see correlation and

pattern whereas making the axes equal better reveals the oscillatory behavior in the perturbed sine

wave.

>>> np.random.seed(0)

>>> x = np.linspace(0,10*np.pi,200) + np.random.normal(size=200)

>>> y = np.sin(x) + np.random.normal(size=200)

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')

>>> plt.show()

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')

>>> plt.axis('equal')

>>> plt.show()

A scatter plot draws (x, y) points without connecting them. Scatter plots are best for displaying

data sets without a natural order, or where each point is a distinct, individual instance. They are

frequently used to show correlation between variables in a data set. Use plt.scatter() to create a

scatter plot.1

1Scatter plots can also be drawn with plt.plot() by specifying a point marker such as '.', ',', 'o', or '+'. The

keywords s and c can be used to change the marker size and marker color, respectively.
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Similar data points in a scatter plot may overlap, as in Figure 8.4. Specifying an alpha value

reveals overlapping data by making the markers transparent (see Figure 8.5 for an example). The

keyword alpha accepts values between 0 (completely transparent) and 1 (completely opaque). When

plotting lots of overlapping points, the outlines on the markers can make the visualization look

cluttered. Setting the edgecolor keyword to zero removes the outline and improves the visualization.

Problem 3. The �le MLB.npy contains measurements from over 1,000 recent Major League

Baseball players, compiled by UCLA.a Each row in the array represents a player; the columns

are the player's height (in inches), weight (in pounds), and age (in years), in that order.

Create several visualizations to show the correlations between height, weight, and age in

the MLB data set. Use at least one scatter plot. Adjust the marker size, plot a regression line,

change the window limits, and use small multiples where appropriate.

aSee http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights.

Problem 4. The �le earthquakes.npy contains data from over 17,000 earthquakes between

2000 and 2010 that were at least a 5 on the Richter scale.a Each row in the array represents an

earthquake; the columns are the earthquake's date (as a fraction of the year), magnitude (on

the Richter scale), longitude, and latitude, in that order.

Because each earthquake is a distinct event, a good way to start visualizing this data

might be a scatter plot of the years versus the magnitudes of each earthquake.

>>> year, magnitude, longitude, latitude = np.load("earthquakes.npy").T

>>> plt.plot(year, magnitude, '.')

>>> plt.xlabel("Year")

>>> plt.ylabel("Magnitude")
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http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights
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Unfortunately, this plot communicates very little information because the data is so clut-

tered. Describe the data with at least two better visualizations. Include line plots, scatter plots,

and histograms as appropriate. Your plots should answer the following questions:

1. How many earthquakes happened every year?

2. How often do stronger earthquakes happen compared to weaker ones?

3. Where do earthquakes happen? Where do the strongest earthquakes happen?

(Hint: Use plt.axis("equal") or ax.set_aspect("equal") to �x the aspect ratio,

which may improve comparisons between longitude and latitude.)

aSee http://earthquake.usgs.gov/earthquakes/search/.

Hexbins
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Figure 8.5: Hexbins can be used instead of using a three-dimensional histogram to show the distribu-

tion of two-dimensional data. Choosing the right gridsize will give a better picture of the distribution.

The �gure above shows random data plotted as hexbins with a gridsize of 10 (left) and 25 (right).

Hexbins use color to show height via a colormap and both histograms above use the 'inferno'

colormap.

# Add random draws from various distributions in two dimensions.

>>> a = np.random.exponential(size=1000) + np.random.normal(size=1000) + 5

>>> b = np.random.exponential(size=1000) + 2*np.random.normal(size=1000)

>>> x = np.hstack((a, b, 2*np.random.normal(size=1000)))

>>> y = np.hstack((b, a, np.random.normal(size=1000)))

# Plot the samples with hexbins of gridsize 10 and 25.

>>> fig, axes = plt.subplots(1, 2)

>>> window = [x.min(), x.max(), y.min(), y.max()]

>>> for ax, size in zip(axes, [10, 25]):

http://earthquake.usgs.gov/earthquakes/search/
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... ax.hexbin(x, y, gridsize=size, cmap='inferno')

... ax.axis(window)

... ax.set_aspect("equal")

...

>>> plt.show()

A hexbin is a way of representing the frequency of ocurrances in a two-dimensional plane. Similar

to a histogram, which sorts one-dimensional data into bins, a hexbin sorts two-dimensional data into

hexagonal bins arranged in a grid and uses color instead of height to show frequency. Creating

an e�ective hexbin relies on choosing an appropriate gridsize and colormap. The colormap is a

function that assigns data points to an ordering of colors. Use plt.hexbin() to create a hexbin and

use the cmap keyword to specify the colormap.

Heat Maps and Contour Plots
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Figure 8.6: Heat maps visualize three-dimensional functions or surfaces by using color to represent

the value in one dimension. With continuous data, it can be hard to identify regions of interest.

Contour plots solve this problem by visualizing the level curves of the surface. Top left: heat map.

Top right: contour plot. Bottom left: heat map. Bottom right: contours plotted on a heat map.

# Construct a 2-D domain with np.meshgrid() and calculate f on the domain.

>>> x = np.linspace(-1.5, 1.5, 200)

>>> X, Y = np.meshgrid(x, x)

>>> Z = Y**2 - X**3 + X**2
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# Plot f using a heat map, a contour map, and a filled contour map.

>>> fig, ax = plt.subplots(2,2)

>>> ax[0,0].pcolormesh(X, Y, Z, cmap="viridis") # Heat map.

>>> ax[0,1].contour(X, Y, Z, 6, cmap="viridis") # Contour map.

>>> ax[1,0].contourf(X, Y, Z, 12, cmap="magma") # Filled contour map.

# Plot specific level curves and a heat map with a colorbar.

>>> ax[1,1].contour(X, Y, Z, [-1, -.25, 0, .25, 1, 4], colors="white")

>>> cax = ax[1,1].pcolormesh(X, Y, Z, cmap="magma")

>>> fig.colorbar(cax, ax=ax[1,1])

>>> plt.show()

Let f : R2 → R be a scalar-valued function on a 2-dimensional domain. A heat map of f

assigns a color to each (x, y) point in the domain based on the value of f(x, y), while a contour plot

is a drawing of the level curves of f . The level curve corresponding to the constant c is the set

{(x, y) | c = f(x, y)}. A �lled contour plot colors in the sections between the level curves and is a

discretized version of a heat map. The values of c corresponding to the level curves are automatically

chosen to be evenly spaced over the range of values of f on the domain. However, it is sometimes

better to strategically specify the curves by providing a list of c constants.

Consider the function f(x, y) = y2 − x3 + x2 on the domain [− 3
2 ,

3
2 ] × [− 3

2 ,
3
2 ]. A heat map of

f reveals that it has a large basin around the origin. Since f(0, 0) = 0, choosing several level curves

close to 0 more closely describes the topography of the basin. The fourth subplot in 8.6 uses the

curves with c = −1, − 1
4 , 0,

1
4 , 1, and 4.

When plotting hexbins, heat maps, and contour plots, be sure to choose a colormap that best

represents the data. Avoid using spectral or rainbow colormaps like "jet" because they are not

perceptually uniform, meaning that the rate of change in color is not constant. Because of this, data

points may appear to be closer together or farther apart than they actually are. This creates visual

false positives or false negatives in the visualization and can a�ect the interpretation of the data.

As a default, we recommend using the sequential colormaps "viridis" or "inferno" because they

are designed to be perceptually uniform and colorblind friendly. For the complete list of Matplotlib

color maps, see http://matplotlib.org/examples/color/colormaps_reference.html.

Problem 5. The Rosenbrock function is de�ned as

f(x, y) = (1− x)2 + 100(y − x2)2.

The minimum value of f is 0, which occurs at the point (1, 1) at the bottom of a steep, banana-

shaped valley of the function.

Use a heat map and a contour plot to visualize the Rosenbrock function. Also plot the

minimizer (1, 1). Use a di�erent sequential colormap for each visualization.

http://matplotlib.org/examples/color/colormaps_reference.html
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Best Practices

Good scienti�c visualizations make comparison easy and clear. The eye is very good at detecting

variation in one dimension and poor in two or more dimensions. For example, consider Figure 8.7.

Despite the di�culty, most people can probably guess which slice of a pie chart is the largest or

smallest. However, it's almost impossible to con�dently answer the question by how much? The bar

charts may not be as aesthetically pleasing but they make it much easier to precisely compare the

data. Avoid using pie charts as well as other visualizations that make accurate comparison di�cult,

such as radar charts, bubble charts, and stacked bar charts.
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Figure 8.7: The pie charts on the left may be more colorful but it's extremely di�cult to quantify

the di�erence between each slice. Instead, the horizontal bar charts on the right make it very easy

to see the di�erence between each variable.
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No visualization perfectly represents data, but some are better than others. Finding the best

visualization for a data set is an iterative process. Experiment with di�erent visualizations by ad-

justing their parameters: color, scale, size, shape, position, and length. It may be necessary to use a

data transformation or visualize various subsets of the data. As you iterate, keep in mind the saying

attributed to George Box: �All models are wrong, but some are useful.� Do whatever is needed to

make the visualization useful and e�ective.
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Figure 8.8: Chartjunk refers to anything that does not communicate data. In the image on the

left, the cartoon monster distorts the bar chart and manipulates the feelings of the viewer to think

negatively about the results. The image on the right shows the same data without chartjunk, making

it simple and very easy to interpret the data objectively.

Good visualizations are as simple as possible and no simpler. Edward Tufte coined the term

chartjunk to mean anything (pictures, icons, colors, and text) that does not represent data or is

distracting. Though chartjunk might appear to make data graphics more memorable than plain

visualizations, it is more important to be clear and precise in order to prevent misin-

terpretation. The physicist Richard Feynman said, �For a successful technology, reality must take

precedence over public relations, for Nature cannot be fooled.� Remove chartjunk and anything that

prevents the viewer from objectively interpreting the data.
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Figure 8.9: The chart on the left is an example of a dishonest graphic shown at a United States

congressional hearing in 2015. The chart on the right shows a more accurate representation of the

data by showing the y-axis and revealing the missing data from 2008. Source: PolitiFact.

Visualizations should be honest. Figure 8.9 shows how visualizations can be dishonest. The

misleading graphic on the left was used as evidence in a United States congressional hearing in 2015.

With the y-axis completely removed, it is easy to miss that each line is shown on a di�erent y-axis

even though they are measured in the same units. Furthermore, the chart fails to indicate that data

is missing from the year 2008. The graphic on the right shows a more accurate representation of the

data.2

Never use data visualizations to deceive or manipulate. Always present information on who

created it, where the data came from, how it was collected, whether it was cleaned or transformed,

and whether there are con�icts of interest or possible biases present. Use speci�c titles and axis

labels, and include units of measure. Choose an appropriate window size and use a legend or other

annotations where appropriate.

Problem 6. The �le countries.npy contains information from 20 di�erent countries. Each

row in the array represents a di�erent country; the columns are the 2015 population (in millions

of people), the 2015 GDP (in billions of US dollars), the average male height (in centimeters),

and the average female height (in centimeters), in that order.a

The countries corresponding are listed below in order.

countries = ["Austria", "Bolivia", "Brazil", "China",

"Finland", "Germany", "Hungary", "India",

"Japan", "North Korea", "Montenegro", "Norway",

"Peru", "South Korea", "Sri Lanka", "Switzerland",

"Turkey", "United Kingdom", "United States", "Vietnam"]

2For more information about this graphic, visit http://www.politifact.com/truth-o-meter/statements/2015/

oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/.

http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/
http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/
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Visualize this data set with at least four plots, using at least one scatter plot, one his-

togram, and one bar chart. List the major insights that your visualizations reveal.

(Hint: consider using np.argsort() and fancy indexing to sort the data for the bar chart.)

aSee https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal),

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population, and

http://www.averageheight.co/.

For more about data visualization, we recommend the following books and websites.

� How to Lie with Statistics by Darrell Hu� (1954).

� The Visual Display of Quantitative Information by Edward Tufte (2nd edition).

� Visual Explanations by Edward Tufte.

� Envisioning Information by Edward Tufte.

� Beautiful Evidence by Edward Tufte.

� The Functional Art by Alberto Cairo.

� Visualization Analysis and Design by Tamara Munzner.

� Designing New Default Colormaps: https://bids.github.io/colormap/.

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
http://www.averageheight.co/
https://bids.github.io/colormap/
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9 Profiling

Lab Objective: E�ciency is essential to algorithmic programming. Pro�ling is the process of

measuring the complexity and e�ciency of a program, allowing the programmer to see what parts of

the code need to be optimized. In this lab we present common techniques for speeding up Python code,

including the built-in pro�ler and the Numba module.

Magic Commands in IPython
IPython has tools for quickly timing and pro�ling code. These �magic commands� start with one or

two % characters�one for testing a single line of code, and two for testing a block of code.

� %time: Execute some code and print out its execution time.

� %timeit: Execute some code several times and print out the average execution time.

� %prun: Run a statement through the Python code pro�ler,1 printing the number of function

calls and the time each takes. We will demonstrate this tool a little later.

# Time the construction of a list using list comprehension.

In [1]: %time x = [i**2 for i in range(int(1e5))]

CPU times: user 36.3 ms, sys: 3.28 ms, total: 39.6 ms

Wall time: 40.9 ms

# Time the same list construction, but with a regular for loop.

In [2]: %%time # Use a double %% to time a block of code.

...: x = []

...: for i in range(int(1e5)):

...: x.append(i**2)

...:

CPU times: user 50 ms, sys: 2.79 ms, total: 52.8 ms

Wall time: 55.2 ms # The list comprehension is faster!

1%prun is a shortcut for cProfile.run(); see https://docs.python.org/3/library/profile.html for details.
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Choosing Faster Algorithms

The best way to speed up a program is to use an e�cient algorithm. A bad algorithm, even when

implemented well, is never an adequate substitute for a good algorithm.

Problem 1. This problem comes from https://projecteuler.net (problems 18 and 67).

By starting at the top of the triangle below and moving to adjacent numbers on the row

below, the maximum total from top to bottom is 23.

3

7 4

2 4 6

8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

The following function �nds the maximum path sum of the triangle in triangle.txt by

recursively computing the sum of every possible path�the �brute force� approach.

def max_path(filename="triangle.txt"):

"""Find the maximum vertical path in a triangle of values."""

with open(filename, 'r') as infile:

data = [[int(n) for n in line.split()]

for line in infile.readlines()]

def path_sum(r, c, total):

"""Recursively compute the max sum of the path starting in row r

and column c, given the current total.

"""

total += data[r][c]

if r == len(data) - 1: # Base case.

return total

else: # Recursive case.

return max(path_sum(r+1, c, total), # Next row, same column.

path_sum(r+1, c+1, total)) # Next row, next column.

return path_sum(0, 0, 0) # Start the recursion from the top.

The data in triangle.txt contains 15 rows and hence 16384 paths, so it is possible to

solve this problem by trying every route. However, for a triangle with 100 rows, there are 299

paths to check, which would take billions of years to compute even for a program that could

check one trillion routes per second. No amount of improvement to max_path() can make it

run in an acceptable amount of time on such a triangle�we need a di�erent algorithm.

Write a function that accepts a �lename containing a triangle of integers. Compute the

largest path sum with the following strategy: starting from the next to last row of the triangle,

replace each entry with the sum of the current entry and the greater of the two �child entries.�

Continue this replacement up through the entire triangle. The top entry in the triangle will be

the maximum path sum. In other words, work from the bottom instead of from the top.

https://projecteuler.net
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3

7 4

2 4 6

8 5 9 3

−→

3

7 4

10 13 15

8 5 9 3

−→

3

20 19

10 13 15

8 5 9 3

−→

23

20 19

10 13 15

8 5 9 3

Use your function to �nd the maximum path sum of the 100-row triangle stored in

triangle_large.txt. Make sure that your new function still gets the correct answer for the

smaller triangle.txt. Finally, use %time or %timeit to time both functions on triangle.txt.

Your new function should be about 100 times faster than the original.

The Profiler

The pro�ling command %prun lists the functions that are called during the execution of a piece of

code, along with the following information.

Heading Description

primitive calls The number of calls that were not caused by recursion.

ncalls The number of calls to the function. If recursion occurs, the output

is <total number of calls>/<number of primitive calls>.

tottime The amount of time spent in the function, not including calls to other functions.

percall The amount of time spent in each call of the function.

cumtime The amount of time spent in the function, including calls to other functions.

# Profile the original function from Problem 1.

In[3]: %prun max_path("triangle.txt")

81947 function calls (49181 primitive calls) in 0.036 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

32767/1 0.025 0.000 0.034 0.034 profiling.py:18(path_sum)

16383 0.005 0.000 0.005 0.000 {built-in method builtins.max}

32767 0.003 0.000 0.003 0.000 {built-in method builtins.len}

1 0.002 0.002 0.002 0.002 {method `readlines' of `_io._IOBase' objects}

1 0.000 0.000 0.000 0.000 {built-in method io.open}

1 0.000 0.000 0.036 0.036 profiling.py:12(max_path)

1 0.000 0.000 0.000 0.000 profiling.py:15(<listcomp>)

1 0.000 0.000 0.036 0.036 {built-in method builtins.exec}

2 0.000 0.000 0.000 0.000 codecs.py:318(decode)

1 0.000 0.000 0.036 0.036 <string>:1(<module>)

15 0.000 0.000 0.000 0.000 {method `split' of `str' objects}

1 0.000 0.000 0.000 0.000 _bootlocale.py:23(getpreferredencoding)

2 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}

1 0.000 0.000 0.000 0.000 {built-in method _locale.nl_langinfo}

1 0.000 0.000 0.000 0.000 codecs.py:259(__init__)

1 0.000 0.000 0.000 0.000 codecs.py:308(__init__)

1 0.000 0.000 0.000 0.000 {method `disable' of `_lsprof.Profiler' objects}
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Optimizing Python Code
A poor implementation of a good algorithm is better than a good implementation of a bad algorithm,

but clumsy implementation can still cripple a program's e�ciency. The following are a few important

practices for speeding up a Python program. Remember, however, that such improvements are futile

if the algorithm is poorly suited for the problem.

Avoid Repetition

A clean program does no more work than is necessary. The ncalls column of the pro�ler output is

especially useful for identifying parts of a program that might be repetitive. For example, the pro�le

of max_path() indicates that len() was called 32,767 times�exactly as many times as path_sum().

This is an easy �x: save len(data) as a variable somewhere outside of path_sum().

In [4]: def max_path_clean(filename="triangle.txt"):

...: with open(filename, 'r') as infile:

...: data = [[int(n) for n in line.split()]

...: for line in infile.readlines()]

...: N = len(data) # Calculate len(data) outside of path_sum().

...: def path_sum(r, c, total):

...: total += data[r][c]

...: if r == N - 1: # Use N instead of len(data).

...: return total

...: else:

...: return max(path_sum(r+1, c, total),

...: path_sum(r+1, c+1, total))

...: return path_sum(0, 0, 0)

...:

In [5]: %prun max_path_clean("triangle.txt")

49181 function calls (16415 primitive calls) in 0.026 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

32767/1 0.020 0.000 0.025 0.025 <ipython-input-5-9e8c48bb1aba>:6(path_sum)

16383 0.005 0.000 0.005 0.000 {built-in method builtins.max}

1 0.002 0.002 0.002 0.002 {method `readlines' of `_io._IOBase' objects}

1 0.000 0.000 0.000 0.000 {built-in method io.open}

1 0.000 0.000 0.026 0.026 <ipython-input-5-9e8c48bb1aba>:1(max_path_clean)

1 0.000 0.000 0.000 0.000 <ipython-input-5-9e8c48bb1aba>:3(<listcomp>)

1 0.000 0.000 0.027 0.027 {built-in method builtins.exec}

15 0.000 0.000 0.000 0.000 {method `split' of `str' objects}

1 0.000 0.000 0.027 0.027 <string>:1(<module>)

2 0.000 0.000 0.000 0.000 codecs.py:318(decode)

1 0.000 0.000 0.000 0.000 _bootlocale.py:23(getpreferredencoding)

2 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}

1 0.000 0.000 0.000 0.000 {built-in method _locale.nl_langinfo}

1 0.000 0.000 0.000 0.000 codecs.py:308(__init__)

1 0.000 0.000 0.000 0.000 codecs.py:259(__init__)

1 0.000 0.000 0.000 0.000 {built-in method builtins.len}

1 0.000 0.000 0.000 0.000 {method `disable' of `_lsprof.Profiler' objects}
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Note that the total number of primitive function calls decreased from 49,181 to 16,415. Using

%timeit also shows that the run time decreased by about 15%. Moving code outside of a loop or an

often-used function usually results in a similar speedup.

Another important way of reducing repetition is carefully controlling loop conditions to avoid

unnecessary iterations. Consider the problem of identifying Pythagorean triples, sets of three distinct

integers a < b < c such that a2 + b2 = c2. The following function identi�es all such triples where

each term is less than a parameter N by checking all possible triples.

>>> def pythagorean_triples_slow(N):

... """Compute all pythagorean triples with entries less than N."""

... triples = []

... for a in range(1, N): # Try values of a from 1 to N-1.

... for b in range(1, N): # Try values of b from 1 to N-1.

... for c in range(1, N): # Try values of c from 1 to N-1.

... if a**2 + b**2 == c**2 and a < b < c:

... triples.append((a,b,c))

... return triples

...

Since a < b < c by de�nition, any computations where b ≤ a or c ≤ b are unnecessary.

Additionally, once a and b are chosen, c can be no greater than
√
a2 + b2. The following function

changes the loop conditions to avoid these cases and takes care to only compute a2+ b2 once for each

unique pairing (a, b).

>>> from math import sqrt

>>> def pythagorean_triples_fast(N):

... """Compute all pythagorean triples with entries less than N."""

... triples = []

... for a in range(1, N): # Try values of a from 1 to N-1.

... for b in range(a+1, N): # Try values of b from a+1 to N-1.

... _sum = a**2 + b**2

... for c in range(b+1, min(int(sqrt(_sum))+1, N)):

... if _sum == c**2:

... triples.append((a,b,c))

... return triples

...

These improvements have a drastic impact on run time, even though the main approach�

checking by brute force�is the same.

In [6]: %time triples = pythagorean_triples_slow(500)

CPU times: user 1min 51s, sys: 389 ms, total: 1min 51s

Wall time: 1min 52s # 112 seconds.

In [7]: %time triples = pythagorean_triples_fast(500)

CPU times: user 1.56 s, sys: 5.38 ms, total: 1.57 s

Wall time: 1.57 s # 98.6% faster!
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Problem 2. The following function computes the �rst N prime numbers.

def primes(N):

"""Compute the first N primes."""

primes_list = []

current = 2

while len(primes_list) < N:

isprime = True

for i in range(2, current): # Check for nontrivial divisors.

if current % i == 0:

isprime = False

if isprime:

primes_list.append(current)

current += 1

return primes_list

This function takes about 6 minutes to �nd the �rst 10,000 primes on a fast computer.

Without signi�cantly modifying the approach, rewrite primes() so that it can compute

10,000 primes in under 0.1 seconds. Use the following facts to reduce unnecessary iterations.

� A number is not prime if it has one or more divisors other than 1 and itself.

(Hint: recall the break statement.)

� If p - n, then ap - n for any integer a. Also, if p | n and 0 < p < n, then p ≤
√
n.

� Except for 2, primes are always odd.

Your new function should be helpful for solving problem 7 on https://projecteuler.net.

Avoid Loops

NumPy routines and built-in functions are often useful for eliminating loops altogether. Consider

the simple problem of summing the rows of a matrix, implemented in three ways.

>>> def row_sum_awful(A):

... """Sum the rows of A by iterating through rows and columns."""

... m,n = A.shape

... row_totals = np.empty(m) # Allocate space for the output.

... for i in range(m): # For each row...

... total = 0

... for j in range(n): # ...iterate through the columns.

... total += A[i,j]

... row_totals[i] = total # Record the total.

... return row_totals

...

>>> def row_sum_bad(A):

... """Sum the rows of A by iterating through rows."""

... return np.array([sum(A[i,:]) for i in range(A.shape[0])])

https://projecteuler.net
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...

>>> def row_sum_fast(A):

... """Sum the rows of A with NumPy."""

... return np.sum(A, axis=1) # Or A.sum(axis=1).

...

None of the functions are fundamentally di�erent, but their run times di�er dramatically.

In [8]: import numpy as np

In [9]: A = np.random.random((10000, 10000))

In [10]: %time rows = row_sum_awful(A)

CPU times: user 22.7 s, sys: 137 ms, total: 22.8 s

Wall time: 23.2 s # SLOW!

In [11]: %time rows = row_sum_bad(A)

CPU times: user 8.85 s, sys: 15.6 ms, total: 8.87 s

Wall time: 8.89 s # Slow!

In [12]: %time rows = row_sum_fast(A)

CPU times: user 61.2 ms, sys: 1.3 ms, total: 62.5 ms

Wall time: 64 ms # Fast!

In this experiment, row_sum_fast() runs several hundred times faster than row_sum_awful().

This is primarily because looping is expensive in Python, but NumPy handles loops in C, which is

much quicker. Other NumPy functions like np.sum() with an axis argument can often be used to

eliminate loops in a similar way.

Problem 3. Let A be an m × n matrix with columns a0, . . . ,an−1, and let x be a vector of

length m. The nearest neighbor problema is to determine which of the columns of A is �closest�

to x with respect to some norm. That is, we compute

argmin
j
‖aj − x‖.

The following function solves this problem naïvely for the usual Euclidean norm.

def nearest_column(A, x):

"""Find the index of the column of A that is closest to x."""

distances = []

for j in range(A.shape[1]):

distances.append(np.linalg.norm(A[:,j] - x))

return np.argmin(distances)

Write a new version of this function without any loops or list comprehensions, using array

broadcasting and the axis keyword in np.linalg.norm() to eliminate the existing loop. Try

to implement the entire function in a single line.

(Hint: See the NumPy Visual Guide in the Appendix for a refresher on array broadcasting.)
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Pro�le the old and new versions with %prun and compare the output. Finally, use %time

or %timeit to verify that your new version runs faster than the original.

aThe nearest neighbor problem is a common problem in many �elds of arti�cial intelligence. The problem

can be solved more e�ciently with a k-d tree, a specialized data structure for storing high-dimensional data.

Use Data Structures Correctly

Every data structure has strengths and weaknesses, and choosing the wrong data structure can be

costly. Here we consider three ways to avoid problems and use sets, dictionaries, and lists correctly.

� Membership testing. The question �is <value> a member of <container>� is common in

numerical algorithms. Sets and dictionaries are implemented in a way that makes this a trivial

problem, but lists are not. In other words, the in operator is near instantaneous with sets and

dictionaries, but not with lists.

In [13]: a_list = list(range(int(1e7)))

In [14]: a_set = set(a_list)

In [15]: %timeit 12.5 in a_list

413 ms +- 48.2 ms per loop (mean+-std.dev. of 7 runs, 1 loop each)

In [16]: %timeit 12.5 in a_set

170 ns +- 3.8 ns per loop (mean+-std.dev. of 7 runs, 10000000 loops each)

Looking up dictionary values is also almost immediate. Use dictionaries for storing calculations

to be reused, such as mappings between letters and numbers or common function outputs.

� Construction with comprehension. Lists, sets, and dictionaries can all be constructed with

comprehension syntax. This is slightly faster than building the collection in a loop, and the

code is highly readable.

# Map the integers to their squares.

In [17]: %%time

...: a_dict = {}

...: for i in range(1000000):

...: a_dict[i] = i**2

...:

CPU times: user 432 ms, sys: 54.4 ms, total: 486 ms

Wall time: 491 ms

In [18]: %time a_dict = {i:i**2 for i in range(1000000)}

CPU times: user 377 ms, sys: 58.9 ms, total: 436 ms

Wall time: 440 ms

� Intelligent iteration. Unlike looking up dictionary values, indexing into lists takes time.

Instead of looping over the indices of a list, loop over the entries themselves. When indices and

entries are both needed, use enumerate() to get the index and the item simultaneously.
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In [19]: a_list = list(range(1000000))

In [20]: %%time # Loop over the indices of the list.

...: for i in range(len(a_list)):

...: item = a_list[i]

...:

CPU times: user 103 ms, sys: 1.78 ms, total: 105 ms

Wall time: 107 ms

In [21]: %%time # Loop over the items in the list.

...: for item in a_list:

...: _ = item

...:

CPU times: user 61.2 ms, sys: 1.31 ms, total: 62.5 ms

Wall time: 62.5 ms # Almost twice as fast as indexing!

Problem 4. This is problem 22 from https://projecteuler.net.

Using the rule A 7→ 1, B 7→ 2, . . . , Z 7→ 26, the alphabetical value of a name is the sum

of the digits that correspond to the letters in the name. For example, the alphabetic value of

�COLIN� is 3 + 15 + 12 + 9 + 14 = 53.

The following function reads the �le names.txt, containing over �ve-thousand �rst names,

and sorts them in alphabetical order. The name score of each name in the resulting list is

the alphabetic value of the name multiplied by the name's position in the list, starting at 1.

�COLIN� is the 938th name alphabetically, so its name score is 938×53 = 49714. The function

returns the total of all the name scores in the �le.

def name_scores(filename="names.txt"):

"""Find the total of the name scores in the given file."""

with open(filename, 'r') as infile:

names = sorted(infile.read().replace('"', '').split(','))

total = 0

for i in range(len(names)):

name_value = 0

for j in range(len(names[i])):

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

for k in range(len(alphabet)):

if names[i][j] == alphabet[k]:

letter_value = k + 1

name_value += letter_value

total += (names.index(names[i]) + 1) * name_value

return total

Rewrite this function�removing repetition, eliminating loops, and using data structures

correctly�so that it runs in less than 10 milliseconds on average.

https://projecteuler.net
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Use Generators

A generator is an iterator that yields multiple values, one at a time, as opposed to returning a single

value. For example, range() is a generator. Using generators appropriately can reduce both the run

time and the spatial complexity of a routine. Consider the following function, which constructs a list

containing the entries of the sequence {xn}Nn=1 where xn = xn−1 + n with x1 = 1.

>>> def sequence_function(N):

... """Return the first N entries of the sequence x_n = x_{n-1} + n."""

... sequence = []

... x = 0

... for n in range(1, N+1):

... x += n

... sequence.append(x)

... return sequence

...

>>> sequence_function(10)

[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

A potential problem with this function is that all of the values in the list are computed before

anything is returned. This can be a big issue if the parameter N is large. A generator, on the other

hand, yields one value at a time, indicated by the keyword yield (instead of return). When the

generator is asked for the next entry, the code resumes right where it left o�.

>>> def sequence_generator(N):

... """Yield the first N entries of the sequence x_n = x_{n-1} + n."""

... x = 0

... for n in range(1, N+1):

... x += n

... yield x # "return" a single value.

...

# Get the entries of the generator one at a time with next().

>>> generated = sequence_generator(10)

>>> next(generated)

1

>>> next(generated)

3

>>> next(generated)

6

# Put each of the generated items in a list, as in sequence_function().

>>> list(sequence_generator(10)) # Or [i for i in sequence_generator(10)].

[1, 3, 6, 10, 15, 21, 28, 36, 45, 55]

# Use the generator in a for loop, like range().

>>> for entry in sequence_generator(10):

... print(entry, end=' ')

...

1 3 6 10 15 21 28 36 45 55
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Many generators, like range() and sequence_generator(), only yield a �nite number of values.

However, generators can also continue yielding inde�nitely. For example, the following generator

yields the terms of {xn}∞n=1 forever. In this case, using enumerate() with the generator is helpful

for tracking the index n as well as the entry xn.

>>> def sequence_generator_forever():

... """Yield the sequence x_n = x_{n-1} + n forever."""

... x = 0

... n = 1

... while True:

... x += n

... n += 1

... yield x # "return" a single value.

...

# Sum the entries of the sequence until the sum exceeds 1000.

>>> total = 0

>>> for i, x in enumerate(sequence_generator_forever()):

... total += x

... if total > 1000:

... print(i) # Print the index where the total exceeds.

... break # Break out of the for loop to stop iterating.

...

17

# Check that 18 terms are required (since i starts at 0 but n starts at 1).

>>> print(sum(sequence_generator(17)), sum(sequence_generator(18)))

969 1140

Problem 5. This is problem 25 from https://projecteuler.net.

The Fibonacci sequence is de�ned by the recurrence relation Fn = Fn−1 + Fn−2, where

F1 = F2 = 1. The 12th term, F12 = 144, is the �rst term to contain three digits.

Write a generator that yields the terms of the Fibonacci sequence inde�nitely. Next, write

a function that accepts an integer N . Use your generator to �nd the �rst term in the Fibonacci

sequence that contains N digits. Return the index of this term.

(Hint: a generator can have more than one yield statement.)

Problem 6. The function in Problem 2 could be turned into a prime number generator that

yields primes inde�nitely, but it is not the only strategy for yielding primes. The Sieve of

Eratosthenesa is a faster technique for �nding all of the primes below a certain number.

1. Given a cap N , start with all of the integers from 2 to N .

2. Remove all integers that are divisible by the �rst entry in the list.

https://projecteuler.net
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3. Yield the �rst entry in the list and remove it from the list.

4. Return to step 2 until the list is empty.

Write a generator that accepts an integer N and that yields all primes (in order, one at a

time) that are less than N using the Sieve of Eratosthenes. Your generator should be able to

�nd all primes less than 100,000 in under 5 seconds.

Your generator and your fast function from Problem 2 may be helpful in solving problems

10, 35, 37, 41, 49, and 50 (for starters) of https://projecteuler.net.

aSee https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

Numba
Python code is simpler and more readable than many languages, but Python is also generally much

slower than compiled languages like C. The numba module bridges the gap by using just-in-time (JIT)

compilation to optimize code, meaning that the code is actually compiled right before execution.

>>> from numba import jit

>>> @jit # Decorate a function with @jit to use Numba.

... def row_sum_numba(A):

... """Sum the rows of A by iterating through rows and columns,

... optimized by Numba.

... """

... m,n = A.shape

... row_totals = np.empty(m)

... for i in range(m):

... total = 0

... for j in range(n):

... total += A[i,j]

... row_totals[i] = total

... return row_totals

Python is a dynamically typed language, meaning variables are not de�ned explicitly with a

datatype (x = 6 as opposed to int x = 6). This particular aspect of Python makes it �exible,

easy to use, and slow. Numba speeds up Python code primarily by assigning datatypes to all the

variables. Rather than requiring explicit de�nitions for datatypes, Numba attempts to infer the

correct datatypes based on the datatypes of the input. In row_sum_numba(), if A is an array of

integers, Numba will infer that total should also be an integer. On the other hand, if A is an array

of �oats, Numba will infer that total should be a double (a similar datatype to �oat in C).

Once all datatypes have been inferred and assigned, the original Python code is translated to

machine code. Numba caches this compiled version of code for later use. The �rst function call takes

the time to compile and then execute the code, but subsequent calls use the already-compiled code.

In [22]: A = np.random.random((10000, 10000))

# The first function call takes a little extra time to compile first.

In [23]: %time rows = row_sum_numba(A)

https://projecteuler.net
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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CPU times: user 408 ms, sys: 11.5 ms, total: 420 ms

Wall time: 425 ms

# Subsequent calls are consistently faster that the first call.

In [24]: %timeit row_sum_numba(A)

138 ms +- 1.96 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

Note that the only di�erence between row_sum_numba() and row_sum_awful() from a few

pages ago is the @jit decorator, and yet the Numba version is about 99% faster than the original!

The inference engine within Numba does a good job, but it's not always perfect. Adding

the keyword argument nopython=True to the @jit decorator raises an error if Numba is unable to

convert each variable to explicit datatypes. The inspect_types() method can also be used to check

if Numba is using the desired types.

# Run the function once first so that it compiles.

>>> rows = row_sum_numba(np.random.random((10,10)))

>>> row_sum_numba.inspect_types()

# The output is very long and detailed.

Alternatively, datatypes can be speci�ed explicitly in the @jit decorator as a dictionary via

the locals keyword argument. Each of the desired datatypes must also be imported from Numba.

>>> from numba import int64, double

>>> @jit(nopython=True, locals=dict(A=double[:,:], m=int64, n=int64,

... row_totals=double[:], total=double))

... def row_sum_numba(A): # 'A' is a 2-D array of doubles.

... m,n = A.shape # 'm' and 'n' are both integers.

... row_totals = np.empty(m) # 'row_totals' is a 1-D array of doubles.

... for i in range(m):

... total = 0 # 'total' is a double.

... for j in range(n):

... total += A[i,j]

... row_totals[i] = total

... return row_totals

...

While it sometimes results in a speed boost, there is a caveat to specifying the datatypes:

row_sum_numba() no longer accepts arrays that contain anything other than �oats. When datatypes

are not speci�ed, Numba compiles a new version of the function each time the function is called with

a di�erent kind of input. Each compiled version is saved, so the function can still be used �exibly.

Problem 7. The following function calculates the nth power of an m×m matrix A.

def matrix_power(A, n):

"""Compute A^n, the n-th power of the matrix A."""

product = A.copy()
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temporary_array = np.empty_like(A[0])

m = A.shape[0]

for power in range(1, n):

for i in range(m):

for j in range(m):

total = 0

for k in range(m):

total += product[i,k] * A[k,j]

temporary_array[j] = total

product[i] = temporary_array

return product

1. Write a Numba-enhanced version of matrix_power() called matrix_power_numba().

2. Write a function that accepts an integer n. Run matrix_power_numba() once with a

small random input so it compiles. Then, for m = 22, 23, . . . , 27,

(a) Generate a random m×m matrix A with np.random.random().

(b) Time (separately) matrix_power(), matrix_power_numba(), and NumPy's

np.linalg.matrix_power() on A with the speci�ed value of n.

(If you are unfamiliar with timing code inside of a function, see the

Additional Material section on timing code.)

Plot the times against the size m on a log-log plot (use plt.loglog()).

With n = 10, the plot should show that the Numba and NumPy versions far outperform the

pure Python implementation, with NumPy eventually becoming faster than Numba.

Achtung!

Optimizing code is an important skill, but it is also important to know when to refrain from

optimization. The best approach to coding is to write unit tests, implement a solution that

works, test and time that solution, then (and only then) optimize the solution with pro�ling

techniques. As always, the most important part of the process is choosing the correct algorithm

to solve the problem. Don't waste time optimizing a poor algorithm.
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Additional Material
Other Timing Techniques

Though %time and %timeit are convenient and work well, some problems require more control for

measuring execution time. The usual way of timing a code snippet by hand is via the time module

(which %time uses). The function time.time() returns the number of seconds since the Epoch2; to

time code, measure the number of seconds before the code runs, the number of seconds after the

code runs, and take the di�erence.

>>> import time

>>> start = time.time() # Record the current time.

>>> for i in range(int(1e8)): # Execute some code.

... pass

... end = time.time() # Record the time again.

... print(end - start) # Take the difference.

...

4.20402193069458 # (seconds)

The timeit module (which %timeit uses) has tools for running code snippets several times.

The code is passed in as a string, as well as any setup code to be run before starting the clock.

>>> import timeit

>>> timeit.timeit("for i in range(N): pass", setup="N = int(1e6)", number=200)

4.884839255013503 # Total time in seconds to run the code 200 times.

>>> _ / 200

0.024424196275067516 # Average time in seconds.

The primary advantages of these techniques are the ability automate timing code and being able

save the results. For more documentation, see https://docs.python.org/3.6/library/time.html

and https://docs.python.org/3.6/library/timeit.html.

Customizing the Profiler

The output from %prun is generally long, but it can be customized with the following options.

Option Description

-l <limit> Include a limited number of lines in the output.

-s <key> Sort the output by call count, cumulative time, function name, etc.

-T <filename> Save pro�le results to a �le (results are still printed).

For example, %prun -l 3 -s ncalls -T path_profile.txt max_path() generates a pro�le

of max_path() that lists the 3 functions with the most calls, then write the results to path_profile.txt.

See http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-prun for more

details.

2See https://en.wikipedia.org/wiki/Epoch_(reference_date)#Computing.

https://docs.python.org/3.6/library/time.html
https://docs.python.org/3.6/library/timeit.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-prun
https://en.wikipedia.org/wiki/Epoch_(reference_date)#Computing
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10 Introduction to SymPy

Lab Objective: Most implementations of numerical algorithms focus on crunching, relating, or

visualizing numerical data. However, it is sometimes convenient or necessary to represent parts of an

algorithm symbolically. The SymPy module provides a way to do symbolic mathematics in Python,

including algebra, di�erentiation, integration, and more. In this lab we introduce SymPy syntax and

emphasize how to use symbolic algebra for numerical computing.

Symbolic Variables and Expressions
Most variables in Python refer to a number, string, or data structure. Doing computations on such

variables results in more numbers, strings, or data structures. A symbolic variable is a variable that

represents a mathematical symbol, such as x or θ, not a number or another kind of data. Operating

on symbolic variables results in an expression, representative of an actual mathematical expression.

For example, if a symbolic variable Y refers to a mathematical variable y, the multiplication 3*Y

refers to the expression 3y. This is all done without assigning an actual numerical value to Y.

SymPy [MSP+17] is Python's library for doing symbolic algebra and calculus. It is typically

imported with import sympy as sy, and symbolic variables are usually de�ned using sy.symbols().

>>> import sympy as sy

>>> x0 = sy.symbols('x0') # Define a single variable.

# Define multiple symbolic variables simultaneously.

>>> x2, x3 = sy.symbols('x2, x3') # Separate symbols by commas,

>>> m, a = sy.symbols('mass acceleration') # by spaces,

>>> x, y, z = sy.symbols('x:z') # or by colons.

>>> x4, x5, x6 = sy.symbols('x4:7')

# Combine symbolic variables to form expressions.

>>> expr = x**2 + x*y + 3*x*y + 4*y**3

>>> force = m * a

>>> print(expr, force, sep='\n')

x**2 + 4*x*y + 4*y**3

acceleration*mass

141



142 Lab 10. Introduction to SymPy

SymPy has its own version for each of the standard mathematical functions like sin(x), log(x),

and
√
x, and includes prede�ned variables for special numbers such as π. The naming conventions

for most functions match NumPy, but some of the built-in constants are named slightly di�erently.

Functions
sin(x) arcsin(x) sinh(x) ex log(x)

√
x

sy.sin() sy.asin() sy.sinh() sy.exp() sy.log() sy.sqrt()

Constants
π e i =

√
−1 ∞

sy.pi sy.E sy.I sy.oo

Other trigonometric functions like cos(x) follow the same naming conventions. For a complete list of

SymPy functions, see http://docs.sympy.org/latest/modules/functions/index.html.

Achtung!

Always use SymPy functions and constants when creating expressions instead of using NumPy's

functions and constants. Later we will show how to make NumPy and SymPy cooperate.

>>> import numpy as np

>>> x = sy.symbols('x')

>>> np.exp(x) # Try to use NumPy to represent e**x.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'Symbol' object has no attribute 'exp'

>>> sy.exp(x) # Use SymPy's version instead.

exp(x)

Note

SymPy de�nes its own numeric types for integers, �oats, and rational numbers. For example,

the sy.Rational class is similar to the standard library's fractions.Fraction class, and

should be used to represent fractions in SymPy expressions.

>>> x = sy.symbols('x')

>>> (2/3) * sy.sin(x) # 2/3 returns a float, not a rational.

0.666666666666667*sin(x)

>>> sy.Rational(2, 3) * sy.sin(x) # Keep 2/3 symbolic.

2*sin(x)/3

Always be aware of which numeric types are being used in an expression. Using rationals and

integers where possible is important for simplifying expressions.

http://docs.sympy.org/latest/modules/functions/index.html
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Problem 1. Write a function that returns the expression 2
5e
x2−y cosh(x + y) + 3

7 log(xy + 1)

symbolically. Make sure that the fractions remain symbolic.

Sums and Products

Expressions that can be written as a sum or a product can be constructed with sy.summation() or

sy.product(), respectively. Each of these functions accepts an expression that represents one term

of the sum or product, then a tuple indicating the indexing variable and which values it should take

on. For example, the following code constructs the sum and product given below.

4∑
i=1

x+ iy

5∏
i=0

x+ iy

>>> x, y, i = sy.symbols('x y i')

>>> sy.summation(x + i*y, (i, 1, 4)) # Sum over i=1,2,3,4.

4*x + 10*y

>>> sy.product(x + i*y, (i, 0, 5)) # Multiply over i=0,1,2,3,4,5.

x*(x + y)*(x + 2*y)*(x + 3*y)*(x + 4*y)*(x + 5*y)

Simplifying Expressions

The expressions for the summation and product in the previous example are automatically simpli�ed.

More complicated expressions can be simpli�ed with one or more of the following functions.

Function Description

sy.cancel() Cancel common factors in the numerator and denominator.

sy.expand() Expand a factored expression.

sy.factor() Factor an expanded expression.

sy.radsimp() Rationalize the denominator of an expression.

sy.simplify() Simplify an expression.

sy.trigsimp() Simplify only the trigonometric parts of the expression.

>>> x = sy.symbols('x')

>>> expr = (x**2 + 2*x + 1) / ((x+1)*((sy.sin(x)/sy.cos(x))**2 + 1))

>>> print(expr)

(x**2 + 2*x + 1)/((x + 1)*(sin(x)**2/cos(x)**2 + 1))

>>> sy.simplify(expr)

(x + 1)*cos(x)**2

The generic sy.simplify() tries to simplify an expression in any possible way. This is often

computationally expensive; using more speci�c simpli�ers when possible reduces the cost.
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>>> expr = sy.product(x + i*y, (i, 0, 3))

>>> print(expr)

x*(x + y)*(x + 2*y)*(x + 3*y)

>>> expr_long = sy.expand(expr) # Expand the product terms.

>>> print(expr_long)

x**4 + 6*x**3*y + 11*x**2*y**2 + 6*x*y**3

>>> expr_long /= (x + 3*y)

>>> print(expr_long)

(x**4 + 6*x**3*y + 11*x**2*y**2 + 6*x*y**3)/(x + 3*y)

>>> expr_short = sy.cancel(expr_long) # Cancel out the denominator.

x**3 + 3*x**2*y + 2*x*y**2

>>> sy.factor(expr_short) # Factor the result.

x*(x + y)*(x + 2*y)

# Simplify the trigonometric parts of an expression.

>>> sy.trigsimp(2*sy.sin(x)*sy.cos(x))

sin(2*x)

See http://docs.sympy.org/latest/tutorial/simplification.html for more examples.

Achtung!

1. Simpli�cations return new expressions; they do not modify existing expressions in place.

2. The == operator compares two expressions for exact structural equality, not algebraic

equivalence. Simplify or expand expressions before comparing them with ==.

3. Expressions containing �oats may not simplify as expected. Always use integers and

SymPy rationals in expressions when appropriate.

>>> expr = 2*sy.sin(x)*sy.cos(x)

>>> sy.trigsimp(expr)

sin(2*x)

>> print(expr)

2*sin(x)*cos(x) # The original expression is unchanged.

>>> 2*sy.sin(x)*sy.cos(x) == sy.sin(2*x)

False # The two expression structures differ.

>>> sy.factor(x**2.0 - 1)

x**2.0 - 1 # Factorization fails due to the 2.0.

http://docs.sympy.org/latest/tutorial/simplification.html
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Problem 2. Write a function that computes and simpli�es the following expression.

5∏
i=1

5∑
j=i

j(sin(x) + cos(x))

Evaluating Expressions
Every SymPy expression has a subs() method that substitutes one variable for another. The result is

usually still a symbolic expression, even if a numerical value is used in the substitution. The evalf()

method actually evaluates the expression numerically after all symbolic variables have been assigned

a value. Both of these methods can accept a dictionary to reassign multiple symbols simultaneously.

>>> x,y = sy.symbols('x y')

>>> expr = sy.expand((x + y)**3)

>>> print(expr)

x**3 + 3*x**2*y + 3*x*y**2 + y**3

# Replace the symbolic variable y with the expression 2x.

>>> expr.subs(y, 2*x)

27*x**3

# Replace x with pi and y with 1.

>>> new_expr = expr.subs({x:sy.pi, y:1})

>>> print(new_expr)

1 + 3*pi + 3*pi**2 + pi**3

>>> new_expr.evalf() # Numerically evaluate the expression.

71.0398678443373

# Evaluate the expression by providing values for each variable.

>>> expr.evalf(subs={x:1, y:2})

27.0000000000000

These operations are good for evaluating an expression at a single point, but it is typically more

useful to turn the expression into a reusable numerical function. To this end, sy.lambdify() takes

in a symbolic variable (or list of variables) and an expression, then returns a callable function that

corresponds to the expression.

# Turn the expression sin(x)^2 into a function with x as the variable.

>>> f = sy.lambdify(x, sy.sin(x)**2)

>>> print(f(0), f(np.pi/2), f(np.pi), sep=' ')

0.0 1.0 1.4997597826618576e-32

# Lambdify a function of several variables.

>>> f = sy.lambdify((x,y), sy.sin(x)**2 + sy.cos(y)**2)

>>> print(f(0,1), f(1,0), f(np.pi, np.pi), sep=' ')

0.2919265817264289 1.708073418273571 1.0
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By default, sy.lambdify() uses the math module to convert an expression to a function. For

example, sy.sin() is converted to math.sin(). By providing "numpy" as an additional argument,

sy.lambdify() replaces symbolic functions with their NumPy equivalents instead, so sy.sin() is

converted to np.sin(). This allows the resulting function to act element-wise on NumPy arrays, not

just on single data points.

>>> f = sy.lambdify(x, 2*sy.sin(2*x), "numpy")

>>> f(np.linspace(0, 2*np.pi, 9)) # Evaluate f() at many points.

array([ 0.00000000e+00, 2.00000000e+00, 2.44929360e-16,

-2.00000000e+00, -4.89858720e-16, 2.00000000e+00,

7.34788079e-16, -2.00000000e+00, -9.79717439e-16])

Note

It is almost always computationally cheaper to lambdify a function than to use substitutions.

According to the SymPy documentation, using sy.lambdify() to do numerical evaluations

�takes on the order of hundreds of nanoseconds, roughly two orders of magnitude faster than

the subs() method.�

In [1]: import sympy as sy

In [2]: import numpy as np

# Define a symbol, an expression, and points to plug into the expression.

In [3]: x = sy.symbols('x')

In [4]: expr = sy.tanh(x)

In [5]: points = np.random.random(10000)

# Time using evalf() on each of the random points.

In [6]: %time _ = [expr.subs(x, pt).evalf() for pt in points]

CPU times: user 5.29 s, sys: 40.3 ms, total: 5.33 s

Wall time: 5.36 s

# Lambdify the expression and time using the resulting function.

In [7]: f = sy.lambdify(x, expr)

In [8]: %time _ = [f(pt) for pt in points]

CPU times: user 5.39 ms, sys: 648 micros, total: 6.04 ms

Wall time: 7.75 ms # About 1000 times faster than evalf().

# Lambdify the expression with NumPy and repeat the experiment.

In [9]: f = sy.lambdify(x, expr, "numpy")

In [10]: %time _ = f(points)

CPU times: user 381 micros, sys: 63 micros, total: 444 micros

Wall time: 282 micros # About 10 times faster than regular lambdify.
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Problem 3. The Maclaurin series up to order N for ex is de�ned as

ex ≈
N∑
n=0

xn

n!
. (10.1)

Write a function that accepts an integer N . De�ne an expression for (10.1), then substitute in

−y2 for x to get a truncated Maclaurin series of e−y
2

. Lambdify the resulting expression and

plot the series on the domain y ∈ [−2, 2]. Plot e−y2 over the same domain for comparison.

(Hint: use sy.factorial() to compute the factorial.)

Call your function with increasing values of N to check that the series converges correctly.

Solving Symbolic Equations
A SymPy expression by itself is not an equation. However, sy.solve() equates an expression with

zero and solves for a speci�ed variable. In this way, SymPy can be used to solve equations.

>>> x,y = sy.symbols('x y')

# Solve x^2 - 2x + 1 = 0 for x.

>>> sy.solve(x**2 - 2*x + 1, x)

[1] # The result is a list of solutions.

# Solve x^2 - 1 = 0 for x.

>>> sy.solve(x**2 - 1, x)

[-1, 1] # This equation has two solutions.

# Solutions can also be expressions involving other variables.

>>> sy.solve(x/(y-x) + (x-y)/y, x)

[y*(-sqrt(5) + 3)/2, y*(sqrt(5) + 3)/2]

Problem 4. The following equation represents a rose curve in cartesian coordinates:

0 = 1− (x2 + y2)7/2 + 18x5y − 60x3y3 + 18xy5

(x2 + y2)3
. (10.2)

The curve is not the image of a single function (such a function would fail the vertical line test),

so the best way to plot it is to convert (10.2) to a pair of parametric equations that depend on

the angle parameter θ.

Construct an expression for the nonzero side of (10.2) and convert it to polar coordinates

with the substitutions x = r cos(θ) and y = r sin(θ). Simplify the result, then solve it for r.

There are two solutions due to the presence of an r2 term; pick one and lambdify it to get

a function r(θ). Use this function to plot x(θ) = r(θ) cos(θ) against y(θ) = r(θ) sin(θ) for

θ ∈ [0, 2π].

(Hint: use sy.Rational() for the fractional exponent.)
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Linear Algebra

Sympy can also solve systems of equations. A system of linear equations Ax = b is solved in a

slightly di�erent way than in NumPy and SciPy: instead of de�ning the matrix A and the vector b

separately, de�ne the augmented matrix M = [A | b] and call sy.solve_linear_system() on M .

SymPy matrices are de�ned with sy.Matrix(), with the same syntax as 2-dimensional NumPy

arrays. For example, the following code solves the system given below.

x + y + z = 5

2x + 4y + 3z = 2

5x + 10y + 2z = 4

>>> x, y, z = sy.symbols('x y z')

# Define the augmented matrix M = [A|b].

>>> M = sy.Matrix([ [1, 1, 1, 5],

[2, 4, 3, 2],

[5, 10, 2, 4] ])

# Solve the system, providing symbolic variables to solve for.

>>> sy.solve_linear_system(M, x, y, z)

{x: 98/11, y: -45/11, z: 2/11}

SymPy matrices support the standard matrix operations of addition +, subtraction -, and

multiplication @. Additionally, SymPy matrices are equipped with many useful methods, some of

which are listed below. See http://docs.sympy.org/latest/modules/matrices/matrices.html

for more methods and examples.

Method Returns

det() The determinant.

eigenvals() The eigenvalues and their multiplicities.

eigenvects() The eigenvectors and their corresponding eigenvalues.

inv() The matrix inverse.

is_nilpotent() True if the matrix is nilpotent.

norm() The Frobenius, ∞, 1, or 2 norm.

nullspace() The nullspace as a list of vectors.

rref() The reduced row-echelon form.

singular_values() The singular values.

Achtung!

The * operator performs matrix multiplication on SymPy matrices. To perform element-wise

multiplication, use the multiply_elementwise() method instead.

http://docs.sympy.org/latest/modules/matrices/matrices.html


149

Problem 5. Find the eigenvalues of the following matrix by solving for λ in the characteristic

equation det(A− λI) = 0.

A =

 x− y x 0

x x− y x

0 x x− y


Also compute the eigenvectors by solving the linear system A − λI = 0 for each eigenvalue λ.

Return a dictionary mapping the eigenvalues to their eigenvectors.

(Hint: the nullspace() method may be useful.)

Check that Av = λv for each eigenvalue-eigenvector pair (λ,v). Compare your results to

the eigenvals() and eigenvects() methods for SymPy matrices.

Calculus
SymPy is also equipped to perform standard calculus operations, including derivatives, integrals, and

taking limits. Like other elements of SymPy, calculus operations can be temporally expensive, but

they give exact solutions whenever solutions exist.

Differentiation

The command sy.Derivative() creates a closed form, unevaluated derivative of an expression. This

is like putting d
dx in front of an expression without actually calculating the derivative symbolically.

The resulting expression has a doit() method that can be used to evaluate the actual derivative.

Equivalently, sy.diff() immediately takes the derivative of an expression.

Both sy.Derivative() and sy.diff() accept a single expression, then the variable or variables

that the derivative is being taken with respect to.

>>> x, y = sy.symbols('x y')

>>> f = sy.sin(y)*sy.cos(x)**2

# Make an expression for the derivative of f with respect to x.

>>> df = sy.Derivative(f, x)

>>> print(df)

Derivative(sin(y)*cos(x)**2, x)

>>> df.doit() # Perform the actual differentiation.

-2*sin(x)*sin(y)*cos(x)

# Alternatively, calculate the derivative of f in a single step.

>>> sy.diff(f, x)

-2*sin(x)*sin(y)*cos(x)

# Calculate the derivative with respect to x, then y, then x again.

>>> sy.diff(f, x, y, x)

2*(sin(x)**2 - cos(x)**2)*cos(y) # Note this expression could be simplified.
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Problem 6. Let f : R → R be a smooth function. A critical point of f is a number x0 ∈ R
satisfying f ′(x0) = 0. The second derivative test states that a critical point x0 is a local

minimum of f if f ′′(x0) > 0, or a local maximum of f if f ′′(x0) < 0 (if f ′′(x0) = 0, the test is

inconclusive).

Now consider the polynomial

p(x) = 2x6 − 51x4 + 48x3 + 312x2 − 576x− 100.

Use SymPy to �nd all critical points of p and classify each as a local minimum or a local

maximum. Plot p(x) over x ∈ [−5, 5] and mark each of the minima in one color and the

maxima in another color. Return the collections of local minima and local maxima as sets.

The Jacobian matrix of a multivariable function f : Rn → Rm at a point x0 ∈ Rn is the m× n
matrix J whose entries are given by

Jij =
∂fi
∂xj

(x0).

For example, the Jacobian for a function f : R3 → R2 is de�ned by

J =
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

]
=

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 , where f(x) =

[
f1(x)

f2(x)

]
, x =

 x1
x2
x3

 .
To calculate the Jacobian matrix of a multivariate function with SymPy, de�ne that function

as a symbolic matrix (sy.Matrix()) and use its jacobian() method. The method requires a list of

variables that prescribes the ordering of the di�erentiation.

# Create a matrix of symbolic variables.

>>> r, t = sy.symbols('r theta')

>>> f = sy.Matrix([r*sy.cos(t), r*sy.sin(t)])

# Find the Jacobian matrix of f with respect to r and theta.

>>> J = f.jacobian([r,t])

>>> J

Matrix([

[cos(theta), -r*sin(theta)],

[sin(theta), r*cos(theta)]])

# Evaluate the Jacobian matrix at the point (1, pi/2).

>>> J.subs({r:1, t:sy.pi/2})

Matrix([

[0, -1],

[1, 0]])

# Calculate the (symbolic) determinant of the Jacobian matrix.

>>> sy.simplify(J.det())

r
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Integration

The function sy.Integral() creates an unevaluated integral expression. This is like putting an

integral sign in front of an expression without actually evaluating the integral symbolically or nu-

merically. The resulting expression has a doit() method that can be used to evaluate the actual

integral. Equivalently, sy.integrate() immediately integrates an expression.

Both sy.Derivative() and sy.diff() accept a single expression, then a tuple or tuples con-

taining the variable of integration and, optionally, the bounds of integration.

# Calculate the indefinite integral of sec(x).

>>> sy.integrate(sy.sec(x), x)

-log(sin(x) - 1)/2 + log(sin(x) + 1)/2

# Integrate cos(x)^2 from 0 to pi/2.

>>> sy.integrate(sy.cos(x)**2, (x,0,sy.pi/2))

pi/4

# Compute the integral of (y^2)(x^2) dx dy with x from 0 to 2, y from -1 to 1.

>>> sy.integrate(y**2 * x**2, (x,0,2), (y,-1,1))

16/9

Problem 7. Let f : R3 → R be a smooth function. The volume integral of f over the sphere

S of radius r can written in spherical coordinates as∫∫∫
S

f(x, y, z)dV =

∫ π

0

∫ 2π

0

∫ r

0

f(h1(ρ, θ, φ), h2(ρ, θ, φ), h3(ρ, θ, φ))|det(J)| dρ dθ dφ,

where J is the Jacobian of the function h : R3 → R3 given by

h(ρ, θ, φ) =

 h1(ρ, θ, φ)

h2(ρ, θ, φ)

h3(ρ, θ, φ)

 =

 ρ sin(φ) cos(θ)

ρ sin(φ) sin(θ)

ρ cos(φ)

 .
Calculate the volume integral of f(x, y, z) = (x2 + y2 + z2)2 over the sphere of radius r.

Lambdify the resulting expression (with r as the independent variable) and plot the integral

value for r ∈ [0, 3]. In addition, return the value of the integral when r = 2.

(Hint: simplify the integrand before computing the integral. In this case, |det(J)| = − det(J).)

To check your answer, when r = 3, the value of the integral is 8748
7 π.

Achtung!

SymPy isn't perfect. It solves some integrals incorrectly, simpli�es some expressions poorly,

and is signi�cantly slower than numerical computations. However, it is generally very useful for

simplifying parts of an algorithm, getting exact answers, and handling tedious algebra quickly.
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Additional Material
Pretty Printing

SymPy expressions, especially complicated ones, can be hard to read. Calling sy.init_printing()

changes the way that certain expressions are displayed to be more readable; in a Jupyter Notebook,

the rendering is done with LATEX, as displayed below. Furthermore, the function sy.latex() converts

an expression into actual LATEX code for use in other settings.

Limits

Limits can be expressed, similar to derivatives or integrals, with sy.Limit(). Alternatively, sy.

limit() (lowercase) evaluates a limit directly.

# Define the limit of a^(1/x) as x approaches infinity.

>>> a, x = sy.symbols('a x')

>>> sy.Limit(a**(1/x), x, sy.oo)

Limit(a**(1/x), x, oo, dir='-')

# Use the doit() method or sy.limit() to evaluate a limit.

>>> sy.limit((1+x)**(1/x), x, 0)

E

# Evaluate a limit as x approaches 0 from the negative direction.

>>> sy.limit(1/x, x, 0, '-')

-oo

Use limits instead of the subs()method when the value to be substituted is∞ or is a singularity.

>>> expr = x / 2**x

>>> expr.subs(x, sy.oo)

nan

>>> sy.limit(expr, x, sy.oo)

0

Refer to http://docs.sympy.org/latest/tutorial/calculus.html for SymPy's o�cial doc-

umentation on calculus operations.

http://docs.sympy.org/latest/tutorial/calculus.html
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Numerical Integration

Many integrals cannot be solved analytically. As an alternative to the doit() method, the as_sum()

method approximates the integral with a summation. This method accepts the number of terms

to use and a string indicating which approximation rule to use ("left", "right", "midpoint", or

"trapezoid").

>>> x = sy.symbols('x')

# Try integrating e^(x^2) from 0 to pi.

>>> I = sy.Integral(sy.exp(x**2), (x,0,sy.pi))

>>> I.doit()

sqrt(pi)*erfi(pi)/2 # The result is not very helpful.

# Instead, approximate the integral with a sum.

>>> I.as_sum(10, 'left').evalf()

1162.85031639195

See http://docs.sympy.org/latest/modules/integrals/integrals.html for more docu-

mentation on integration with SymPy.

Differential Equations

SymPy can be used to solve both ordinary and partial di�erential equations. The documentation for

working with PDE functions is at http://docs.sympy.org/dev/modules/solvers/pde.html

The general form of a �rst-order di�erential equation is dx
dt = f(x(t), t). To represent the

unknown function x(t), use sy.Function(). Just as sy.solve() is used to solve an expression for

a given variable, sy.dsolve() solves an ODE for a particular function. When there are multiple

solutions, sy.dsolve() returns a list; when arbitrary constants are involved they are given as C1, C2,

and so on. Use sy.checkodesol() to check that a function is a solution to a di�erential equation.

>>> t = sy.symbols('t')

>>> x = sy.Function('x')

# Solve the equation x''(t) - 2x'(t) + x(t) = sin(t).

>>> ode = x(t).diff(t, t) - 2*x(t).diff(t) + x(t) - sy.sin(t)

>>> sy.dsolve(ode, x(t))

Eq(x(t), (C1 + C2*t)*exp(t) + cos(t)/2) # C1 and C2 are arbitrary constants.

Since there are many types of ODEs, sy.dsolve() may also take a hint indicating what solving

strategy to use. See sy.ode.allhints for a list of possible hints, or use sy.classify_ode() to see

the list of hints that may apply to a particular equation.

http://docs.sympy.org/latest/modules/integrals/integrals.html
http://docs.sympy.org/dev/modules/solvers/pde.html
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A Getting Started

The labs in this curriculum aim to introduce computational and mathematical concepts, walk through

implementations of those concepts in Python, and use industrial-grade code to solve interesting,

relevant problems. Lab assignments are usually about 5�10 pages long and include code examples

(yellow boxes), important notes (green boxes), warnings about common errors (red boxes), and

about 3�7 exercises (blue boxes). Get started by downloading the lab manual(s) for your course from

http://foundations-of-applied-mathematics.github.io/.

Submitting Assignments

Labs

Every lab has a corresponding speci�cations �le with some code to get you started and to make your

submission compatible with automated test drivers. Like the lab manuals, these materials are hosted

at http://foundations-of-applied-mathematics.github.io/.

Download the .zip �le for your course, unzip the folder, and move it somewhere where it

won't get lost. This folder has some setup scripts and a collection of folders, one per lab, each of

which contains the speci�cations �le(s) for that lab. See Student-Materials/wiki/Lab-Index for

the complete list of labs, their speci�cations and data �les, and the manual that each lab belongs to.

Achtung!

Do not move or rename the lab folders or the enclosed speci�cations �les; if you do, the test

drivers will not be able to �nd your assignment. Make sure your folder and �le names match

Student-Materials/wiki/Lab-Index.

To submit a lab, modify the provided speci�cations �le and use the �le-sharing program

speci�ed by your instructor (discussed in the next section). The instructor will drop feedback

�les in the lab folder after grading the assignment. For example, the Introduction to Python lab

has the speci�cations �le PythonIntro/python_intro.py. To complete that assignment, modify

PythonIntro/python_intro.py and submit it via your instructor's �le-sharing system. After grad-

ing, the instructor will create a �le called PythonIntro/PythonIntro_feedback.txt with your score

and some feedback.
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http://foundations-of-applied-mathematics.github.io/
http://foundations-of-applied-mathematics.github.io/
https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index
https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index
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Homework

Non-lab coding homework should be placed in the _Homework/ folder and submitted like a lab

assignment. Be careful to name your assignment correctly so the instructor (and test driver) can �nd

it. The instructor may drop speci�cations �les and/or feedback �les in this folder as well.

Setup

Achtung!

We strongly recommend using a Unix-based operating system (Mac or Linux) for the labs.

Unix has a true bash terminal, works well with git and python, and is the preferred platform

for computational and data scientists. It is possible to do this curriculum with Windows, but

expect some road bumps along the way.

There are two ways to submit code to the instructor: with git (http://git-scm.com/), or with

a �le-syncing service like Google Drive. Your instructor will indicate which system to use.

Setup With Git

Git is a program that manages updates between an online code repository and the copies of the

repository, called clones, stored locally on computers. If git is not already installed on your computer,

download it at http://git-scm.com/downloads. If you have never used git, you might want to read

a few of the following resources.

� O�cial git tutorial: https://git-scm.com/docs/gittutorial

� Bitbucket git tutorials: https://www.atlassian.com/git/tutorials

� GitHub git cheat sheet: services.github.com/.../github-git-cheat-sheet.pdf

� GitLab git tutorial: https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html

� Codecademy git lesson: https://www.codecademy.com/learn/learn-git

� Training video series by GitHub: https://www.youtube.com/playlist?list=PLg7.../

There are many websites for hosting online git repositories. Your instructor will indicate which

web service to use, but we only include instructions here for setup with Bitbucket.

1. Sign up. Create a Bitbucket account at https://bitbucket.org. If you use an academic email

address (ending in .edu, etc.), you will get free unlimited public and private repositories.

2. Make a new repository. On the Bitbucket page, click the + button from the menu on the

left and, under CREATE, select Repository. Provide a name for the repository, mark the

repository as private, and make sure the repository type is Git. For Include a README?,

select No (if you accidentally include a README, delete the repository and start over). Un-

der Advanced settings, enter a short description for your repository, select No forks un-

der forking, and select Python as the language. Finally, click the blue Create repository

button. Take note of the URL of the webpage that is created; it should be something like

https://bitbucket.org/<name>/<repo>.

http://git-scm.com/
http://git-scm.com/downloads
https://git-scm.com/docs/gittutorial
https://www.atlassian.com/git/tutorials
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
https://www.codecademy.com/learn/learn-git
https://www.youtube.com/playlist?list=PLg7s6cbtAD15G8lNyoaYDuKZSKyJrgwB-
https://bitbucket.org
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3. Give the instructor access to your repository. On your newly created Bitbucket repository

page (https://bitbucket.org/<name>/<repo> or similar), go to Settings in the menu to

the left and select User and group access, the second option from the top. Enter your

instructor's Bitbucket username under Users and click Add. Select the blue Write button so

your instructor can read from and write feedback to your repository.

4. Connect your folder to the new repository. In a shell application (Terminal on Linux or Mac,

or Git Bash (https://gitforwindows.org/) on Windows), enter the following commands.

# Navigate to your folder.

$ cd /path/to/folder # cd means 'change directory'.

# Make sure you are in the right place.

$ pwd # pwd means 'print working directory'.

/path/to/folder

$ ls *.md # ls means 'list files'.

README.md # This means README.md is in the working directory.

# Connect this folder to the online repository.

$ git init

$ git remote add origin https://<name>@bitbucket.org/<name>/<repo>.git

# Record your credentials.

$ git config --local user.name "your name"

$ git config --local user.email "your email"

# Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

For example, if your Bitbucket username is greek314, the repository is called acmev1, and the

folder is called Student-Materials/ and is on the desktop, enter the following commands.

# Navigate to the folder.

$ cd ~/Desktop/Student-Materials

# Make sure this is the right place.

$ pwd

/Users/Archimedes/Desktop/Student-Materials

$ ls *.md

README.md

# Connect this folder to the online repository.

$ git init

$ git remote add origin https://greek314@bitbucket.org/greek314/acmev1.git

# Record credentials.

$ git config --local user.name "archimedes"

https://gitforwindows.org/
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$ git config --local user.email "greek314@example.com"

# Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

At this point you should be able to see the �les on your repository page from a web browser. If

you enter the repository URL incorrectly in the git remote add origin step, you can reset

it with the following line.

$ git remote set-url origin https://<name>@bitbucket.org/<name>/<repo>.git

5. Download data �les. Many labs have accompanying data �les. To download these �les, navi-

gate to your clone and run the download_data.sh bash script, which downloads the �les and

places them in the correct lab folder for you. You can also �nd individual data �les through

Student-Materials/wiki/Lab-Index.

# Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash download_data.sh

6. Install Python package dependencies. The labs require several third-party Python packages

that don't come bundled with Anaconda. Run the following command to install the necessary

packages.

# Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash install_dependencies.sh

7. (Optional) Clone your repository. If you want your repository on another computer after

completing steps 1�4, use the following commands.

# Navigate to where you want to put the folder.

$ cd ~/Desktop/or/something/

# Clone the folder from the online repository.

$ git clone https://<name>@bitbucket.org/<name>/<repo>.git <foldername>

# Record your credentials in the new folder.

$ cd <foldername>

$ git config --local user.name "your name"

$ git config --local user.email "your email"

# Download data files to the new folder.

$ bash download_data.sh

https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index
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Setup Without Git

Even if you aren't using git to submit �les, you must install it (http://git-scm.com/downloads)

in order to get the data �les for each lab. Share your folder with your instructor according to their

directions, and follow steps 5 and 6 of the previous section to download the data �les and install

package dependencies.

Using Git
Git manages the history of a �le system through commits, or checkpoints. Use git status to see

the �les that have been changed since the last commit. These changes are then moved to the staging

area, a list of �les to save during the next commit, with git add <filename(s)>. Save the changes

in the staging area with git commit -m "<A brief message describing the changes>".

Staged: the files with changes
to be saved at commit time

Modified: the files with
changes since the last commit

Tracked: the files that have
been added to git, but with no
changes since the last commit

Untracked: the files that have
never been added to git

git log:
a record of all
commit messages

New Commit

Previous Commit

...

Second Commit

First Commit

git add "<filename>"

(stage changes)

git reset HEAD -- "<filename>"

(unstage changes)

git checkout -- "<filename>"

(discard changes)

git commit -m "<message>"

(save changes)

Modify file

Figure A.1: Git commands to stage, unstage, save, or discard changes. Commit messages are recorded

in the log.

All of these commands are done within a clone of the repository, stored somewhere on a com-

puter. This repository must be manually synchronized with the online repository via two other git

commands: git pull origin master, to pull updates from the web to the computer; and git

push origin master, to push updates from the computer to the web.

Online Repository

Computer

git push origin master git pull origin master

Figure A.2: Exchanging git commits between the repository and a local clone.

http://git-scm.com/downloads
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Command Explanation

git status Display the staging area and untracked changes.

git pull origin master Pull changes from the online repository.

git push origin master Push changes to the online repository.

git add <filename(s)> Add a �le or �les to the staging area.

git add -u Add all modi�ed, tracked �les to the staging area.

git commit -m "<message>" Save the changes in the staging area with a given message.

git checkout -- <filename> Revert changes to an unstaged �le since the last commit.

git reset HEAD -- <filename> Remove a �le from the staging area.

git diff <filename> See the changes to an unstaged �le since the last commit.

git diff --cached <filename> See the changes to a staged �le since the last commit.

git config --local <option> Record your credentials (user.name, user.email, etc.).

Table A.1: Common git commands.

Note

When pulling updates with git pull origin master, your terminal may sometimes display

the following message.

Merge branch 'master' of https://bitbucket.org/<name>/<repo> into master

# Please enter a commit message to explain why this merge is necessary,

# especially if it merges an updated upstream into a topic branch.

#

# Lines starting with '#' will be ignored, and an empty message aborts

# the commit.

~

~

This means that someone else (the instructor) has pushed a commit that you do not yet have,

while you have also made one or more commits locally that they do not have. This screen,

displayed in vim (https://en.wikipedia.org/wiki/Vim_(text_editor)), is asking you to

enter a message (or use the default message) to create a merge commit that will reconcile both

changes. To close this screen and create the merge commit, type :wq and press enter.

Example Work Sessions

$ cd ~/Desktop/Student-Materials/

$ git pull origin master # Pull updates.

### Make changes to a file.

$ git add -u # Track changes.

$ git commit -m "Made some changes." # Commit changes.

$ git push origin master # Push updates.

https://en.wikipedia.org/wiki/Vim_(text_editor)
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# Pull any updates from the online repository (such as TA feedback).

$ cd ~/Desktop/Student-Materials/

$ git pull origin master

From https://bitbucket.org/username/repo

* branch master -> FETCH_HEAD

Already up-to-date.

### Work on the labs. For example, modify PythonIntro/python_intro.py.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

PythonIntro/python_intro.py

# Track the changes with git.

$ git add PythonIntro/python_intro.py

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: PythonIntro/python_intro.py

# Commit the changes to the repository with an informative message.

$ git commit -m "Made some changes"

[master fed9b34] Made some changes

1 file changed, 10 insertion(+) 1 deletion(-)

# Push the changes to the online repository.

$ git push origin master

Counting objects: 3, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 327 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://username@bitbucket.org/username/repo.git

5742a1b..fed9b34 master -> master

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean
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B Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy

to download, install, start up, and execute. This appendix introduces tools for installing and updating

speci�c packages and gives an overview of possible environments for working e�ciently in Python.

Installing Python via Anaconda
A Python distribution is a single download containing everything needed to install and run Python,

together with some common packages. For this curriculum, we strongly recommend using the

Anaconda distribution to install Python. Anaconda includes IPython, a few other tools for developing

in Python, and a large selection of packages that are common in applied mathematics, numerical

computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.

1. Go to https://www.anaconda.com/download/.

2. Download the Python 3.6 graphical installer speci�c to your machine.

3. Open the downloaded �le and proceed with the default con�gurations.

For help with installation, see https://docs.anaconda.com/anaconda/install/. This page

contains links to detailed step-by-step installation instructions for each operating system, as well as

information for updating and uninstalling Anaconda.

Achtung!

This curriculum uses Python 3.6, not Python 2.7. With the wrong version of Python, some

example code within the labs may not execute as intended or result in an error.

Managing Packages
A Python package manager is a tool for installing or updating Python packages, which involves

downloading the right source code �les, placing those �les in the correct location on the machine,

and linking the �les to the Python interpreter. Never try to install a Python package without using

a package manager (see https://xkcd.com/349/).
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Conda

Many packages are not included in the default Anaconda download but can be installed via Ana-

conda's package manager, conda. See https://docs.anaconda.com/anaconda/packages/pkg-docs

for the complete list of available packages. When you need to update or install a package, always

try using conda �rst.

Command Description

conda install <package-name> Install the speci�ed package.

conda update <package-name> Update the speci�ed package.

conda update conda Update conda itself.

conda update anaconda Update all packages included in Anaconda.

conda --help Display the documentation for conda.

For example, the following terminal commands attempt to install and update matplotlib.

$ conda update conda # Make sure that conda is up to date.

$ conda install matplotlib # Attempt to install matplotlib.

$ conda update matplotlib # Attempt to update matplotlib.

See https://conda.io/docs/user-guide/tasks/manage-pkgs.html for more examples.

Note

The best way to ensure a package has been installed correctly is to try importing it in IPython.

# Start IPython from the command line.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

# Try to import matplotlib.

In [1]: from matplotlib import pyplot as plt # Success!

Achtung!

Be careful not to attempt to update a Python package while it is in use. It is safest to update

packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called pip. While it has a larger package list, conda is

the cleaner and safer option. Only use pip to manage packages that are not available through conda.

https://docs.anaconda.com/anaconda/packages/pkg-docs
https://conda.io/docs/user-guide/tasks/manage-pkgs.html
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Command Description

pip install package-name Install the speci�ed package.

pip install --upgrade package-name Update the speci�ed package.

pip freeze Display the version number on all installed packages.

pip --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

Workflows
There are several di�erent ways to write and execute programs in Python. Try a variety of work�ows

to �nd what works best for you.

Text Editor + Terminal

The most basic way of developing in Python is to write code in a text editor, then run it using either

the Python or IPython interpreter in the terminal.

There are many di�erent text editors available for code development. Many text editors are

designed speci�cally for computer programming which contain features such as syntax highlighting

and error detection, and are highly customizable. Try installing and using some of the popular text

editors listed below.

� Atom: https://atom.io/

� Sublime Text: https://www.sublimetext.com/

� Notepad++ (Windows): https://notepad-plus-plus.org/

� Geany: https://www.geany.org/

� Vim: https://www.vim.org/

� Emacs: https://www.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a �le, that �le can be executed

in the terminal or command line.

$ ls # List the files in the current directory.

hello_world.py

$ cat hello_world.py # Print the contents of the file to the terminal.

print("hello, world!")

$ python hello_world.py # Execute the file.

hello, world!

# Alternatively, start IPython and run the file.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run hello_world.py

hello, world!

https://pip.pypa.io/en/stable/user_guide/
https://atom.io/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://www.geany.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
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IPython is an enhanced version of Python that is more user-friendly and interactive. It has

many features that cater to productivity such as tab completion and object introspection.

Note

While Mac and Linux computers come with a built-in bash terminal, Windows computers do

not. Windows does come with Powershell, a terminal-like application, but some commands in

Powershell are di�erent than their bash analogs, and some bash commands are missing from

Powershell altogether. There are two good alternatives to the bash terminal for Windows:

� Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.

� Git bash: https://gitforwindows.org/.

Jupyter Notebook

The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for

Python that comes included as part of the Anaconda Python Distribution. It has an interface similar

to the IPython interpreter, except that input is stored in cells and can be modi�ed and re-evaluated

as desired. See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This

will open your �le system in a web browser in the Jupyter framework. To create a Jupyter Notebook,

click the New drop down menu and choose Python 3 under the Notebooks heading. A new tab

will open with a new Jupyter Notebook.

Jupyter Notebooks di�er from other forms of Python development in that notebook �les contain

not only the raw Python code, but also formatting information. As such, Juptyer Notebook �les

cannot be run in any other development environment. They also have the �le extension .ipynb

rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown�a simple text formatting language�and LATEX,

and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal

platform for presenting code.

Integrated Development Environments

An integrated development environment (IDEs) is a program that provides a comprehensive environ-

ment with the tools necessary for development, all combined into a single application. Most IDEs

have many tightly integrated tools that are easily accessible, but come with more overhead than a

plain text editor. Consider trying out each of the following IDEs.

� JupyterLab: http://jupyterlab.readthedocs.io/en/stable/

� PyCharm: https://www.jetbrains.com/pycharm/

� Spyder: http://code.google.com/p/spyderlib/

� Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these

(and other) work�ow tools.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
http://jupyterlab.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
http://code.google.com/p/spyderlib/
http://www.eclipse.org/
https://www.pydev.org/
https://realpython.com/python-ides-code-editors-guide/
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Lab Objective: NumPy operations can be di�cult to visualize, but the concepts are straightforward.

This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,

stacking, broadcasting, and axis-speci�c operations. Though these visualizations are for 1- or 2-

dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter

the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as

�the ath entry up to (but not including) the bth entry.� Similarly, [a:] means �the ath entry to the

end� and [:b] means �everything up to (but not including) the bth entry.�

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×


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Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays

vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are �at, np.hstack() concatenates 1-D arrays and np.vstack() stacks them

vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and

np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:

//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and

broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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A =

 1 2 3

1 2 3

1 2 3

 x =
[
10 20 30

]

A + x =

 1 2 3

1 2 3

1 2 3

+[ ]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.

To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
4 8 12 16

]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[
10 10 10 10

]
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