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Chapter 1

Graphs

1.1 What is a graph?

Before we give the definition of a graph, we introduce the following useful

notation. For any set S we denote by
(
S
2

)
the set of all two-element subsets

of S, that is, (
S

2

)
=
{
{u, v} |u, v ∈ S, u 6= v

}
.

If S is finite and contains n = |S| ≥ 1 elements then the number of elements

of
(
S
2

)
is (

n

2

)
=

n!

2!(n− 2)!
=

n(n− 1)

2
.

For instance, if S = {v1, v2, v3, v4} then
(
S

2

)
=
{
{v1, v2} , {v1, v3} , {v1, v4} , {v2, v3} , {v2, v4} , {v3, v4}

}
.

and the number of elements of
(
S
2

)
is
(
4
2

)
= 4·3

2 = 6. We are now ready to

define a graph.

Definition 1.1.1: Graph

A graph G consists of two sets V and E where E is some subset of
(
V
2

)
.

The set V is called the vertex set of G and E is called the edge set of

G. In this case we write G = (V, E).



1.1. WHAT IS A GRAPH?

Let G = (V, E) be a graph. The elements of V are called the vertices of

G and the elements of E are called the edges of G. We will frequently use the

notation V (G) and E(G) to denote the vertex set and edge set, respectively,

of G. If V is a finite set, then G is called a finite graph. In this book, we

consider only finite graphs.

A graph can be used to encode some relationship of interest between

entities. The entities are represented by the vertices and two vertices u and

v form an edge {u, v} in the graph if u and v are “related”. The condition

for being “related” might be that u and v are friends in a social network, or

u and v are subway stations that are directly linked by a train, or u and v

are cells in a biological network that are biologically linked in some energy

transfer, etc.

Sometimes, it is useful to think of a graph as a collection of points con-

nected by lines (or curves) in the 2D-plane. One can visualize a graph

G = (V, E) by drawing a point on the 2D plane for each vertex and then con-

necting vertices u and v with a line if and only if {u, v} ∈ E. As an example,

a visual representation of the graph G with vertex set V = {x, y, z, w} and

edge set E = {{x, y} , {x, z} , {y, z} , {z, w}} is shown in Figure 1.1. Although

a visual representation of a small graph might be useful, it is important to

remember that a graph is just a pair of sets V and E where E ⊂
(
V
2

)
.

w

z

yx

Figure 1.1: Visual representation of the graph G = (V, E) with vertex set
V = {x, y, z, w} and edge set E = {{x, y} , {x, z} , {y, z} , {z, w}}

Example 1.1. Consider the graph G shown in Figure 1.2. Based on this

graphical representation of G, what is V (G) and E(G)?
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CHAPTER 1. GRAPHS

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10
v11

Figure 1.2: For this graph G, what is V (G) and E(G)?

Example 1.2. LetG = (V, E) be the graph with vertex set V = {2, 3, . . . , 10}
and edge set

E = {{u, v} | gcd(u, v) ≥ 2} .

What is the edge set E and how many edges does G have? Draw a visual

representation of G.

Example 1.3. Check-out the Wiki page on Graph theory.

1.1.1 Exercises

Exercise 1.1. LetG = (V, E) be the graph with vertex set V = {2, 3, . . . , 10}
and edge set

E = {{u, v} | gcd(u, v) = 1}.

Write out the edge set E and draw the graph G. How many edges does

G have? Aside from having the same vertex set, what is the relationship

between the graph in this exercise and the graph in Example 1.2?

Exercise 1.2. Let V be the set of 3-dimensional binary vectors. In other

words, an element of V is of the form b = (b1, b2, b3) where bi is either zero

or one. Let G = (V, E) be the graph with edge set E consisting of edges

formed by two binary vectors that differ at only a single entry. For example,

3
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1.2. THE RUDIMENTS OF GRAPH THEORY

if b1 = (1, 0, 1) and b2 = (1, 0, 0) then {b1,b2} is an edge of G since b1 and

b2 differ only in the third entry, whereas if b1 = (0, 1, 1) and b2 = (1, 0, 0)

then {b1,b2} is note an edge of G. Do the following:

(a) Explicitly write out the vertex set V . How many vertices are there?

(b) Explicitly write out the edge set E. How many edges are there?

(c) Make a visual representation of G in the 2D plane. (Do not read part

(d) yet!)

(d) Now make a visual representation of G in a 3D coordinate system by

drawing each vertex b = (b1, b2, b3) as a point in R3.

Exercise 1.3. Consider the following list σ = (5, 2, 6, 1, 7, 3, 4) and let V =

{1, 2, . . . , 7}. Let G = (V, E) be the graph such that {i, j} ∈ E if and only if

the numbers i and j appear in reverse order in σ. For example, {1, 3} /∈ E

because 1 appears before 3 and so are in correct order, whereas {3, 6} ∈ E

because 6 appears before 3 in σ and so are in reverse order. Write out the

edge set E and draw a visual representation of G.

Exercise 1.4. What are some real-world systems that can be modeled as

graph? What are the vertices and when would two vertices form an edge?

1.2 The rudiments of graph theory

Let us now introduce same basic terminology associated with a graph. The

order of a graph G is the cardinality of the vertex set V and the size of G

is the cardinality of the edge set. Usually, we use the variables n = |V | and
m = |E| to denote the order and size of G, respectively.

Given two vertices u, v ∈ V , we say that u and v are adjacent or neigh-

bors if {u, v} ∈ E. In this case, we will write u ∼ v to denote adjacency and,

whenever it is convenient to do so, we will denote the 2-element set {u, v} by

simply uv. Given an edge e = uv ∈ E, we will simply say that u and v are

the vertices of the edge e. If u ∈ e we say that u is incident with e and that

4



CHAPTER 1. GRAPHS

e is incident with u. The neighborhood of v ∈ V , denoted by N(v), is the

set of all vertices adjacent to v, in other words

N(v) = {u ∈ V | u ∼ v} = {u ∈ V | {u, v} ∈ E}.

The degree of a vertex v, denoted by deg(v), is the cardinality of N(v), that

is, the number of neighbors of v. It is clear that 0 ≤ deg(v) ≤ n − 1 for all

v ∈ V (G). A vertex v with deg(v) = n−1 is called a dominating vertex and

if deg(v) = 0 then v is called an isolated vertex. Themaximum/minimum

degree of a graph G is the maximum/minimum degree among all vertices of

G. The maximum degree of G is denoted by ∆(G) and the minimum degree

is denoted by δ(G), in other words

∆(G) = max {deg(v) | v ∈ V }

and

δ(G) = min {deg(v) | v ∈ V } .

It is clear that 0 ≤ δ(G) ≤ ∆(G) ≤ n − 1. The degree sequence of a

graph G, denoted by d(G), is the sequence of the vertex degrees of G listed

in decreasing order. Hence, if n = |V (G)| then the degree sequence of G is

of the form d(G) = (d1, d2, . . . , dn) where d1 ≥ d2 ≥ d3 ≥ · · · ≥ dn.

Example 1.4. Consider again the graph G in Figure 1.2.

(a) What is the order n and size m of G?

(b) Find N(v4), N(v6), N(v10) and deg(v4), deg(v6), and deg(v10).

(c) Find ∆(G) and δ(G).

(d) Find the degree sequence d(G).

(e) Find
∑n

i=1 deg(vi) and compare it with m.

The last part of the previous example is known as the Handshaking

Lemma.

5



1.2. THE RUDIMENTS OF GRAPH THEORY

Lemma 1.2.1: Handshaking Lemma

For any graph G = (V, E) it holds that

∑

v∈V
deg(v) = 2|E|.

Consequently, in any graph the number of vertices with odd degree is

even.

Proof. The degree of v counts the number of edges incident with v. Since

each edge is incident with exactly two vertices, the sum
∑

v∈V deg(v) counts

each edge twice, and therefore
∑

v∈V deg(v) = 2|E|. It follows then that the

number of vertices v with odd degree deg(v) is even.

Another property of the degree sequence is the following.

Lemma 1.2.2

In any graph G there are at least two vertices with equal degree.

Proof. Let G be any graph of order n with degree sequence

d(G) = (d1, d2, . . . , dn).

We consider two mutually exclusive cases. In the first case, if δ(G) = 0 then

∆(G) ≤ n − 2. Hence, 0 ≤ di ≤ n − 2 for every i = 1, 2, . . . , n, and then by

the pigeon-hole principle there is at least two degrees that are equal. On the

other hand, if δ(G) ≥ 1 then 1 ≤ di ≤ n−1 for every i = 1, 2, . . . , n, and then

again by the pigeon-hole principle there are at least two equal degrees.

Example 1.5. Explain why in every social gathering there are at least two

persons who are friends with the same number of persons.

Let V be a finite set with cardinality n = |V |. How many distinct graphs

are there with vertex set V ? Let us first consider two extreme cases. The

6



CHAPTER 1. GRAPHS

empty graph on V , which we will denote by En, is the graph whose edge set

is the empty set, that is, E(En) = ∅. A visual representation of the empty

graph consists of n points in the plane with no edges among the vertices.

At the other extreme, the complete graph, which we will denote by Kn,

is the graph in which each vertex is adjacent to all other vertices. Hence,

in the complete graph Kn, every possible edge is present. The total number

of possible edges in a graph with n vertices is M =
(
n
2

)
. For example, if

V = {v1, v2, v3, v4} then the set of all 2-element subsets of V is
(
V

2

)
=
{
{v1, v2} , {v1, v3} , {v1, v4} , {v2, v3} , {v2, v4} , {v3, v4}

}

and in this case
(
4
2

)
= 6, which is the cardinality of

(
V
2

)
. Now, recall that

by definition of a graph, the edge set is a subset of
(
V
2

)
. Hence, the total

number of distinct graphs with vertex set V is equal to the number of subsets

of
(
V
2

)
. The number of subsets of a set with M elements is 2M . Applying

this to the set
(
V
2

)
we conclude that the number of graphs with vertex set V

is therefore 2M = 2(
n

2) where n = |V |.

Lemma 1.2.3

If V is a set with n elements then the number of distinct graphs with

vertex set V is 2(
n

2).

Example 1.6. How many graphs are there with vertex set V = {1, 2, 3}?
Draw all of them and group them by the number of edges in the graph.

Example 1.7. Let V be a finite set with cardinality n = |V |. How many

graphs are there on V that have exactly m edges? Note that necessarily

0 ≤ m ≤
(
n
2

)
. Use your result to obtain a formula for 2(

n
2).

The complement of a graph G = (V, E) is the graph G with the same

vertex set as G and whose edge set consists of all edges not present in G. In

other words, E(G) =
(
V
2

)
\E(G). It follows then that |E(G)|+ |E(G)| =

(
n
2

)
.

7



1.2. THE RUDIMENTS OF GRAPH THEORY

Example 1.8. Let G = (V, E) be the graph with V (G) = {1, 2, 3, 4, 5, 6}
and

E(G) = {{1, 2} , {1, 3} , {2, 3} , {2, 6} , {3, 4} , {4, 5} , {4, 6}}.
What is E(G)? Draw both G and G.

Example 1.9. If G is a graph of order n = 17 and degG(v) = 9 then what is

degG(v)? Here we are using the notation degG(v) to denote the degree of v

in the graph G and degG(v) the degree of v in G. In general, what is degG(v)

in terms of n = |V | and degG(v)?

A graph G is said to be k-regular if every vertex in G has degree k. If G

is k-regular then clearly k = δ(G) = ∆(G). Conversely, given any graph G if

δ(G) = ∆(G) then G is a regular graph.

Example 1.10. Prove that if G is k-regular then G is also regular. What is

the degree of each vertex in G?

Example 1.11. Draw a 3-regular graph on n = 6 vertices.

Example 1.12. Is there a k-regular graph on n vertices if n = 11 and k = 3?

To answer this question, prove that if G is a k-regular graph on n vertices

then nk must be even. Hint: Use the Handshaking lemma.

A graphH = (V (H), E(H)) is said to be a subgraph ofG = (V (G), E(G))

if V (H) ⊂ V (G) and E(H) ⊂ E(G). For any subset of vertices W ⊂ V (G),

the subgraph induced by W , denoted by G[W ], is the subgraph of G with

vertex set W and edge set

E(G[W ]) = E(G) ∩
(
W

2

)
.

In other words, the subgraph G[W ] contains all edges of G whose end-vertices

are in W . The following example will make clear the difference between a

subgraph and an induced subgraph.

8



CHAPTER 1. GRAPHS

Example 1.13. Consider again the graph in Figure 1.2. You can verify

that the graph H with V (H) = {v2, v3, v4, v6, v8, v9} and edge set E(H) =

{v2v4, v3v4, v4v9, v4v6, v8v9} is a subgraph of G. However, it is not an induced

subgraph. The subgraph ofG induced by the verticesW = {v2, v3, v4, v6, v8, v9}
(that is, the graph G[W ]) has edge set

E(G[W ]) = {v2v4, v3v4, v4v6, v4v8, v4v9, v6v8, v6v9, v8v9}.

A subgraph H = (V (H), E(H)) of G is called a path in G if we can order

the vertices of H, say (w0, w1, . . . , wr), such that wi−1 ∼ wi for i = 1, 2, . . . , r.

We also say that H is a path from the vertex w0 to wr and that the length

of the path H is r. As an example, (v1, v3, v4, v8, v7, v6, v9) is a path of length

six in the graph in Figure 1.2. A graph G is said to be connected if for

any distinct vertices u, v ∈ V (G) there exists a path from u to v, and is

called disconnected otherwise. A connected component of a graph G is

an induced subgraph H = G[W ] such that H is connected and H is not a

proper subgraph of a connected subgraph of G. From these definitions, it is

straightforward to show that a graph G is connected if and only if it contains

only one connected component.

Example 1.14. Draw a graph on n = 8 vertices with m = 5 edges having 3

connected components.

Example 1.15. Prove that if G is disconnected then G is connected. Give

an example of a connected graph G such that G is also connected. Hint:

There is one for n = 4 and several for n = 5.

Having defined the length of a path, we define the distance between ver-

tices.

Definition 1.2.4: Distance

The distance between vertices u, v ∈ G is the length of a shortest path

from u to v (or equivalently from v to u). We denote the distance between

u and v as dG(u, v), and if the graph G is understood simply by d(u, v).

9



1.2. THE RUDIMENTS OF GRAPH THEORY

If there is no path in G from u to v then d(u, v) is not defined.

Example 1.16. Let H be a connected subgraph of the connected graph G

and let u and v be vertices of H. Prove that dG(u, v) ≤ dH(u, v).

Lastly, the diameter of a connected graph G, denoted by diam(G), is

the maximum distance among all the vertices in G, in other words

diam(G) = max {d(u, v) | u, v ∈ V (G), u 6= v} .

Example 1.17. If H is a connected subgraph of a connected graph G, what

is the relationship between diam(H) and diam(G)? To answer this question

consider the following.

(a) Give an example of H and G such that diam(H) = diam(G).

(b) Give an example of H and G such that diam(H) < diam(G).

(c) Give an example of H and G such that diam(H) > diam(G).

(d) Suppose that dH(u, v) = dG(u, v) for all vertices u, v ∈ V (H). Prove that

diam(H) ≤ diam(G).

1.2.1 Exercises

Exercise 1.5. How many graphs are there with vertex set V = {1, 2, . . . , 8}?
How many of these have m = 14 edges?

Exercise 1.6. Let G be a graph with n = |V (G)| and m = |E(G)|. Show

that

δ(G) ≤ 2m
n ≤ ∆(G).

What statistical measure of the vertex degrees is 2m
n
?

Exercise 1.7. Let V be the set of all Hollywood actors and let G = (V, E)

be the graph where {u, v} ∈ E if and only if u and v have appeared in the

same Hollywood film.

10



CHAPTER 1. GRAPHS

(a) For v ∈ V , what does deg(v) represent?

(b) If v is such that deg(v) = 0, what can we say about the actor v and the

film(s) v has appeared in?

(c) If v is such that deg(v) = 1, what can we say about the actor v and the

film(s) v has appeared in?

(d) What does ∆(G) represent?

Exercise 1.8. If G has degree sequence d(G) = (d1, d2, . . . , dn), what is the

degree sequence of G?

Exercise 1.9. Draw a graph with degree sequence d = (4, 4, 4, 4, 1, 1, 1, 1).

Exercise 1.10. For each case, decide whether or not a graph can have the

given degree sequence. Justify your answers.

(a) d = (3, 3, 2, 1)

(b) d = (3, 2, 1, 0)

(c) d = (4, 4, 2, 1)

(d) d = (2, 2, 2, 2)

Exercise 1.11. Draw the complement of the graph G shown below:

v1

v2
v3

v4

v5

v6

Exercise 1.12. For the graph shown in Figure 1.3 with vertex set V =

{v1, v2, . . . , v11}, decide if the given subgraph H = (V (H), E(H)) is induced.

Explain your answer.

(a) V (H) = {v1, v2, v3, v5, v6, v7, v10}, E(H) = {v1v3, v2v3, v5v6, v6v7, v7v10}
(b) V (H) = {v5, v6, v7, v8, v9}, E(H) = {v5v6, v5v8, v6v7, v7v9}

11



1.2. THE RUDIMENTS OF GRAPH THEORY

v1 v2

v3
v4

v5

v6

v7

v8 v9

v10
v11

Figure 1.3: Graph for Exercises 1.12 and 1.13

Exercise 1.13. For the graph G in Figure 1.3, determine a path from v2 to

v9. What is the length of the path? Do the same for vertices v8 to v11. What

is diam(G)?

Exercise 1.14. How many edges in a graph guarantee that it is connected?

To answer this question, show the following.

(a) Let G be a graph with n ≥ 2 vertices and m edges. Show that if m ≥(
n−1
2

)
+ 1 then G is connected. Hint: Try this for small n.

(b) Show that for each n ≥ 1, there exists a graph with m =
(
n−1
2

)
edges

that is disconnected.

(c) Conclude that
(
n−1
2

)
+1 is the least number of edges that guarantee that

G is connected.

(d) Give an example of a connected graph G with fewer than
(
n−1
2

)
edges.

Exercise 1.15. Show by example that if G is connected then G can be

disconnected.

Exercise 1.16. Prove that if δ(G) ≥ n−1
2 then G is a connected graph, where

as usual n = |V (G)|. Prove also that diam(G) ≤ 2.

12



CHAPTER 1. GRAPHS

1.3 Permutations

In this section, we pause our introduction to graph theory so that we can

introduce some background material on permutations. We will need to be

fluent with the rudiments of permutations in the next section when we con-

sider the very important notion of graph isomorphisms and automorphisms.

The set of permutations on a set is an example of a group. Usually,

groups are denoted with the letters G or H but since these are usually the

letters used for graphs, we will use instead the symbol Γ to denote a generic

group. Let us recall the definition of a group.

Definition 1.3.1: Group

A group is a set Γ and a binary operation defined on Γ, denoted by

⋆ : Γ× Γ → Γ, that satisfies the following:

(i) For all a, b, c ∈ Γ it holds that (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) (associativity)

(ii) There is an element e ∈ Γ such that a⋆ e = a and e⋆a = a for every

a ∈ Γ. The element e is called the identity element.

(iii) For each a ∈ Γ there exists an element b ∈ Γ such that a ⋆ b = e

and b ⋆ a = e. Usually, b is denoted instead by a−1 so that a ⋆ a−1 =

a−1 ⋆ a = e, and a−1 is called an inverse of a.

In many cases, the group operation a ⋆ b is a sort of product operation in

which case the product a ⋆ b is denoted simply as ab. Sometimes, however,

the group operation is a sort of addition operation and so in that case a ⋆ b

would be denoted by a + b. The essential feature, however, is that a ⋆ b is a

binary operation that satisfies the listed properties (i)-(iii). Before we give

examples of groups, we give the following definition.

Definition 1.3.2: Abelian group

A group Γ with group operation ⋆ : Γ × Γ → Γ is said to be an abelian

13
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group if the group operation is commutative, that is, if a ⋆ b = b ⋆ a for

every a, b ∈ Γ.

Example 1.18. The integers Z with the operation of addition forms a group.

Indeed, addition is an associative operation; if a, b, c ∈ Z then (a + b) + c =

a + (b+ c). The identity element of Z is zero because a + 0 = 0 + a = a for

every a ∈ Z. Lastly, for each a ∈ Z its inverse under addition is −a, and

since −a ∈ Z it follows that every a ∈ Z has an inverse in Z. Hence, Z with

operation + is a group. Since addition of integers is commutative, the group

(Z,+) is an abelian group.

Example 1.19. The integers Z with the operation of multiplication is not a

group. What property of a group does Z not satisfy when the operation is

multiplication?

Example 1.20. Consider the finite set Γ = {1,−1, i,−i} where i satisfies

i2 = −1. Then Γ is a group under multiplication. Multiplication of real or

complex numbers is an associative operation. You can verify that multipli-

cation is a binary operation on Γ, that is, whenever we take two elements in

Γ and multiply them we obtain an element back in Γ. The identity element

is the number 1. Lastly, every element in Γ has an inverse that is in Γ. For

example, the inverse of i ∈ Γ is −i ∈ Γ because i · (−i) = −i2 = −(−1) = 1.

As another example, the inverse of −1 ∈ Γ is itself because −1 · −1 = 1. Is

Γ an abelian group? Draw the multiplication table for Γ.

Example 1.21. Denote by GL(n) the set of n×n invertible matrices. Then

GL(n) is a group with matrix multiplication being the group operation. Re-

call that matrix multiplication is associative, that is, if A,B,C are matrices

then A(BC) = (AB)C, and thus property (i) is satisfied. The identity ele-

ment of GL(n) is the n×n identity matrix I (the matrix with ones along the

diagonal and all other entries are zero). By definition, each A ∈ GL(n) has

14



CHAPTER 1. GRAPHS

an inverse A−1 and A−1 ∈ GL(n) because A−1 is itself invertible (its inverse

is A). Hence, GL(n) satisfies all the properties of a group. Note that matrix

multiplication is not commutative and thus GL(n) is not an abelian group

for n ≥ 2.

For our purposes, the most important group is the group of bijections

on a finite set. Recall that bijections are one-to-one and onto mappings,

and are therefore invertible. To be concrete, we will consider the finite set

V = {1, 2, . . . , n} where n ∈ N is fixed. A permutation on V is a bijection

σ : V → V . The set of all permutations on the set V is called the symmetric

group on V , and it is usually denoted by Sn. We now show that Sn is indeed

a group. First of all, the candidate binary operation on Sn will be function

composition. Recall that if σ1 and σ2 are functions from V to V then the

composite function σ1 ◦ σ2 is the new function defined by (σ1 ◦ σ2)(k) =

σ1(σ2(k)) for each k ∈ V . Given σ1, σ2 ∈ Sn the composite function σ1 ◦ σ2

is also a bijection on V and thus σ1 ◦ σ2 ∈ Sn. Hence, function composition

is a binary operation on Sn. Now we verify that each property of a group is

satisfied for Sn with group operation being function composition:

(i) Function composition is associative; if σ1, σ2, σ3 ∈ Sn then (σ1◦σ2)◦σ3 =

σ1 ◦ (σ2 ◦ σ3). Associativity of function composition is not only true for

bijections but for any functions.

(ii) The identity element of Sn is the identity permutation id : V → V

defined as id(k) = k for every k ∈ V . In other words, the function id

fixes each element of V . For any σ ∈ Sn we have that (σ ◦ id)(k) =

σ(id(k)) = σ(k) and so σ ◦ id = σ. Similarly, (id ◦ σ)(k) = id(σ(k)) =

σ(k), and therefore id ◦ σ = σ. Hence, the identity permutation is the

identity element of Sn.

(iii) Lastly, by definition of Sn each σ ∈ Sn has an inverse σ−1 and because

σ−1 is itself invertible (its inverse is σ) then σ−1 ∈ Sn. By definition of

an inverse function, we have that σ ◦ σ−1 = id and σ−1 ◦ σ = id.

15
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If V = {1, 2, . . . , n} then the number of permutations on V is n!, and therefore

|Sn| = n!. As n increases, Sn becomes a very big set. The group Sn is perhaps

one of the most important groups in all of mathematics (Permutation group).

A permutation σ : V → V can be represented as array in the following

way:

σ =

(
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

)
.

The array representation indicates that the number i ∈ V is mapped to

σ(i) ∈ V . For example, if V = {1, 2, 3, 4} and σ is the permutation σ(1) =

3, σ(2) = 4, σ(3) = 1, and σ(4) = 2 then the array representation of σ is

σ =

(
1 2 3 4
3 4 1 2

)
.

The array representation indicates that a permutation σ is a rearrangement

of the ordered list (1, 2, 3, . . . , n) into the list (σ(1), σ(2), . . . , σ(n)). Since σ

is one-to-one and onto, every integer in {1, 2, . . . , n} will appear once and

only once in the list (σ(1), σ(2), . . . , σ(n)).

Example 1.22. Let V = {1, 2, 3} so that |Sn| = 3! = 6. Using array repre-

sentations, write out all 6 permutations on V .

Another more common way to represent a permutation is via its cycle

decomposition. As an example, consider the permutation on n = 8 defined

as

σ =

(
1 2 3 4 5 6 7 8
4 8 5 3 1 6 7 2

)
.

Then σ(1) = 4, and σ(4) = 3, and σ(3) = 5, and σ(5) = 1 which is where we

started. We then say that the sequence of integers (1 4 3 5) is a cycle of σ

because σ cycles through the list (1, 4, 3, 5) mapping one integer to the next

until reaching the end of the list which is mapped to the first integer. Now

take the lowest integer not in the cycle (1 4 3 5), in this case it is 2. Then

σ(2) = 8 and σ(8) = 2 which is where we started. Hence (2 8) is another

cycle of σ. Now select the next integer that does not appear in any of the

16
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previous cycles, in this case it is 6. Now σ(6) = 6 and so (6) is another cycle

of σ. Lastly, σ(7) = 7. Hence, σ fixes the integers 6 and 7 and thus the

cycles for these are both singleton cycles. The permutation σ can therefore

be represented as the product of the cycles

σ = (1 4 3 5)(2 8)(6)(7).

This is called the cycle decomposition of σ. From the cycle decomposition

we can read directly what σ does to each integer. For example, to find σ(4)

we simply find 4 in the cycle decomposition and pick out the integer to the

right of 4, in this case σ(4) = 3. As another example, σ(5) = 1 because 5 is

at the end of a cycle and so this means 5 is mapped to the beginning of the

cycle, which is 1. The length of a cycle is the number of integers appearing

in the cycle. Therefore, (1 4 3 5) is a cycle of length 4, (2 8) is a cycle of

length 2, and (6) and (7) are cycles of length 1. By convention, cycles of

length one are not displayed in the cycle decomposition of σ. In this case,

the cycle decomposition of σ would be written as σ = (1 4 3 5)(2 8) and it is

understood that the remaining integers not displayed are fixed by σ (in this

case 6 and 7).

Example 1.23. Let n = 10 and let σ ∈ Sn be defined by

σ =

(
1 2 3 4 5 6 7 8 9 10
3 6 1 8 5 9 2 10 7 4

)
.

Find the cycle decomposition of σ and determine the lengths of the cycles.

Example 1.24. Suppose that σ is a permutation on n = 9 and it has the

cycle decomposition

σ = (1 7 9 4)(2 6 5)

Write the array representation of σ.

17
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Example 1.25. Let σ1, σ2 ∈ S6 have cycle decomposition σ1 = (1 3)(2 5 6)

and σ2 = (2 3)(4 5 1). Find the array representation of the composition

σ1 ◦ σ2 and then write out the cycle decomposition of σ1 ◦ σ2. Do the same

for σ2 ◦σ1. Try writing the cycle decomposition of σ1 ◦σ2 and σ2 ◦σ1 directly

using the cycle decompositions of σ1 and σ2 without first writing their array

representations.

Example 1.26. Let n = 10 and let σ ∈ Sn be defined by

σ =

(
1 2 3 4 5 6 7 8 9 10
5 7 6 10 9 3 4 8 1 2

)
.

Write out the cycle decomposition of σ and then find the cycle decomposi-

tion of σ−1. Compare the cycle decompositions of σ and σ−1. Do you see

how to quickly find the cycle decomposition of σ−1 once you know the cycle

decomposition of σ?

By the order of a permutation σ we mean the least integer k ≥ 1 such

that

σk = σ ◦ σ ◦ · · · ◦ σ︸ ︷︷ ︸
k-times

= id.

If the cycle decompsotion of σ has r cycles each having length k1, k2, . . . , kr ≥
2 then the order of σ is the least common multiple (lcm) of k1, k2, . . . , kr.

Example 1.27. Let σ = (1 5)(2 3 6 4) be a permutation in S6. The length of

the cycles of σ are k1 = 2 and k2 = 4. Hence, the order of σ is lcm(2, 4) = 4.

Find σ2, σ3, σ4 and verify that σ4 is the identity permutation.

Example 1.28. Let Γ be a group such that every element σ ∈ Γ has order

k = 2. Prove that Γ is an abelian group, that is, that σ1σ2 = σ2σ1 for all

σ1, σ2 ∈ Γ.

18
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Finally, a transposition is a permutation that fixes all but two elements.

Hence, if τ is a transposition then its cycle decomposition is of the form

τ = (a b) and thus τ(a) = b and τ(b) = a and τ fixes all other integers.

Clearly, the order of τ is two. In particular, if σ = τ1 ◦τ2 ◦ · · · ◦τr is a product

of disjoint transpositions (by disjoint we mean that the cycles in all the τi’s

are mutually disjoint and by product we mean function composition because

composition is the product operation in Sn) then σ is also of order two. For

example, the permutation σ = (1 7)(2 5)(3 8) in S9 has order 2. The converse

also holds; if σ ∈ Sn has order two then σ can be written as a product of

disjoint transpositions.

1.3.1 Exercises

Exercise 1.17. Write a Python function that takes as input a permutation

represented as a list and returns the cycle decomposition of the permutation

as a list of lists. Call your function cycleDecomposition. For example,

consider the permutation

σ =

(
1 2 3 4 5 6 7
2 4 1 3 7 6 5

)
.

We can represent σ as a list as σ = [2, 4, 1, 3, 7, 6, 5]. However, recall that

Python uses zero-based indexing and thus as a Python list we have σ =

[1, 3, 0, 2, 6, 5, 4]. The cycle decomposition of σ as a list of lists is therefore

σ = [[0, 1, 3, 2], [4, 6], [5]]. Hence, your function would produce:

cycleDecomposition([1,3,0,2,6,5,4])

[[0,1,3,2], [4,6], [5]]

Apply your function to the following permutations (using zero-based index-

ing):

σ = [2, 0, 1, 5, 7, 10, 11, 4, 8, 9, 3, 6]

σ = [2, 6, 7, 8, 1, 3, 11, 4, 9, 10, 0, 5]

σ = [13, 7, 0, 8, 18, 2, 17, 9, 1, 3, 14, 15, 12, 5, 16, 11, 6, 10, 4]
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To test your function further, the Python module itertools has a function

called permutations that returns a generator that produces permutations

of a given iterable such as a list or a string. Warning: Generating all

permutations for even small values of n can take a long time; for this reason

use n ≤ 10.
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1.4 Graph isomorphisms

In this section, we study in detail what it means for two graphs to be “equiv-

alent” but not necessarily equal. The basic idea is that since the essential

structure of a graph is contained entirely in the make-up of the edge set, or

how the vertices are connected, the vertex set can be seen as an arbitrary

choice of labels for the vertices. If two graphs have the same edge structure

then we will declare them to be equivalent even though the vertices might be

distinct or differ by a rearrangement. For example, consider the two graphs

G1 and G2 given by

V (G1) = {v1, v2, v3, v4} V (G2) = {x, y, z, w}
E(G1) = {v1v2, v1v3, v2v3, v3v4} E(G2) = {zy, zw, yw, xw}.

It is clear that G1 and G2 are distinct graphs because V (G1) 6= V (G2). In

each graph, there is one dominating vertex; in G1 it is v3 and in G2 it is w.

Each graph has one vertex with degree one; in G1 it is v4 and in G2 it is x.

In both graphs, the remaining two vertices are adjacent and each have the

same degree. Hence, in both graphs the manner in which the vertices are

connected is the same and the only feature that distinguishes the graphs are

the actual names or labels of the vertices. Specifically, our analysis has shown

that there exists a bijection between the vertices of G1 and G2 that shows

that these graphs are structurally equivalent (but not equal). To be more

precise, the bijection σ : V (G1) → V (G2) defined by σ(v3) = w, σ(v4) = x,

σ(v2) = y, and σ(v1) = z leaves the adjacency property of vertices invariant.

Let us now be more rigorous with the definition of equivalent graphs.

Definition 1.4.1: Graph Isomorphisms

The graph G1 = (V1, E1) is isomorphic to the graph G2 = (V2, E2) if

there exists a bijection σ : V1 → V2 such that if {u, v} is an edge in G1

then {σ(u), σ(v)} is an edge in G2 and if {u, v} is not an edge in G1

then {σ(u), σ(v)} is not an edge in G2. In this case, we say that σ is an
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isomorphism from G1 to G2 and we write G1
∼= G2.

In other words, σ is an isomorphism from G1 to G2 if σ maps an edge in G1

to an edge in G2 and maps a non-edge in G1 to a non-edge in G2, in other

words

E2 = σ(E1) := {{σ(u), σ(v)} | {u, v} ∈ E1} .

Before we proceed, we note that if G1 is isomorphic to G2 then G2 is isomor-

phic to G1 (why?). Hence, we can without ambiguity say that G1 and G2 are

isomorphic. Clearly, if G1
∼= G2 then necessarily |V1| = |V2| since there is no

bijection between sets of distinct cardinality. Moreover, if σ is a bijection,

the condition that σ(E1) = E2 implies that also |E1| = |E2|. A mathemat-

ical way to say this is that the order and size of a graph are invariants,

that is, quantities (or objects, sub-structures, etc.) that are preserved by an

isomorphism. Later on we will identify further invariants of graphs.

Example 1.29. Verify that the graphs G1 = (V1, E1) and G2 = (V2, E2)

shown in Figure 1.4 are distinct. Then prove that G1 and G2 are isomorphic.

To do this, you need to explicitly find a bijection σ : V → V that satisfies the

definition of a graph isomorphism. Here V = V1 = V2 = {v1, v2, v3, v4, v5}.
Once you have an isomorphism σ, pick any non-edge in G1 and show that it

is mapped under σ to a non-edge in G2.

v1

v2 v3

v4v5

G1
v1 v2

v3

v4v5

G2

Figure 1.4: Are these graphs isomorphic?

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), if |V1| 6= |V2| then as

discussed above G1 and G2 cannot be isomorphic. Hence, if G1 and G2 are

graphs with n = |V1| = |V2|, then when investigating whether G1 and G2 are
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isomorphic we can without loss of generality rename the vertex sets of G1

and G2 so that the new relabelled graphs both have the same vertex set. It

is convenient to let the common vertex set be V = {v1, v2, . . . , vn} or even

V = {1, 2, , . . . , n}.

Example 1.30. Consider the graphs G1 = (V, E1) and G2 = (V, E2) where

V = {1, 2, 3, 4} and

E1 = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}
E2 = {{3, 4}, {2, 4}, {2, 3}, {1, 2}}.

Consider the permutation σ = (1 4)(2 3) (this is the cycle decomposition).

Verify that σ is an isomorphism from G1 to G2 and thus G1
∼= G2. Draw

both graphs to see what is happening.

Example 1.31. Suppose that σ : V (G1) → V (G2) is an isomorphism from

G1 to G2. Prove that for every vertex v ∈ V (G1) it holds that deg(v) =

deg(σ(v)). In other words, an isomorphism must preserve the degree of each

vertex. Conclude that the degree sequence of isomorphic graphs are equal.

In other words, the degree sequence of a graph is an invariant.

Example 1.32. Consider the graphs G1 = (V, E1) and G2 = (V, E2) with

vertex set V = {1, 2, . . . , 6} and edge sets

E1 = {{3, 5}, {4, 6}, {2, 6}, {1, 5}, {3, 6}, {1, 4}, {3, 4}}
E2 = {{1, 2}, {1, 5}, {2, 4}, {5, 6}, {6, 4}, {1, 3}, {5, 2}}.

The degree sequences of G1 and G2 are d(G1) = d(G2) = (3, 3, 3, 2, 2, 1).

Thus, there is a possibility that G1 and G2 are isomorphic. With the help of a

drawing of G1 and G2, conclude that G1
∼= G2 and determine an isomorphism

from G1 to G2.
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Lemma 1.4.2

Suppose that σ : V (G1) → V (G2) is an isomorphism of the graphs G1

and G2. If (w0, w1, . . . , wr) is a path in G1 then (σ(w0), σ(w1), . . . , σ(wr))

is a path in G2.

Proof. First of all, since σ is a bijection, all vertices in the list

(σ(w0), σ(w1), . . . , σ(wr))

are distinct. Since {wi−1, wi} ∈ E(G1) and σ is an isomorphism then

{σ(wi−1), σ(wi)} ∈ E(G2),

for i = 1, . . . , r. Thus, (σ(w0), σ(w1), . . . , σ(wr)) is a path in G2.

Example 1.33. Recall that the distance between vertices u and v in a

graph G, denoted by dG(u, v), is the length of a shortest path in G from

u to v, and if there is no path from u to v then d(u, v) does not exist.

Prove that if σ : V (G1) → V (G2) is an isomorphism from G1 to G2 then

dG1
(u, v) = dG2

(σ(u), σ(v)) for all vertices u, v ∈ V (G1).

Example 1.34. Prove that if G1 and G2 are isomorphic then their comple-

ments G1 and G2 are isomorphic.

Example 1.35. Suppose that G1
∼= G2. Prove that G1 is connected if and

only if G2 is connected.

Given two graphsG1 = (V, E1) and G2 = (V, E2), how do we decide if they

are isomorphic? Well, first of all it must hold that |E1| = |E2| otherwise the
graphs are not isomorphic. If we select a specific permutation σ : V → V and

if it is true that {u, v} ∈ E1 if and only if {σ(u), σ(v)} ∈ E2, for all u, v ∈ V ,

then G1 and G2 are isomorphic. Hence, it is computationally easy to verify
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whether or not a specific permutation is an isomorphism from one graph to

the other. If a specific permutation σ is not an isomorphism from G1 to G2,

then we proceed by choosing another permutation σ̃ and perform the same

test and if σ̃ is not an isomorphism then we proceed to another permutation,

etc. In principle, we would have to perform an exhaustive test through all n!

permutations on V to decide if G1 and G2 are isomorphic. This brute-force

search is computationally intractable when n is large; in fact it is already

computationally non-trivial even when say n ≈ 20. In general, the existence

of an efficient algorithm that decides whether two given graphs G1 and G2

are isomorphic is still unknown and is a long-standing unsolved problem in

mathematics and computer science (Graph isomorphism problem).

You may have already noticed that being isomorphic defines an equiva-

lence relation on the set of all graphs with n vertices. To be concrete, let

V = {1, 2, . . . , n} and let Gn be the set of all graphs with vertex set V , that

is,

Gn =

{
(V, E) | E ⊂

(
V

2

)}
.

Recall that the cardinality of Gn is |Gn| = 2(
n
2). We say that two graphs

G1 and G2 are equivalent if G1 and G2 are isomorphic. To see that this is

indeed an equivalence relation, we first note thatG ∼= G by taking the identity

permutation since id(E) = E (this shows reflexivity); next ifG1
∼= G2 and σ is

the isomorphism such that σ(E1) = E2 then G2
∼= G1 with isomorphism σ−1

since σ−1(E2) = E1 (this shows symmetry); and finally to show transitivity

if G1
∼= G2 with isomorphism σ and G2

∼= G3 with isomorphism ρ then ρ ◦ σ
is an isomorphism from G1 to G3 since (ρ◦σ)(E1) = ρ(σ(E1)) = ρ(E2) = E3.

Hence, for fixed V = {1, 2, . . . , n}, we can partition the set of all graphs Gn

into equivalences classes.
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Definition 1.4.3: Graph Isomorphism Classes

Let G = (V, E) be a graph on the vertex set V = {1, 2, . . . , n}. The

isomorphism class of G is the set of all graphs with vertex set V that

are isomorphic to G. We will denote the isomorphism class of G by [G].

Explicitly,

[G] =
{
(V, σ(E)) | σ ∈ Sn

}
.

The number of distinct isomorphism classes on V will be denoted by ζ(n).

An isomorphism class can be thought of as a graph with unlabelled ver-

tices. The following exercise illustrates this point.

Example 1.36. Let n = 4. If we draw all 2(
n
2) = 64 graphs on the vertex set

V = {v1, v2, v3, v4}, and remove the labels of the vertices, then each graph

will look like one of those shown in Figure 1.5. Therefore, there are ζ(4) = 11

isomorphism classes for n = 4. Alternatively, we say that there are ζ(4) = 11

non-isomorphic graphs on n = 4 vertices.

Figure 1.5: The graph isomorphism classes for n = 4

Given a graph G = (V, E), one can generate by brute-force the individual

members of the isomorphism class [G] by computing σ(E) for every permu-

tation σ ∈ Sn. One expects [G] to contain n! graphs (one for each element

of Sn) and in many (most) cases this is indeed true. In general, however, the
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isomorphism class [G] will contain less than n! graphs as the next example

shows.

Example 1.37. Consider the graph G = (V, E) where V = {1, 2, 3, 4} and

E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}.

There are a total of 4! = 24 permutations in S4. Any graph G̃ isomorphic

to G is of the form G̃ = (V, σ(E)) for some permutation σ ∈ Sn. Consider

the permutations σ1 = (1 4)(2 3) and σ2 = (1 3 2 4), both in their cycle

decomposition. Clearly, these permutations are distinct. Verify however that

σ1(E) = σ2(E) and thus σ1 and σ2 generate the same graph isomorphic to

G. This shows that the set [G] contains less than 4! graphs. In fact, one can

show that in this case [G] contains only 12 graphs.

Example 1.38. Let G1 = (V, E1) be the graph shown in Figure 1.6. Let

σ1 = (1 3)(2 4)(5 6) and let σ2 = (1 2)(3 4). Verify that σ1(E1) = E1

and σ2(E1) = E1. Hence, the equivalence class of G1 contains fewer than 6!

graphs. On the other hand, for the graph G2 = (V, E2), one can verify that

for all non-identity permutations σ ∈ S6, it holds that σ(E2) 6= E2.

v1 v2

v3 v4

v5

v6

G1 G2

Figure 1.6: Two graphs on n = 6 vertices

The previous examples illustrate that for some graphs there are permu-

tations that preserve the adjacency property of vertices. This leads us to the

following definition.
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Figure 1.7: Finding automorphisms using a visual representation for small
graphs

Definition 1.4.4: Automorphisms

An automorphism of a graph G = (V, E) is an isomorphism of G onto

itself, that is, a bijection σ : V → V such that {u, v} is an edge in G if

and only if {σ(u), σ(v)} is an edge in G. In other words, if σ(E) = E.

The set of all automorphisms of a graph G is called the automorphism

group of G, and will be denoted by Aut(G).

As the name suggests, the automorphism group is a group, and more

specifically, it is a subgroup of the symmetric group. For any graph G, the

identity permutation is an automorphism of G. If, however, G has only the

identity permutation as an automorphism then we say that G is asymmetric

otherwise we say that G is symmetric. We verified that the graph G1

in Figure 1.6 is a symmetric graph while graph G2 in the same figure is

asymmetric. For small graphs, automorphisms may be found by identifying

the “geometric symmetries” from a visual representation of the graph. In

general, however, this approach is futile for finding automorphisms for large

graphs and serves only to illustrate the idea of an automorphism.

Example 1.39. Find at least two automorphisms for each graph in Fig-

ure 1.7. You will first need to label the vertices of the graph.

Example 1.40. The complete graph Kn on the vertex set V = {1, 2, . . . , n}
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has every permutation on V as an automorphism. Thus, Aut(Kn) = Sn.

Verify this for K3.

When n is very small, a typical graph will have an automorphism other

than the identity permutation, that is, when n is small a typical graph will

have at least one symmetry. In fact, an exhaustive search reveals that it is

not until n = 6 that asymmetric graphs appear. It is natural to ask what

the trend is as n → ∞. As before, let ζ(n) denote the number of graph

isomorphism classes on n vertices. We have seen that some graphs have a

non-trivial automorphism group and therefore there are isomorphism classes

that contain fewer than n! graphs. Therefore,

2(
n

2) < n!ζ(n)

from which it follows that
2(

n
2)

n!
< ζ(n).

It can be shown [2] that in fact ζ(n) asymptotically converges to 2(
n
2)

n! (see

Figure 1.8), that is,

lim
n→∞

ζ(n)

2(
n
2)

n!

= 1.

From this fact one can deduce that as n → ∞, the proportion of graphs that

are asymmetric tends to one. These facts were proved by P. Erdös and A.

Réyni [1] and summarized below.

Theorem 1.4.5: Symmetric Graphs Are Rare

For each n ∈ N, let a(n) be the number of asymmetric non-isomorphic

graphs on n vertices. Then

lim
n→∞

a(n)

ζ(n)
= 1,
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n
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κ(n)
2(n2)/n!

Figure 1.8: The ratio ζ(n)n!

2(
n
2)

for n ∈ {1, 2, . . . , 40}. The values of

ζ(n) were obtained from the On-Line Encyclopedia of Integer Sequences
https://oeis.org/A000088.

that is, the proportion of graphs that are asymmetric for each n tends to

1 as n → ∞.

Another way of saying this is that almost all graphs are asymmetric

(Asymmetric graphs). Although symmetry in graphs is mathematically rare,

many real-world graph models have many symmetries.

1.4.1 Exercises

Exercise 1.18. A subset of vertices W ⊂ V (G) of a graph G is called a

clique if all vertices in W are mutually adjacent. In other words, W is a

clique if the induced subgraph G[W ] is a complete graph. Prove that if σ is

an isomorphism from G to H then if W is a clique in G then σ(W ) is a clique

in H.

Exercise 1.19. Prove that if G1
∼= G2 then diam(G1) = diam(G2).
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Exercise 1.20. Two vertices u, v ∈ V (G) are said to be twin vertices if

N(u)\ {v} = N(v)\ {u}. In other words, u and v are twins if they have the

same neighbors (other than possibly themselves). Prove that u and v are

twin vertices if and only if the transposition that permutes u and v, and fixes

all other vertices, is an automorphism of G.

Exercise 1.21. Are these graphs isomorphic? If not explain why, and if yes

then provide an isomorphism.

v1

v2

v3

v4

v5

v6 v1 v2v3

v4 v5v6

Exercise 1.22. We know that the degree sequence of a graph is an isomor-

phism invariant.

(a) Show by example that two graphs with the same degree sequence need

not be isomorphic. Your graphs should be non-regular graphs.

(b) Do the same as in part (a) but now the two graphs must be regular.

For each case, explain why they are non-isomorphic. Your explanation should

not be “because the pictures of the graph look different”.

Exercise 1.23. Are these graphs isomorphic? If not explain why, and if yes

then provide an isomorphism.

1

2

3

4 5

6
7

8

1

2

3

4

5

6
7

8

31



1.5. SPECIAL GRAPHS AND GRAPH OPERATIONS

Exercise 1.24. The eccentricity of a vertex v ∈ V (G), denoted by eccG(v),

is the maximum distance from v to any other vertex in G. In other words,

eccG(v) = max
u∈V

d(v, u).

The radius of a graph G, denoted by rad(G), is the minimum eccentricity

among all vertices of G. The center of G is the subset of vertices v such that

eccG(v) = rad(G). Suppose that σ is an isomorphism from G1 to G2. Prove

that

(a) eccG2
(σ(v)) = eccG1

(v) for every v ∈ V (G1),

(b) rad(G1) = rad(G2), and

(c) the center of G1 is mapped onto the center of G2 under σ.

Exercise 1.25. Prove that the number of connected components in a graph is

an invariant. In other words, if G has connected components G1, G2, . . . , Gk,

and H has connected components H1, H2, . . . , Hℓ then if G ∼= H then k = ℓ.

To get you started, prove the following: Suppose that σ : V (G) → V (H) is

an isomorphism from G to H. If Gi is a connected component of G then the

graph in H induced by the vertices σ(V (Gi)) is a connected component in

H.

1.5 Special graphs and graph operations

In this section, we present a small catalog of graphs that appear frequently

in graph theory and also present some standard operations on graphs.

We have already discussed the complete graph on n vertices, denoted

by Kn, which is the graph where all vertices are mutually adjacent. The

complement of the complete graph is the empty graph, denoted by En = Kn.

Fix a vertex set V = {v1, v2, . . . , vn}. The path graph on V , denoted by

Pn, is the graph with edge set

E(Pn) = {v1v2, v2v3, . . . , vn−1vn} .
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Hence, Pn is a path of length n − 1 from v1 to vn. The cycle graph on V ,

denoted by Cn, is the graph with edge set

E(Cn) = {v1v2, v2v3, v3v4, . . . , vn−1vn, vnv1} = E(Pn) ∪ {v1, vn}.

Hence, Cn can be obtained by connecting the end-vertices of Pn. In Figure 1.9,

we illustrate P2, P3, P4, and C3, C4, C5.

C3 C4 C5

P2 P3 P4

Figure 1.9: Some path and cycle graphs

Example 1.41. A graph G is called self-complementary if G is isomorphic

to its complement.

(a) Verify that P4 is self-complementary.

(b) Prove that if G is self-complementary then |E(G)| = (n2)
2 , and thus G has

half the number of edges of the complete graph.

(c) Deduce that n ≡ 0 or n ≡ 1 (mod 4).

A graph G is called bipartite if there exists two non-empty disjoint sub-

sets X and Y of V (G) such that X ∪ Y = V (G) and every edge in G has

one end-vertex in X and the other in Y . The sets X and Y are called the

parts of the bipartition {X, Y }. Bipartite graphs are usually drawn with

the vertices from X on one side and the vertices from Y on the other side.

An example of a bipartite graph, drawn in two different ways, is shown in

Figure 1.10.

33



1.5. SPECIAL GRAPHS AND GRAPH OPERATIONS

v1
v2

v3

v4
v5

v6

v7

v1

v5

v3

v6

v2

v4

v7

=

Figure 1.10: A bipartite graph

Example 1.42. Suppose thatG is a connected bipartite graph. Prove that G

has a unique bipartition. In other words, prove that if {X, Y } and {A,B} are

bipartitions of G then {A,B} = {X, Y }. Give an example of a disconnected

bipartite graph that does not have a unique bipartition.

The complete bipartite graph of regularity (n1, n2), denoted by Kn1,n2
,

is a bipartite graph with parts X and Y such that n1 = |X| and n2 = |Y |
and every vertex in X is adjacent to all vertices in Y (and hence all vertices

in Y are adjacent to X). Figure 1.11 illustrates K2,3 and K1,4.

K2, 3 K1, 4

Figure 1.11: The complete bipartite graphs K2,3 and K1,4.

We now give a characterization of bipartite graphs.

Theorem 1.5.1: Bipartite Graphs

A graph G is bipartite if and only if it does not contain cycles of odd

length.

Proof. Suppose first that G is bipartite with parts X and Y , and let γ =

(w0, w1, . . . , wk) be a cycle in G of length k, and thus w0 = wk. Assume
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without loss of generality that w0 ∈ X. Since G is bipartite, wi ∈ X for all

even i and wj ∈ Y for all odd j. Since wk = w0 ∈ X, it follows that k is even

and thus the cycle γ has even length.

Now we prove the converse statement. The statement is trivial if |V (G)| ≤
2 so suppose that n ≥ 3. We can assume that G is connected, otherwise we

apply the forthcoming arguments to each connected component of G. Let

v ∈ V (G) be an arbitrary but fixed vertex and define

X = {x ∈ V (G) | d(v, x) is even}

and let Y = V (G)\X. Hence, Y contains vertices whose distance to v is odd.

It is clear that X and Y are disjoint. Since G is connected, X ∪ Y = V (G).

Assume that G is not bipartite. Then at least one of X or Y contains two

adjacent vertices. Suppose without loss of generality that X contains two

vertices a and b that are adjacent. Then neither a nor b equals v by definition

of X. Let γ1 = (a0, a1, a2, . . . , a2k) be a path of minimum length from v to

a and let γ2 = (b0, b1, b2, . . . , b2j) be a path of minimum length from v to b.

Both paths γ1 and γ2 contain v = a0 = b0 as a common vertex. In general, if

γ1 and γ2 contain a common vertex v′ then v′ = ai = bi for some i. Indeed,

if v′ = ai and v′ = bℓ for say i < ℓ then there exists a path from v to b that

has length less than γ2 which is a contradiction. Let i be the largest integer

such that ai = bi. Then (ai, ai+1, . . . , a2k, b2j, b2j−1, . . . , bi) is a cycle of length

(2k − i) + (2j − i) + 1, which is odd. Hence, we have proved that if G is not

bipartite then G has a cycle of odd length. Thus, if G has no cycles of odd

length then G is bipartite.

Example 1.43. Label the cycle graph C6 and find a bipartition for it.

Given two graphs G and H with disjoint vertex sets, we define the union

of G and H, denoted by G⊕H, as the graph with vertex set V (G) ∪ V (H)

and edge set E(G) ∪E(H). The join of G and H, denoted by G ∨H, is the

graph obtained from G⊕H by connecting every vertex in G to every vertex
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in H. Explicitly,

E(G ∨H) = E(G) ∪ E(H) ∪ {{v, w} | v ∈ V (G), w ∈ V (H)} .

It is not hard to show that ⊕ and ∨ are commutative and associative opera-

tions, in other words,

G1 ⊕G2 = G2 ⊕G1 (G1 ⊕G2)⊕G3 = G1 ⊕ (G2 ⊕G3)

G1 ∨G2 = G2 ∨G1 (G1 ∨G2) ∨G3 = G1 ∨ (G2 ∨G3).

for all graphs G1, G2, G3. It is clear that G1 ⊕ G2 is a disconnected graph

while G1 ∨G2 is connected.

Example 1.44. Draw the graphs (P2∨ (P2⊕P2)∨P2)∨K1 and ((P2∨P2)⊕
(P2 ∨ P2)) ∨K1.

Example 1.45. Suppose that G is disconnected and has components G1, G2,

. . . , Gk. Then G = G1 ⊕G2 ⊕ · · · ⊕Gk.

Example 1.46. Suppose that G = G1∨G2. Prove that diam(G) ≤ 2. What

if diam(G) = 1?

Example 1.47. Recall that K|X |,|Y | is the bipartite graph with parts X and

Y such that every vertex in X is adjacent to every vertex in Y . Prove that

K|X |,|Y | = E|X | ∨E|Y |, where recall that En is the empty graph on n vertices.

Given a graph G and v ∈ V (G), we denote by G− v the graph obtained

from G by removing the vertex v and all edges incident with v. More gen-

erally, for S ⊂ V (G), the graph G − S is the graph obtained from G by

removing all vertices S and all edges incident with a vertex in S. Formally,

G− S = G[Sc]
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where Sc = V (G)\S. Similarly, if e ∈ E(G) then G− e is the graph obtained

from G by removing the edge e, and more generally, for Ω ⊂ E(G), the

graph G−Ω is obtained from G by removing all edges in Ω, in other words,

E(G− Ω) = E(G)\Ω.
Let G be a connected graph. A vertex v ∈ V (G) is called a cut vertex

if G − v is disconnected. More generally, a subset S of vertices is called a

vertex cut set if G− S is disconnected. The minimum cardinality over all

vertex cut sets is called the connectivity of G and denoted by κ(G). If G

is disconnected we define κ(G) = 0 and κ(Kn) = n− 1 for n ≥ 1. Similarly,

an edge e is called a bridge if G − e is disconnected. A subset Ω ⊂ E(G)

of edges is called an edge cut set if G − Ω is disconnected. The minimum

cardinality over all edge cut sets is called the edge connectivity of G and

denoted by e(G).

Lemma 1.5.2

For any connected graph G we have κ(G) ≤ e(G) ≤ δ(G).

Proof. If v is a vertex with deg(v) = δ(G) then removing all edges incident

with v leaves v isolated and therefore G is disconnected. Hence, e(G) ≤ δ(G).

The other inequality is left as an exercise.

Example 1.48. The girth of a graph G, denoted by g(G), is the length of

the shortest cycle in G. Prove that g(G) ≤ 2 diam(G) + 1 for any graph G

with at least one cycle. Assume G is connected.

1.5.1 Exercises

Exercise 1.26. Is the graph given below bipartite? If yes, find a bipartition

for it.

Exercise 1.27. Consider the complete bipartite graph Kn1,n2
.
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v1

v2

v3

v4 v5

v6

v7

v8

(a) Find the number of edges of Kn1,n2
in terms of n1 and n2.

(b) Is there a complete bipartite graph with n = 11 vertices and 25 edges?

Explain.

(c) Is there a complete bipartite graph with n = 11 vertices and 24 edges?

Explain.

Exercise 1.28. Draw the graph K1,n−1 for n = 5, n = 7, and n = 9. What

celestial objects do these graphs resemble?

Exercise 1.29. For each n ≥ 4, let Wn = Cn−1 ∨ K1. Draw Wn for n ∈
{4, 5, 9, 12}. What name would you give these graphs?

Exercise 1.30. Draw the graph K1 ∨ (E2 ⊕ C3).

Exercise 1.31. Let G1 and G2 be graph.

(a) Prove that if G1∨G2 is a regular graph then both G1 and G2 are regular.

(b) Suppose that G1 is k1-regular, with n1 vertices, and G2 is k2-regular,

with n2 vertices. Under what conditions on k1, k2, n1, and n2 is G1 ∨G2

a regular graph? Give a proof of your condition.

(c) Give an example of regular graphs G1 and G2 such that G1 ∨ G2 is not

regular.
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Exercise 1.32. Consider the following recursively defined sequence of graphs:

G1 = K1

G2 = G1 ∨K1

G3 = G2 ⊕K1

G4 = G3 ∨K1

G5 = G4 ⊕K1

and in general Gk = Gk−1 ⊕K1 if k ≥ 3 is odd and Gk = Gk−1 ∨K1 if k ≥ 2

is even.

(a) Draw G8 and label the vertices so that the vertex added at step j is

labelled vj.

(b) Prove by induction that if k is even then

d(Gk) =
(
k − 1, k − 2, . . . , k2 ,

k
2 ,

k
2 − 1, . . . , 2, 1

)
.

In other words, the degree sequence has only one repeated value, namely
k
2 .

Exercise 1.33. Let G be a graph with δ(G) ≥ k.

(a) Prove that G has a path of length at least k.

(b) Prove that if k ≥ 2 then G has a cycle of length at least k + 1.

Exercise 1.34. Prove that if δ(G) ≥ n
2
+ 1 then adjacent vertices have a

common neighbor, that is, for every {u, v} ∈ E(G) there exists w ∈ V (G)

such that {u, w} ∈ E(G) and {v, w} ∈ E(G).

Exercise 1.35. The complete multipartite graph of regularity (n1, n2,

. . . , nk), denoted by Kn1,n2,...,nk
, is the graph

Kn1,n2,...,nk
= En1

∨ En2
∨ · · · ∨ Enk

.

In other words, there is a partition X1, X2, . . . , Xk of the vertex set V such

that for each distinct Xi and Xj, each vertex of Xi is adjacent to every vertex

of Xj . Find the order and size of Kn1,n2,...,nk
in terms of n1, n2, . . . , nk.
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Exercise 1.36. Prove that the center of a complete bipartite graph Kn1,n2
,

with n1, n2 ≥ 2, is the entire vertex set. (See Exercise 1.24 for the definition

of the center of a graph.)
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1.6 Trees

We begin at the beginning.

Definition 1.6.1: Trees

A graph G is called a tree if it is connected and does not contain any

cycles. A forest is the union of trees.

It follows by definition and Theorem 1.5.1 that a tree is a bipartite graph.

By definition, K1 is a tree, and the only trees on n = 2 and n = 3 vertices

are P2 and P3, respectively. Some trees are shown in Figure 1.12.

Figure 1.12: Some tree graphs

Example 1.49. There are 2 trees on n = 4 vertices and 3 trees on n = 5

vertices. Draw them.

Proposition 1.6.2: Paths in Trees

Let G be a connected graph. Then G is a tree if and only if there is a

unique path between any two given vertices.

Proof. We first prove that if G is a tree then for any distinct vertices u and

v there is only one path from u to v. We prove the contrapositive. Suppose

that there are two distinct paths γ1 = (x0, x1, . . . , xk) and γ2 = (y0, y1, . . . , yℓ)
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from u to v, and thus u = x0 = y0 and xk = yℓ = v. Since the paths

are distinct, there is a minimal i ≥ 1 such that xi 6= yi and xi−1 = yi−1.

Since the paths have at least one vertex in common after u (namely v),

there is a minimal j > i such that xj = ym for some m ≤ ℓ. Hence, γ̃ =

(xi−1, xi, . . . , xj, ym−1, ym−2, . . . , yi, yi−1) is a cycle in G, and thus G is not a

tree.

Now suppose that G is not a tree and let γ = (u, w1, w2, . . . , wk, u)

be a cycle in G. Then for 1 ≤ i < k, γ1 = (u, w1, . . . , wi) and γ2 =

(u, wk, wk−1, . . . , wi) are two paths in G from u to wi. Hence, if in G there is

only one path between any two given vertices then G has no cycles, that is,

G is a tree.

A vertex v of a tree G is called a leaf or a pendant vertex if deg(v) = 1.

If G is a tree and deg(v) = 1 then G− v is connected and contains no cycles.

Therefore, G− v is a tree whenever deg(v) = 1. Before we continue, we need

the following more-or-less obvious fact.

Lemma 1.6.3

If G is a connected graph of order n ≥ 3 then there exists v ∈ V (G) such

that deg(v) ≥ 2.

Proof. If deg(v) = 1 for all v ∈ V (G) then G is the disjoint union of copies

of P2 and thus G is not connected.

We now describe what happens to a tree when we remove a non-leaf.

Theorem 1.6.4: Removing a Non-Leaf from a Tree

If G is a tree with n ≥ 3 vertices then G− v is a forest for any v ∈ V (G)

having deg(v) ≥ 2. In fact, the number of components of G− v is deg(v).

Proof. Let v ∈ V (G) be such that deg(v) ≥ 2 and consider G−v. Let x, y be

neighbors of v inG. IfG−v is connected, then there exists a path inG−v from
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x to y, say γ = (x, w1, w2, . . . , wk−1, y). Then γ̃ = (x, w1, w2, . . . , wk−1, y, v, x)

is a cycle in G which is a contradiction since G is a tree. Hence, G − v is

disconnected. Our proof also shows that each neighbor of v is contained in

a distinct component of G − v, and hence G − v contains at least deg(v)

components. It is clear, however, that G− v can have no more than deg(v)

components for if H is a component of G − v that does not contain any of

the neighbors of v in G then G contains H as a connected component which

contradicts the connectivity of G. Finally, if any component of G−v contains

a cycle then clearly so does G which is a contradiction. Hence, G − v is a

forest containing deg(v) trees.

Proposition 1.6.5: Minimum Number of Leaves in a Tree

Every tree with n ≥ 2 vertices contains at least two leaves.

Proof. The proof is by strong induction on n. For n = 2 and n = 3, the only

trees are P2 and P3, respectively, and both contain two leaves. Now assume

that the claim is true for all trees having no more than n ≥ 2 vertices and let

G be a tree of order n+1. Since n+1 ≥ 3, Lemma 1.6.3 applies and thus G

has a vertex v with deg(v) ≥ 2. If v is adjacent to two or more leaves then

we are done. If v is adjacent to one leaf, say x, then G− x is a tree of order

n and therefore it has at least two leaves, say y and z. This implies that G

has at least two of x, y, z as leaves. If v is not adjacent to any leaves, then

G− v contains at least two components G1 and G2 each containing at least

2 vertices. By the induction hypothesis, G1 contains at least two leaves, say

x1 and y1, and G2 contains at least two leaves x2 and y2. Hence, G contains

at least two of x1, y1, x2, y2 as leaves.

The following gives a characterization of trees in terms of the number of

edges.
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Theorem 1.6.6: Number of Edges in a Tree

Suppose that G is a connected graph with n vertices. Then G is a tree if

and only if G has n− 1 edges.

Proof. We first prove that if G is a tree with n vertices then it has n − 1

edges. The case n = 1 is trivial. Assume by induction that every tree with n

vertices contains n− 1 edges. Let G be a tree with n+1 vertices. Let v be a

leaf of G. Then G− v is a tree with n vertices and therefore by the induction

hypothesis has n − 1 edges. Since G and G − v differ only by one edge, G

has (n− 1) + 1 = n edges.

Now we prove that every connected graph with n vertices and n−1 edges

is a tree. The case n = 1 is trivial. Assume by induction that every connected

graph with n vertices and n− 1 edges is a tree. Let G be a connected graph

with n + 1 vertices and n edges. We claim that there is at least one vertex

v with deg(v) = 1. If not, then
∑n+1

i=1 deg(vi) ≥ 2(n + 1), while by the

Handshaking lemma we have
∑n+1

i=1 deg(vi) = 2n, which is a contradiction.

Let then v ∈ V (G) be such that deg(v) = 1. Then G − v is a connected

graph with n vertices and n− 1 edges. By induction, G− v is a tree. Since

deg(v) = 1, it is clear that G is also a tree.

We obtain the following corollary.

Corollary 1.6.7: Number of Edges in a Forest

If G is a forest of order n containing k components then G has n − k

edges.

We now describes what happens in a tree when an edge is removed.
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Proposition 1.6.8: Removing Edges in a Tree

Let G be a tree. Then every edge in G is a bridge. Moreover, G− e is a

forest with two components for any edge e ∈ E(G).

Proof. Let G be a connected graph. Assume that no edge of G is a bridge.

Hence, if e = {u, v} is an edge in G then G − e is connected. Thus, there

exists a path in G− e from u to v. Adding the edge e at the end of this path

creates a cycle in G, and hence G is not a tree. Hence, if G is a tree then

every edge is a bridge.

To prove the second claim, let G1, G2, . . . , Gk be the components of G−e.

Since G is a tree, each component Gi contains no cycles and therefore Gi is

a tree. Hence, the total number of edges in G − e is n − k. On the other

hand, G has n − 1 edges and therefore G− e has n − 2 edges. This implies

k = 2.

1.6.1 Exercises

Exercise 1.37. Is there a forest with k = 2 components having n = 15

vertices and m = 12 edges? If no, explain why, and if yes provide one.

Repeat with k = 3.

Exercise 1.38. Suppose that G is a tree. Prove that if e is not an edge of

G then G+ e has a cycle.

Exercise 1.39. Let a be the average degree of a tree G with n vertices. Find

an expression for n in terms of a.

Exercise 1.40. Let G be a tree. Prove that if d(u, v) = diam(G) then u and

v are both leaves. Recall that diam(G) is the length of the longest path in

G.
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Exercise 1.41. Let G be a tree.

(a) Prove that G has at least ∆(G) leaves.

(Hint: Theorem 1.6.4 and Proposition 1.6.5 might be useful here.)

(b) Give an example of a tree that has exactly ∆(G) leaves.

Exercise 1.42. Let G be a tree of order n ≥ 2. Prove that the number of

leaves in G is

2 +
∑

deg(vi)≥3

(deg(vi)− 2).
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Chapter 2

The Adjacency Matrix

In this chapter, we introduce the adjacency matrix of a graph which can be

used to obtain structural properties of a graph. In particular, the eigenvalues

and eigenvectors of the adjacency matrix can be used to infer properties such

as bipartiteness, degree of connectivity, structure of the automorphism group,

and many others. This approach to graph theory is therefore called spectral

graph theory.

Before we begin, we introduce some notation. The identity matrix will be

denoted by I and the matrix whose entries are all ones will be denoted by J.

For example, the 3× 3 identity matrix and the 4× 4 all ones matrix are

I =



1 0 0
0 1 0
0 0 1


 , J =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

The transpose of a matrix M will be denoted by MT . Recall that a matrix

M is symmetric if MT = M. The (i, j) entry of a matrixM will be denoted

by M(i, j).



2.1. THE ADJACENCY MATRIX

2.1 The Adjacency Matrix

Let G be a graph with vertex set V = {v1, v2, . . . , vn}. The adjacency

matrix of G is the n× n matrix A = A(G) whose (i, j) entry is

A(i, j) =




1, if vi ∼ vj

0, otherwise.

Since vi ∼ vj if and only if vj ∼ vi, it follows that A(i, j) = A(j, i), and

therefore A is a symmetric matrix, that is, AT = A. By definition, the

indices of the non-zero entries of the ith row of A correspond to the neighbors

of vertex vi. Similarly, the non-zero indices of the ith column of A are the

neighbors of vertex vi. It follows that the degree of vi is the sum of the ith

row (or ith column) of A, that is,

deg(vi) =
n∑

j=1

A(i, j) =
n∑

j=1

A(j, i).

If we denote the column vector of all ones by e = (1, 1, . . . , 1), then

Ae =




deg(v1)
deg(v2)

...
deg(vn)


 .

We will call Ae the degree vector of G. We note that, after a possible

permutation of the vertices, Ae is equal to the degree sequence of G.

Example 2.1. Consider the graph G = (V, E) with V = {v1, v2, v3, v4, v5}
and edge set E = {v1v2, v1v3, v2v3, v3v4, v3v5}. The adjacency matrix of G is

A =




0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0



.

48



CHAPTER 2. THE ADJACENCY MATRIX

One of the first applications of the the adjacency matrix of a graph G is to

count walks in G. A walk from vertex u to vertex v (not necessarily distinct)

is a sequence of vertices (w0, w1, . . . , wk), not necessarily distinct, such that

wi−1 ∼ wi, and w0 = u and wk = v. In this case, the walk is of length k.

In the case that u = v, then the walk is said to be a closed walk. A walk

where all the vertices are distinct is a path and a cycle is a closed walk where

the only repeated vertices are the end-vertices of the walk. A closed walk of

length three in a graph G implies that G contains K3 = C3 as a subgraph.

For obvious reasons, K3 is called a triangle.

Theorem 2.1.1: Counting Walks

For any graph G with vertex set V = {v1, v2, . . . , vn}, the (i, j) entry of

Ak is the number of walks from vi to vj of length k.

Proof. The proof is by induction on k. For k = 1, A(i, j) = 1 implies that

vi ∼ vj and then clearly there is a walk of length k = 1 from vi to vj. If on

the other hand A(i, j) = 0 then vi and vj are not adjacent and then clearly

there is no walk of length k = 1 from vi to vj. Now assume that the claim is

true for some k ≥ 1 and consider the number of walks of length k + 1 from

vi to vj. Any walk of length k + 1 from vi to vj contains a walk of length k

from vi to a neighbor of vj. If vp ∈ N(vj) then by induction the number of

walks of length k from vi to vp is A
k(i, p). Hence, the total number of walks

of length k + 1 from vi to vj is

∑

vp∈N(vj)

Ak(i, p) =
n∑

ℓ=1

Ak(i, ℓ)A(ℓ, j) = Ak+1(i, j).

The trace of a matrix M is the sum of its diagonal entries and will be

denoted by tr(M):

tr(M) =

n∑

i=1

M(i, i).
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Since all the diagonal entries of an adjacency matrix A are all zero we have

tr(A) = 0.

Corollary 2.1.2

Let G be a graph with adjacency matrix A. Let m be the number of

edges in G, let t be the number of triangles in G, and let q be the number

of 4-cycles in G. Then

tr(A2) = 2m

tr(A3) = 6t

tr(A4) = 8q − 2m+ 2

n∑

i=1

deg(vi)
2

Proof. The entry A2(i, i) is the number of closed walks from vi of length k =

2. A closed walk of length k = 2 counts one edge. Hence, A2(i, i) = deg(vi)

and therefore

tr(A2) =
n∑

i=1

A2(i, i) =
n∑

i=1

deg(vi) = 2m.

To prove the second statement, we begin by noting that a closed walk can be

traversed in two different ways. Hence, for each vertex v in a triangle, there

are two walks of length k = 3 that start at v and traverse the triangle. And

since each triangle contains three distinct vertices, each triangle in a graph

accounts for six walks of length k = 3. Since
∑n

i=1A
3(i, i) counts all walks

in G of length three we have

tr(A3) =

n∑

i=1

A3(i, i) = 6t.

Now consider tr(A4) =
∑n

i=1A
4(i, i). We count the number of closed walks of

length k = 4 from vi. There are 3 types of such walks: (1) closed walks of the

form (vi, x, vi, y, vi) where x, y ∈ N(vi). The number of such walks is deg(vi)
2
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since we have deg(vi) choices for x and deg(vi) choices for y; (2) closed walks

of the form (vi, vj, x, vj, vi) where vj ∈ N(vi) and x ∈ N(vj)\{vi}, the number

of such walks is
∑

vj∼vi
(deg(vj)−1); (3) walks along 4-cycles from vi and there

are 2 such walks for each cycle vi is contained in, say qi. Hence,

A4(i, i) = 2qi + deg(vi)
2 +

∑

vj∼vi

(deg(vj)− 1)

Therefore,

tr(A4) =

n∑

i=1


2qi + deg(vi)

2 +
∑

vj∼vi

(deg(vj)− 1)




= 8q +
n∑

i=1


deg(vi)

2 − deg(vi) +
∑

vj∼vi

deg(vj)




= 8q − 2m+

n∑

i=1

deg(vi)
2 +

n∑

i=1

∑

vj∼vi

deg(vj)

= 8q − 2m+
n∑

i=1

deg(vi)
2 +

n∑

i=1

deg(vi)
2

= 8q − 2m+ 2
n∑

i=1

deg(vi)
2

Example 2.2. Show that the total number of walks of length k in a graph

G with adjacency matrix A is eTAke.

We also obtain the following as a corollary.

Corollary 2.1.3

A graph G with n ≥ 2 vertices is connected if and only if the off-diagonal

entries of the matrix

B = A+A2 + · · ·+An−1
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are all positive. In fact,

d(vi, vj) = min{k | Ak(i, j) > 0}.

Proof. We first note that for any k ≥ 1, all the entries of Ak are non-negative

and therefore if Ak(i, j) > 0 for some k ∈ {1, 2, . . . , n− 1} then B(i, j) > 0.

Assume first that G is connected. Then for distinct vertices vi 6= vj we

have that 1 ≤ d(vi, vj) ≤ n − 1 since there is path from vi to vj. Therefore,

if k = d(vi, vj) then Ak(vi, vj) > 0 and then also B(i, j) > 0. Hence, all

off-diagonal entries of B are positive.

Now assume that all off-diagonal entries of B are positive. Let vi and

vj be arbitrary distinct vertices. Since B(i, j) > 0 then there is a minimum

k ∈ {1, . . . , n−1} such that Ak(i, j) > 0. Therefore, there is a walk of length

k from vi to vj. We claim that every such walk is a path. Assume that

γ = (w0, w1, . . . , wk) is a walk (but not a path) from vi to vj of length k. If v

is a repeated vertex in γ, say wa = v and wb = v for a < b then we may delete

the vertices wa+1, wa+2, . . . , wb from γ and still obtain a walk from vi to vj.

We can continue this process of deleting vertices from γ to obtain a vi − vj

walk with no repeated vertices, that is, a vi − vj path. This path has length

less than k which contradicts the minimality of k. This proves the claim and

hence all vi − vj walks of length k are paths from vi to vj. This proves that

G is connected.

In the proof of the previous corollary we proved the following.

Lemma 2.1.4: Every uv-Walk Contains a uv-Path

Every walk from u to v contains a path from u to v.

Example 2.3. Let V = {v1, v2, . . . , vn}. How do you obtain the adjacency

matrix of G− vi given the adjacency matrix of G?

Recall that for a graph G we denote its complement by G. Below we give

a relationship between the adjacency matrices of G and G.
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Lemma 2.1.5

For any graph G it holds that

A(G) +A(G) + I = J.

Proof. Let A = A(G) and let Ā = A(G). For i 6= j, if A(i, j) = 0 then

Ā(i, j) = 1, and vice-versa. Therefore, A(i, j) + Ā(i, j) = 1 for all i 6= j. On

the other hand, A(i, i) = Ā(i, i) = 0 for all i. Thus A(G) +A(G) + I = J as

claimed.

2.1.1 Exercises

Exercise 2.1. Provide the adjacency matrix for each of the following graphs.

(a) The path graph P8 where the vertices are labelled in increasing order

from one end to the other along the path.

(b) The cycle graph C7 where the vertices are labelled around the cycle in

increasing order.

(c) The complete graph Kn with vertices labelled in any way. (Do this for small

n and then write the general form of A(K
n
).)

(d) The graph (P2 ∨K2)⊕ P2.

Exercise 2.2. Consider the complete bipartite graph Kn,m where X and

Y are the parts of the bipartition. Suppose that X = {v1, v2, . . . , vn} and

Y = {vn+1, vn+2, . . . , vn+m}. What is the form of the adjacency matrix of

Kn,m? Try this for small n,m, say n = 3 and m = 4, and then generalize.
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Exercise 2.3. Consider the following recursively defined sequence of graphs:

G1 = K1

G2 = G1 ∨K1

G3 = G2 ⊕K1

G4 = G3 ∨K1

G5 = G4 ⊕K1

and in general Gk = Gk−1 ⊕K1 if k ≥ 3 is odd and Gk = Gk−1 ∨K1 if k ≥ 2

is even.

(a) Consider the graph G4. Label the vertices of G4 using v1, v2, v3, v4 and so

that deg(vi) ≤ deg(vi+1). Using this labelling of the vertices, write out

the adjacency matrix of G4.

(b) Do the same as in part (a) with G6.

(c) Do the same as in part (a) with G8.

(d) For general even k, what is the general form of the adjacency matrix of

Gk?

Exercise 2.4. For each case, draw the graph with the given adjacency matrix.

(a) A =




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0




(b) A =




0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0




Exercise 2.5. Consider the cycle graphC6 with vertices V (C6) = {v1, v2, . . . , v6}
and so that vi ∼ vi+1 and v1 ∼ v6. Prove that if k is even then Ak(v1, v4) = 0.

(Hint: C6 is bipartite.)
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Exercise 2.6. Let A1 and A2 be the adjacency matrices of G1 and G2,

respectively.

(a) What is the adjacency matrix of G1 ⊕G2 in terms of A1 and A2?

(b) What is the adjacency matrix of G1 ∨G2 in terms of A1 and A2?

For each case, assume that if V (G1) = {v1, v2, . . . , vn} and V (G2) = {w1, w2,

. . . , wm} then the order of the vertices of G1 ⊕ G2 and G1 ∨ G2 is v1, v2,

. . . , vn, w1, w2, . . . , wm.

Exercise 2.7. Let Bk = A + A2 + · · · + Ak for k ≥ 1. Recall that the

diameter a graph, denoted by diam(G), is the maximum distance among all

vertices in G. Prove that if G is connected then the smallest integer m such

that all the off-diagonal entries of Bm are positive is the diameter of G.

Exercise 2.8. Let G be a r-regular graph with adjacency matrix A. Prove

that the total number of walks of length k ≥ 1 in G is nrk.

2.2 The coefficients and roots of a polynomial

As mentioned at the beginning of this chapter, the eigenvalues of the adja-

cency matrix of a graph contain valuable information about the structure of

the graph and we will soon see examples of this. Recall that the eigenvalues of

a matrix are the roots of its characteristic polynomial and the coefficients of a

polynomial depend in a polynomial way on its roots. For example, expanding

the polynomial g(t) = (t− λ1)(t− λ2) we obtain

g(t) = t2 − (λ1 + λ2)t+ λ1λ2

from which we see that the coefficient of t and the constant term of g(t) are

polynomial expressions in the roots λ1 and λ2. If we define the polynomials

s1(x, y) = x+ y and s2(x, y) = xy then

g(t) = t2 − s1(λ1, λ2)t+ s2(λ1, λ2).
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How about a cubic polynomial? Consider then g(t) = (t−λ1)(t−λ2)(t−λ3)

and expand:

g(t) = t3 − (λ1 + λ2 + λ3)t
2 + (λ1λ2 + λ1λ3 + λ2λ3)t− λ1λ2λ3.

Thus, if define the polynomials s1(x, y, z) = x+y+z, s2(x, y, z) = xy+xz+yz,

and s3(x, y, z) = xyz, then

g(t) = t3 − s1(λ1, λ2, λ3)t
2 + s2(λ1, λ2, λ3)t− s3(λ1, λ2, λ3)

and again we see that the coefficients of g(t) are polynomial expressions in

the roots λ1, λ2, λ3. To deal with the general nth order polynomial, let us

introduce some terminology and notation.

A multivariate polynomial is a polynomial in more than one variable.

Examples of polynomials in the variables x, y are

f(x, y) = x2 − xy + 7y2, f(x, y) = −8y5 − xy2 − 2y3 + xy32

and examples of polynomials in the variables x, y, z are

f(x, y, z) = x2 + xy2z − 44z3, f(x, y, z) = 11xyz.

We will only consider polynomials with rational coefficients and we will

use Q[x1, x2, . . . , xn] to denote the set of all polynomials in the variables

x1, x2, . . . , xn with rational coefficients. For example, the polynomial

f(x1, x2, x3, x4) = 4− 6x3
1x2x

2
3x

5
4 − 33x1x2x3x4 +

5
2
x1x

2x4.

is an element of Q[x1, x2, x3, x4]. We now introduce a set of n particularly

important polynomials.

Definition 2.2.1: Elementary Symmetric Polynomials

Let I = {1, 2, . . . , n} and for 1 ≤ k ≤ n let
(
I
k

)
denote the set of all

k-element subsets of I. The kth elementary symmetric polynomial
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in the variables x1, x2, . . . , xn is defined by

sk(x1, x2, . . . , xn) =
∑

{i1,i2,...,ik}∈(Ik)

xi1xi2 · · · xik.

In Definition 2.2.1, the notation
∑

{i1,i2,...,ik}∈(Ik)
means that the sum is over

all k-element subsets of I. The number of elements in
(
I
k

)
is
(
n
k

)
and thus

sk is the sum of
(
n
k

)
monomials of the form xi1xi2 . . . xik . We call sk the kth

elementary symmetric polynomial in n variables. A few examples of sk are

s1(x1, x2, . . . , xn) = x1 + x2 + x3 + · · ·+ xn

s2(x1, x2, . . . , xn) = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn

sn(x1, x2, . . . , xn) = x1x2 · · · xn

If it is necessary to emphasize that sk is the kth elementary symmetric poly-

nomial in n variables then we use the notation snk but note that the superscript

n is not an exponent but there only to indicate the number of variables.

Example 2.4. For n = 3, the elementary symmetric polynomials are

s1(x1, x2, x3) = x1 + x2 + x3

s2(x1, x2, x3) = x1x2 + x1x3 + x2x3

s3(x1, x2, x3) = x1x2x3.

(2.1)

and for n = 4 the elementary symmetric polynomials are

s1(x1, x2, x3, x4) = x1 + x2 + x3 + x4

s2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

s3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x2x3x4

s4(x1, x2, x3, x4) = x1x2x3x4.

(2.2)

For n = 7, there are
(
7
5

)
= 21 five-element subsets of {1, 2, . . . , 7}, and thus
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s5(x1, x2, . . . , x7) is the sum of 21 monomials:

s5(x1, x2, . . . , x7) = x1x2x3x4x5 + x1x2x3x4x6 + x1x2x3x4x7 + x1x2x3x5x6

+ x1x2x3x5x7 + x1x2x3x6x7 + x1x2x4x5x6 + x1x2x4x5x7

+ x1x2x4x6x7 + x1x2x5x6x7 + x1x3x4x5x6 + x1x3x4x5x7

+ x1x3x4x6x7 + x1x3x5x6x7 + x1x4x5x6x7 + x2x3x4x5x6

+ x2x3x4x5x7 + x2x3x4x6x7 + x2x3x5x6x7 + x2x4x5x6x7

+ x3x4x5x6x7.

We now describe a natural way in which the elementary symmetric poly-

nomials arise. Introduce a new variable t and consider the polynomial

g(t) = (t− λ1)(t− λ2) · · · (t− λn).

Hence, λ1, λ2, . . . , λn are the roots of the polynomial g(t) since g(λi) = 0 for

all i = 1, 2, . . . , n. Expanding the right hand side, we now show by induction

that

g(t) = tn−s1t
n−1+s2t

n−2+ · · ·+(−1)kskt
n−k+ · · ·+(−1)n−1sn−1t+(−1)nsn.

(2.3)

where the sk appearing in the coefficients of g(t) is the kth elementary sym-

metric polynomial evaluated at (λ1, . . . , λn). We first begin with the following

lemma.

Lemma 2.2.2: Recurrence Relation for sk

Let snk denote the kth elementary symmetric polynomial in the n vari-

ables x1, x2, . . . , xn and let sn+1
k denote the kth elementary symmetric

polynomial in the n+ 1 variables x1, x2, . . . , xn+1. Then

sn+1
k = snk + xn+1s

n
k−1

Proof. By definition,

sn+1
k =

∑

{i1,i2...,ik}∈In+1(k)

xi1xi2 · · ·xik
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A k-element subset of In+1 = {1, 2, . . . , n, n+ 1} that does not contain n+ 1

is an element of In(k) and a k-element subset of In+1 that does contain n+1

is the union of {n+ 1} and a (k − 1)-element subset of In. Therefore,

sn+1
k =

∑

{i1,i2...,ik}∈In(k)
xi1xi2 · · ·xik + xn+1




∑

{i1,i2...,ik−1}∈In(k−1)

xi1xi2 · · ·xik−1




= snk + xn+1s
n
k−1

as claimed.

Theorem 2.2.3: Vieta’s Formula

If g(t) = (t− λ1)(t− λ2) · · · (t− λn) then

g(t) = tn−s1t
n−1+s2t

n−2+· · ·+(−1)kskt
n−k+· · ·+(−1)n−1sn−1t+(−1)nsn.

where sk = sk(λ1, λ2, . . . , λn) for k = 1, 2, . . . , n.

Proof. The proof is by induction on the order n of the polynomial g(t). The

case n = 1 is trivial. Assume that the claim is true for all polynomials of order

n and let g(t) = (t−λ1)(t−λ2) · · · (t−λn)(t−λn+1). Then g(t) = h(t)(t−λn+1)

where h(t) = (t− λ1)(t− λ2) · · · (t− λn). Applying the induction hypothesis

to h(t), we have that

g(t) =
(
tn − sn1 t

n−1 + sn2t
n−2 + · · ·+ (−1)n−1snn−1t+ (−1)nsnn

)
(t− λn+1)

and then expanding and collecting like terms we obtain

g(t) = tn+1 − (λn+1 + sn1)t
n + (sn2 + λn+1s

n
1)t

n−1

+ · · ·+ (−1)n(snn + λn+1s
n
n−1)t+ (−1)n+1λn+1s

n
n

We can now apply Lemma 2.2.2 to the coefficients of g(t) and obtain

g(t) = tn+1 − sn+1
1 tn + sn+1

2 tn−1 + · · ·+ (−1)nsn+1
n t+ (−1)n+1sn+1

n+1

as claimed.
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Example 2.5. Consider the polynomial g(t) = t(t− 3)(t+ 1)(t− 2). Hence,

the roots of g are λ1 = 0, λ2 = 3, and λ3 = −1, and λ4 = 2. Expanding g we

obtain

g(t) = t4 − 4t3 + t2 + 6t.

On the other hand, using the expressions for s1, s2, s3, s4 from (2.2), we have:

s1(0, 3,−1, 2) = 0 + 3− 1 + 2 = 4

s2(0, 3,−1, 2) = (3)(−1) + (3)(2) + (−1)(2) = 1

s3(0, 3,−1, 2) = (3)(−1)(2) = −6

s4(0, 3,−1, 2) = (0)(3)(−1)(2) = 0.

Let us record the following for future reference.

Proposition 2.2.4

Consider the polynomial

g(t) = tn + c1t
n−1 + c2t

n−2 + · · ·+ cn−1t+ cn.

Then −c1 is the sum of the roots of g and (−1)ncn is the product of the

roots of g.

There is another important set of multivariate polynomials that we will

encounter in the next section called the power sums polynomials and that

are closely related with the elementary symmetric polynomials. The power

sums polynomials in the variables x1, x2, . . . , xn are the n polynomials p1, p2,

. . ., pn given by

pk(x1, x2, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n.

The relationship between the elementary symmetric and the power sums
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polynomials is the following. First of all, it is clear that s1 = p1. Now,

p21 − p2 = (x1 + x2 + · · ·+ xn)
2 − (x2

1 + x2
2 + · · ·+ x2

n)

=
n∑

i=1

x2
i +

∑

1≤i<j≤n

2xixj − (x2
1 + x2

2 + · · ·+ x2
n)

= 2
∑

i<j

xixj

= 2s2

and therefore

s2 =
1

2
(p21 − p2).

A similar computation yields that

s3 =
1

6
(p31 − 3p1p2 + 2p3).

The general relationship between the symmetric elementary and power sums

polynomials is known as Newton’s identities:

pk−s1pk−1+s2pk−2+ · · ·+(−1)k−1sk−1p1+(−1)kksk = 0, 1 ≤ k ≤ n (2.4)

From Newton’s identities we obtain that

sk =
1
k(−1)k−1(pk − s1pk−1 + · · ·+ (−1)k−1sk−1p1).

Now since s1 = p1, it is straightforward to show by induction that each

elementary symmetric polynomial can be written only in terms of the power

sums polynomial. To summarize, we obtain the following.

Proposition 2.2.5

Consider the polynomial g(t) = (t − λ1)(t − λ2) · · · (t − λn) written in

expanded form

g(t) = tn + c1t
n−1 + c2t

n−2 + · · · cn−1t+ cn.

The coefficients c1, c2, . . . , cn can be expressed in terms of the power sums
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polynomials p1, p2, . . . , pn evaluated at the roots λ1, λ2, . . . , λn, that is,

there are polynomial functions f1, f2, . . . , fn such that

ci = fi(p1, p2, . . . , pn)

where the p1, p2, . . . , pn are evaluated at λ1, λ2, . . . , λn.

2.2.1 Exercises

Exercise 2.9. Expand the polynomial g(x) = (t−λ1)(t−λ2)(t−λ3)(t−λ4)

and use the expressions for s1, s2, s3, s4 in (2.2) to verify equation (2.3) for

n = 4.

Exercise 2.10. Use Newton’s identities to express s4 in terms of p1, p2, p3, p4.

Exercise 2.11. The polynomial g(t) = t3+ c1t
2+2t+8 has λ1 = 2 as a root.

Find the other roots of g and then find c1.
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2.3 The characteristic polynomial and spec-

trum of a graph

In this section, we introduce the characteristic polynomial and spectrum of

a graph and prove some of their basic properties. Before we begin, we recall

some basic facts from linear algebra. Recall that λ is an eigenvalue of the

matrix M if there exists a vector x such that

Mx = λx.

In this case, x is called an eigenvector of M corresponding to the eigenvalue

λ. To find the eigenvalues of M, we find the zeros of the characteristic

polynomial of M:

p(t) = det(tI−M).

IfM is an n×nmatrix, then the characteristic polynomial p(t) is an nth order

polynomial and p(λ) = 0 if and only if λ is an eigenvalue of M. From the

Fundamental Theorem of Algebra, p(t) has n eigenvalues, possibly repeated

and complex. However, if M is a symmetric matrix, then an important result

in linear algebra is that the eigenvalues of M are all real numbers and we may

therefore order them from say smallest to largest:

λ1 ≤ λ2 ≤ · · · ≤ λn.

Also, if M is symmetric and x and y are eigenvectors of M corresponding to

distinct eigenvalues then x and y are orthogonal, that is,

〈x,y〉 =
n∑

i=1

xiyi = 0.

Moreover, if M is symmetric, there exists an orthonormal basis β = {x1,x2,

. . . ,xn} of Rn consisting of eigenvectors of M. Recall that β = {x1,x2,

. . . ,xn} is an orthonormal basis of Rn if ‖xi‖ = 1 and 〈xi,xj〉 = 0 if i 6= j,

that is, the vectors in β are are unit vectors and are mutually orthogonal.
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Definition 2.3.1: Spectrum of a Graph

The characteristic polynomial of a graph G with adjacency matrix A

is

p(t) = det(tI−A).

The spectrum of G, denoted by spec(G), is the list of the eigenvalues of

A in increasing order λ1 ≤ λ2 ≤ · · · ≤ λn:

spec(G) = (λ1, λ2, . . . , λn).

Example 2.6. Show by direct computation that the characteristic polyno-

mial of P3 is p(t) = t3 − 2t and find the eigenvalues of P3.

Example 2.7. The adjacency matrix of the empty graph En is the zero

matrix and therefore the characteristic polynomial of En is p(x) = xn. Hence,

En has spectrum spec(En) = (0, 0, . . . , 0).

Example 2.8. The adjacency matrix of K4 is

A =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




Consider the vectors x1 = (1,−1, 0, 0), x2 = (1, 0,−1, 0), and x3 = (1, 0, 0,−1).

It is not hard to see that x1,x2,x3 are linearly independent. A direct com-

putation yields

Ax1 = (−1, 1, 0, 0) = −x1

and therefore λ1 = −1 is an eigenvalue of A. Similarly, a direct computation

yields that Ax2 = −x2 and Ax3 = −x3. Hence, λ2 = λ3 = −1. Finally, we

have that Ae = (3, 3, 3, 3) = 3e, and therefore λ4 = 3 is an eigenvalue of A.

Therefore, the spectrum of Kn is

spec(K4) = (−1,−1,−1, 3)
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and therefore the characteristic polynomial of K4 is p(t) = (t− 3)(t+1)3. In

general, one can show that

spec(Kn) = (−1,−1, . . . ,−1, n− 1)

and therefore the characteristic polynomial of Kn is p(t) = (t− (n− 1))(t+

1)n−1. �

The following result, and the previous example, shows that ∆(G) is a

sharp bound for the magnitude of the eigenvalues of G.

Proposition 2.3.2

For any eigenvalue λ of G it holds that |λ| ≤ ∆(G).

Proof. Suppose that λ is an eigenvalue of G with eigenvector x = (x1, x2,

. . . , xn). Suppose that the jth entry of x has maximum absolute value, that

is, |xi| ≤ |xj| for all i = 1, 2, . . . , n. Since Ax = λx it follows that

λxj =

n∑

i=1

A(j, i)xi

and therefore using the triangle inequality we obtain

|λ||xj| =
∣∣∣∣∣

n∑

i=1

A(j, i)xi

∣∣∣∣∣ ≤
n∑

i=1

|A(j, i)||xi|

= |xj|
n∑

i=1

|A(j, i)|

= |xj| deg(vj)

≤ |xj|∆(G).

Therefore |λ||xj| ≤ |xj|∆(G), and the claim follows by dividing both sides of

the inequality by |xj| 6= 0.
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Proposition 2.3.3

Let spec(G) = (λ1, λ2, . . . , λn) and let davg = 2|E(G)|
n denote the average

degree of G. Then

davg ≤ λn ≤ ∆(G).

Proof. Let β = {x1,x2, . . . ,xn} be an orthonormal basis of A = A(G)

with corresponding eigenvalues λ1, λ2, . . . , λn. Then there exists numbers

α1, α2, . . . , αn ∈ R such that e =
∑n

i=1 αixi. Let

d = Ae = (deg(v1), deg(v2), . . . , deg(vn))

denote the degree vector of G. Now

eTAe = eTd =
n∑

i=1

deg(vi)

while on the other hand, since β is an orthonormal basis, we have

eTAe =

n∑

i=1

α2
iλi.

Therefore,

n∑

i=1

deg(vi) =
n∑

i=1

α2
iλi ≤ λn

n∑

i=1

α2
i = λn · n

where we have used the fact that n = eTe =
∑n

i=1 α
2
i and λi ≤ λn for all

i = 1, 2, . . . , n. Therefore,

1

n

n∑

i=1

deg(vi) ≤ λn

and this proves the first inequality. The second inequality follows from Propo-

sition 2.3.2.
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Proposition 2.3.4

A graph G is k-regular if and only if e = (1, 1, . . . , 1) is an eigenvector of

G with eigenvalue λ = k.

Proof. Recall that

Ae = (deg(v1), deg(v2), . . . , deg(vn)).

If G is k-regular then deg(vi) = k for all vi and therefore

Ae = (k, k, . . . , k) = ke.

Thus, k is an eigenvalue of A with corresponding eigenvector e. On the other

hand, if e is an eigenvector of G with eigenvalue k then

Ae = ke = (k, k, . . . , k)

and thus deg(vi) = k for all vi and then G is k-regular.

Proposition 2.3.5

Let G be a k-regular graph with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn = k.

Then the complement graph G has eigenvalues n− 1− k,−1− λ1,−1−
λ2, . . . ,−1− λn−1.

Proof. Let β = {x1,x2, . . . ,xn} be an orthonormal basis of Rn consisting of

eigenvectors of A with corresponding eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn = k.

By Proposition 2.3.4, k is an eigenvalue of G with corresponding eigenvector

e, and moreover by Exercise 2.16, λn = k is the maximum eigenvalue of G.

We may therefore take xn = 1√
n
e. Let A = A(G) and let A = A(G). From

Lemma 2.1.5 we have that

A = J− I−A.
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Now since xi is orthogonal to xn for 1 ≤ i < n we have Jxi = 0 for 1 ≤ i < n.

Therefore, for 1 ≤ i < n we have

Axi = Jxi − Ixi −Axi = −xi − λixi = (−1− λi)xi.

Since G is a regular graph with degree (n − 1 − k), by Proposition 2.3.4

(n− 1− k) is an eigenvalue of G with corresponding eigenvector xn, and this

ends the proof.

We now consider bipartite graphs.

Theorem 2.3.6

Suppose that G is a bipartite graph. Then if λ is an eigenvalue of G then

−λ is an eigenvalue of G. Consequently, if ±λ1,±λ2, . . . ,±λq are the

non-zero eigenvalues of G then the characteristic polynomial of G takes

the form

p(t) = tk(t2 − λ2
1)(t

2 − λ2
2) · · · (t2 − λ2

q).

where k ≥ 0. In particular, if n = |V (G)| is odd then k ≥ 1, that is,

λ = 0 is an eigenvalue of G with multiplicity k.

Proof. Since G is bipartite, there is a partition {X, Y } of the vertex set

V (G) such that each edge of G has one vertex in X and the other in Y .

Let r = |X| and s = |Y |. By a relabelling of the vertices of G, we may

assume that X = {v1, v2, . . . , vr} and Y = {vr+1, vr+2, . . . , vr+s}. Therefore,

the adjacency matrix of G takes the form

A =

[
0 B

BT 0

]
.

Suppose that z = [ xy ] is an eigenvector of A with eigenvalue λ. Thus,

Az =

[
By

BTx

]
= λ

[
x

y

]
.
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Then

A

[
x

−y

]
=

[
−By

BTx

]
= −λ

[
x

−y

]
.

Therefore, [ x−y ] is an eigenvector of A with eigenvalue −λ. Hence, (t2 − λ2)

is a factor in p(t). If q denotes the number of non-zero eigenvalue pairs ±λi

then k = n − 2q is the multiplicity of the eigenvalue λ = 0, and if n is odd

then k ≥ 1.

Example 2.9. The eigenvalues of the cycle Cn are

2 cos
(
2πj
n

)

for j = 0, 1, . . . , n− 1.

Example 2.10. Under what condition will a k-regular graph G have λ = ±k

as eigenvalues?

Example 2.11. Consider the complete bipartite graph Kr,s where r, s,≥
1. Show that λ = 0 is an eigenvalue of Kr,s of multiplicity r + s − 2. In

Exercise 2.18 you will show that ±√
rs are the other two eigenvalues of Kr,s.

Here is a generalization of the previous example.

Example 2.12. Suppose that G1 is a k1-regular graph with n1 vertices and

G2 is a k2-regular graph with n2 vertices. Let spec(G1) = (λ1, λ2, . . . , λn1
),

where λn1
= k1, and let spec(G2) = (µ1, µ2, . . . , µn2

), where µn2
= k2. Let

G = G1 ∨G2.

(a) Let V (G1) = {v1, v2, . . . , vn1
} and V (G2) = {w1, w2, . . . , wn2

}. Write

down the adjacency matrix of A = A(G) if we order the vertices of G as

(v1, v2, . . . , vn1
, w1, w2, . . . , wn2

).

(b) If xi 6= e is an eigenvector of G1 with eigenvalue λi, with i < n1, then

show that [ xi

0 ] is an eigenvector of G with eigenvalue λi.

(c) If yj 6= e is an eigenvector of G2 with eigenvalue µj , with j < n2, then

show that
[

0
yj

]
is an eigenvector of G with eigenvalue µj.
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(d) Parts (b) and (c) determine n1+n2−2 eigenvalues of G. Here we find the

remaining two eigenvalues. Consider the vector z = [ αee ] where α 6= 0 and

is to be determined. Apply the eigenvector-eigenvalue conditionAz = λz

and show that the remaining two eigenvalues of G are

λ =
(k1 + k2)±

√
(k2 − k1)2 + 4n1n2

2

and that

α =
−(k2 − k1)±

√
(k2 − k1)2 + 4n1n2

2n1

(e) Conclude that if p1(t) and p2(t) are the characteristic polynomials of G1

and G2, respectively, then the characteristic polynomial of G is

p(t) =
p1(t)p2(t)

(t− k1)(t− k2)
((t− k1)(t− k2)− n1n2)

Example 2.13. Let d(G) = (d1, d2, . . . , dn) be the degree sequence of G and

let λn be the largest eigenvalue of G. Prove that

√
d21 + d22 + · · ·+ d2n

n
≤ λn

Hint: Use Rayleigh quotients and Perron-Frobenius. [3]

2.3.1 Exercises

Exercise 2.12. Let M be an n× n matrix and let p(t) be the characteristic

polynomial of M. Find p(0) in two ways:

(a) Using the expansion

p(t) = tn − s1t
n−1 + s2t

n−2 + · · ·+ (−1)n−1sn−1t+ (−1)nsn

where as usual s1, s2, . . . , sn are the elementary symmetric polynomials

evaluated at the roots λ1, λ2, . . . , λn of p(t).

(b) Using the definition of p(t), namely, p(t) = det(tI −M). Hint: Recall

that det(αM) = αn det(M) for any α ∈ R.
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Conclude that det(M) = λ1λ2 · · · λn, that is, that det(M) is the product of

the eigenvalues of M.

Exercise 2.13. By direct hand computation, find the characteristic polyno-

mial and spectrum of the graph G = C3 ∨K1.

Exercise 2.14. Let G1 = C4 ⊕K1 and let G2 = E4 ∨K1.

(a) Draw the graphs G1 and G2. Explain why G1 and G2 are not isomorphic.

(b) Find the characteristic polynomials and eigenvalues of G1 and G2.

(c) What can you conclude based on parts (a) and (b)?

Exercise 2.15. Prove that if G has at least one edge then G has at least

one negative and one positive eigenvalue. (Hint: Use Proposition 2.3.3 and

the fact that 0 = tr(A) = λ1 + λ2 + · · · + λn where λ1, λ2, . . . , λn are the

eigenvalues of A.)

Exercise 2.16. Let G be a k-regular graph. Prove that |λi| ≤ k for all

eigenvalues λ1, λ2, . . . , λn of G.

Exercise 2.17. Recall that u, v are twin vertices if N(u)\ {v} = N(v)\ {u},
that is, u and v have the same neighbors (other than themselves). Let G be a

graph with V (G) = {v1, v2, . . . , vn}. Prove that if v1 and v2 are twin vertices

then x = e1 − e2 is an eigenvector of G with eigenvalue

(a) λ = 0 if v1 and v2 are not adjacent, and

(b) λ = −1 if v1 and v2 are adjacent.

Exercise 2.18. Consider the complete bipartite graph Kr,s where r, s ≥ 1.

(a) Show that the vector

z = (
√
s,
√
s, . . . ,

√
s︸ ︷︷ ︸

r times

,
√
r,
√
r, . . . ,

√
r︸ ︷︷ ︸

s times

)

is an eigenvector of Kr,s with eigenvalue
√
rs.
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(b) Find an eigenvector for −√
rs.

Exercise 2.19. Let G1 and G2 be graphs with characteristic polynomials

p1(t) and p2(t), respectively. What is the characteristic polynomial ofG1⊕G2?

Show all your work. Hint: See Exercise 2.6 and use the fact that

det

[
X 0

0 Y

]
= det(X) det(Y).

Exercise 2.20. Prove that if λ = p
q is a rational eigenvalue of a graph G

then in fact λ is an integer, that is, q = 1. (Hint: Rational root theorem)

72



CHAPTER 2. THE ADJACENCY MATRIX

2.4 Cospectral graphs

In this section, we consider the question of whether it is possible to uniquely

determine a graph from its spectrum. To that end, we say that two graphs

G1 and G2 are cospectral if they have the same (adjacency) eigenvalues.

Our first task is to show that isomorphic graphs are cospectral. It turns out,

however, that there are non-isomorphic graphs with the same eigenvalues and

we will supply some examples. We will then use our results from Section 2.2

to identify structural properties shared by cospectral graphs.

To show that two isomorphic graphs are cospectral, we use the fact that

isomorphic graphs have similar adjacency matrices. Recall that two matrices

A1 and A2 are similar if there exists an invertible matrix P such that

A2 = P−1A1P.

Similar matrices share many properties. For example:

Proposition 2.4.1

If A1 and A2 are similar then the eigenvalues of A1 and A2 are equal.

Proof. By definition, there exists an invertible matrix P such that A2 =

P−1A1P. Let p1(t) = det(tI−A1) and let p2(t) = det(tI−A2), that is, pi(t)

is the characteristic polynomial of Ai, for i = 1, 2. Then

p2(t) = det(tI−A2)

= det(tP−1P−P−1A1P)

= det(P−1(tI−A1)P)

= det(P−1) det(tI−A1) det(P)

= det(tI−A1)

= p1(t)

where we used the fact that det(P−1) det(P) = 1. Hence, p1(t) = p2(t), and

therefore A1 and A2 have the same eigenvalues.
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Hence, if we can show that the adjacency matrices of isomorphic graphsG1

and G2 are similar then G1 and G2 are cospectral. To do this, we study how

permutations σ ∈ Sn can be represented by matrices. For the permutation

σ ∈ Sn define the n × n matrix P as follows. Let e1, . . . , en denote the

standard basis vectors in Rn thought of as column vectors. Define the matrix

P as

P =




eTσ(1)
eTσ(2)
eTσ(3)
...

eTσ(n)



.

For example, for the permutation σ =

(
1 2 3 4 5 6
3 6 5 2 1 4

)
the matrix P is

P =




eTσ(1)
eTσ(2)
eTσ(3)
eTσ(4)
eTσ(5)
eTσ(6)




=




eT3
eT6
eT5
eT2
eT1
eT4



=




0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0



. (2.5)

Notice that P can also be obtained by starting with the identity matrix I

and sending column i of I to column σ(i). Therefore, written out in column

form we have

P =
[
eσ−1(1) eσ−1(2) eσ−1(3) · · · eσ−1(n)

]
.

The matrix P is called the permutation matrix associated to σ. The

columns of any permutation matrix P form an orthonormal basis of Rn since

the columns of P are just the standard basis vectors of Rn (of course in a

rearranged order). Hence, permutations matrices are orthogonal matrices,

in other words PTP = PPT = I. Hence, P−1 = PT , and this implies that

det(P) = ±1 for any permutation matrix P.
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We now present the linear-algebraic version of the notion of isomorphic

graphs. In the following proof, we use the fact that for any n× n matrix M,

the (i, j) entry of M can be determined by the computation

Mi,j = eTi Mej.

Theorem 2.4.2

Let G be a graph with adjacency matrix A. If P is a permutation matrix

then PTAP is the adjacency matrix of some graph that is isomorphic to

G. Conversely, for any graph H that is isomorphic to G there exists a

permutation matrix P such that PTAP is the adjacency matrix of H.

Proof. Let σ : V → V be a permutation with permutation matrix P. Recall

that we can write

P =
[
eσ−1(1) eσ−1(2) eσ−1(3) · · · eσ−1(n)

]

and then Pej = eσ−1(j) for any standard basis vector ej . Put B = PTAP

and note that B is symmetric because BT = (PTAP)T = PTAT (PT )T =

PTAP = B. Let i, j ∈ {1, 2, . . . , n} and let k = σ(i) and let ℓ = σ(j).

Consider the entry Bk,ℓ:

Bk,ℓ = eTkBeℓ

= eTkP
TAPeℓ

= (Pek)
TA(Peℓ)

= eσ−1(k)Aeσ−1(ℓ)

= eiAej

= Ai,j.

We have proved that Bσ(i),σ(j) = Ai,j for all i, j ∈ {1, 2, . . . , n}. This proves

that all the entries of B are either 0 or 1 and the diagonal entries of B are

zero since they are zero for A. Hence, B is the adjacency matrix of a graph,
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say H. Now, since Bσ(i),σ(j) = Ai,j then {i, j} is an edge in G if and only if

{σ(i), σ(j)} is an edge in H. Hence, G ∼= H with isomorphism σ.

Conversely, let H be a graph isomorphic to G. Then there exists a permu-

tation σ : V → V such that {i, j} is an edge in G if and only if {σ(i), σ(j)}
is an edge in H. Let P be the permutation matrix of σ. Our computation

above shows that (PTAP)σ(i),σ(j) = Ai,j. Hence, the 0− 1 matrix PTAP has

a non-zero entry at (σ(i), σ(j)) if and only if A has a non-zero entry at (i, j).

Hence, PTAP is the adjacency matrix of H and the proof is complete.

Here is a rephrasing of the previous theorem.

Corollary 2.4.3

Let A1 and A2 be the adjacency matrices of two graphs G1 and G2 on the

vertex set V = {1, 2, . . . , n}, respectively. Then G1 and G2 are isomorphic

if and only if there exists a permutation matrixP such thatA2 = PTA1P.

Using Theorem 2.4.2 and the definition of an automorphism, the following

is immediate.

Proposition 2.4.4

Let G = (V, E) be a graph and let σ : V → V be a permutation with

matrix representation P. Then σ is an automorphism of G if and only if

PTAP = A, or equivalently, AP = PA.

Combining Corollary 2.4.3 and Proposition 2.4.1 we obtain the following.

Corollary 2.4.5: Spectrum of Isomorphic Graphs

If G1 and G2 are isomorphic then spec(G1) = spec(G2).

It is now natural to ask whether non-isomorphic graphs can have the same

eigenvalues. The answer turns out to be yes, and in fact it is not too difficult
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to find non-isomorphic graphs that have the same eigenvalues. For example,

one can verify that the graphs G1 = C4 ⊕ K1 and G2 = E4 ∨ K1 have the

same eigenvalues but are not isomorphic since G1 is disconnected and G2

is connected. These two graphs are the smallest non-isomorphic cospectral

graphs. The smallest connected non-isomorphic cospectral graphs are shown

in Figure 2.1.

Figure 2.1: Smallest connected non-isomorphic cospectral graphs

We now investigate what graph properties can be deduced from the eigen-

values of a graph, and in particular, we will focus on the coefficients of the

characteristic polynomial of a graph and some of the properties they reveal

about the graph. Recall from Section 2.2 that for any polynomial p(t) with

roots λ1, λ2, . . . , λn it holds that

p(t) = tn − s1t
n−1 + s2t

n−2 + · · ·+ (−1)n−1sn−1t+ (−1)nsn (2.6)

where s1, . . . , sn are the elementary symmetric polynomials evaluated λ1, λ2,

. . . , λn. From Section 2.2, the elementary symmetric polynomials s1, s2, . . . , sn

can be written in terms of the power sums p1, p2, . . . , pk, and it turns out that

if p(t) is the characteristic polynomial of a matrixM then there is a very sim-

ple relationship between the power sums p1, p2, . . . , pn and the entries of M.

Consider first p1 = s1 via a 3× 3 matrix:

p(t) = det(tI−M) = det



t−m11 m12 m13

m21 t−m22 m23

m31 m32 t−m33




= (t−m11)(t−m22)(t−m33) + g(t)
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where g is a polynomial whose degree is at most one. Expanding we obtain

p(t) = t3 − (m11 +m22 +m33)t
2 + h(t)

where h(t) is a polynomial whose degree is at most one. This shows that

p1 = m11 +m22 +m33 = tr(M).

In the general n×n case, a similar argument shows that the coefficient of tn−1

in p(t) = det(tI−M) is −(m11 +m22 + · · ·+mnn) = − tr(M). On the other

hand, if the roots of p(t) are λ1, λ2, . . . , λn then p1 = s1 = λ1 + λ2 + · · ·+ λn.

To summarize:

Proposition 2.4.6

Suppose that the n× n matrix M has eigenvalues λ1, λ2, . . . , λn. Then

tr(M) = λ1 + λ2 + · · ·+ λn.

In other words, the trace of M is the sum of the eigenvalues of A.

Alternatively, we have shown that

p1 = tr(M).

We now want to relate the power sums p2, . . . , pn with the entries of M but

first we need the following.

Lemma 2.4.7

If λ is an eigenvalue of M then λk is an eigenvalue of Mk.

Proof. If Mx = λx then

M2x = M(Mx) = M(λx) = λMx = λ(λx) = λ2x.

By induction,

Mk+1x = Mk(Mx) = Mk(λx) = λMkx = λ · λkx = λk+1x.
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Therefore, if M has eigenvalues λ1, λ2, . . . , λn then Mk has eigenvalues λk
1, λ

k
2,

. . . , λk
n.

As a consequence we obtain the following.

Proposition 2.4.8

If λ1, λ2, . . . , λn are the eigenvalues of M then

tr(Mk) = pk(λ1, λ2, . . . , λn) = λk
1 + λk

2 + · · · + λk
n.

Proof. By Lemma 2.4.7, the eigenvalues of Mk are λk
1, λ

k
2, . . . , λ

k
n. By Propo-

sition 2.4.6 applied to Mk, it holds that

tr(Mk) = λk
1 + λk

2 + · · ·+ λk
n = pk(λ1, λ2, . . . , λk).

Proposition 2.4.8 is important because it relates the power sums p1, p2, . . . , pk

evaluated at the eigenvalues with the entries of M via the numbers tr(Ak).

From this we can for example prove the following.

Theorem 2.4.9

LetM andN be n×nmatrices. ThenM andN have the same eigenvalues

if and only if tr(Mk) = tr(Nk) for 1 ≤ k ≤ n.

Proof. Suppose thatM andN have the same eigenvalues λ1, λ2, . . . , λn. Then

by Proposition 2.4.8 we have

tr(Mk) = λk
1 + λk

2 + · · ·+ λk
n

and

tr(Nk) = λk
1 + λk

2 + · · ·+ λk
n

and therefore tr(Mk) = tr(Nk) for all k ≥ 1. Conversely, if tr(Mk) = tr(Nk)

for 1 ≤ k ≤ n then by Proposition 2.2.5 the coefficients of the characteristic
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polynomials of M and N are equal since the coefficients of the characteristic

polymials can be written in terms of pk = tr(Mk) = tr(Nk). Hence, M and N

have the same characteristic polynomial and therefore the same eigenvalues.

For our purposes, Proposition 2.4.8 is the main tool to relate the spec-

trum of a graph with its structural properties. For example, we obtain the

following.

Theorem 2.4.10: Walks and Cospectrality

Let G1 and G2 be graphs each with n vertices. Then G1 and G2 are

cospectral if and only if for each k ∈ {1, 2, . . . n}, the total number of

closed walks in G1 of length k equals the total number of walks in G2 of

length k.

Proof. By Theorem 2.4.9, if G1 and G2 have the same eigenvalues then

tr(Ak
1) = tr(Ak

2) for all 1 ≤ k ≤ n. By Theorem 2.1.1, the number tr(Ak
1) is

the total number of closed walks of length k and the claim follows.

Example 2.14. Let spec(G) = (λ1, λ2, . . . , λn). Suppose that λ
2
1+λ2

2+ · · ·+
λ2
n = 56. Find the number of edges of G.

In the next theorem, we relate the first few coefficients of the characteristic

polynomial of a graph with some of the structural properties of a graph. The

main tool being used here is Proposition 2.4.8.

Theorem 2.4.11

Let G be a graph with characteristic polynomial

p(t) = tn + c1t
n−1 + c2t

n−2 + · · ·+ cn−1t+ cn.
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If G has m edges, t triangles, and q cycles of length four then

c1 = 0

c2 = −m

c3 = −2t

c4 = −2q +
1

2
m(m+ 1)− 1

2

n∑

i=1

deg(vi)
2.

Proof. Since A has zeros on the diagonal then

c1 = −s1 = − tr(A) = 0.

From the Newton identities (2.4), and using p1 = s1 = 0, we have

c2 = s2 = −1

2
(p2 − p21) = −1

2
p2.

Now p2 = tr(A2) and since tr(A2) = 2m (Corollary 2.1.2) we conclude that

p2 = tr(A2) = 2m.

Therefore,

c2 = −1

2
p2 = −m.

Now consider c3 = −s3. We have from the Newton identities that

s3 =
1

6
(p31 − 3p1p2 + 2p3) =

1

3
p3 =

1

3
tr(A3).

From Corollary 2.1.2, we have tr(A3) = 6t and therefore c3 = −s3 = −2t as

claimed. Finally, from Newton’s identities we have

c4 = s4 = −1

4
(p4 − s1p3 + s2p2 − s3p1) = −1

4
(p4 + s2p2).

Now from Corollary 2.1.2, we have p4 = 8q− 2m+2
∑n

i=1 deg(vi)
2, p2 = 2m,
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and therefore

c4 = −1

4
(p4 + s2p2)

= −1

4

(
8q − 2m+ 2

n∑

i=1

deg(vi)
2 − 2m2

)

= −2q +
1

2
m(m+ 1)− 1

2

n∑

i=1

deg(vi)
2

as claimed.

From Theorem 2.4.11 we now obtain a few graph characteristics that are

shared by cospectral graphs. For example, if G1 and G2 are cospectral then

they have the same characteristic polynomial. Theorem 2.4.11 then implies

that G1 and G2 have the same number of edges and the same number of

triangles.

Corollary 2.4.12

If G1 and G2 are cospectral then they have the same number of edges and

the same number of triangles.

A natural question to ask is if the degree sequence is a property that must

be shared by cospectral graphs. The answer in general is no. For example,

in Figure 2.2 we display two non-isomoprhic cospectral trees with distinct

degree sequences. For trees, however, the following example shows that the

sum of the squares of the degrees is equal for cospectral trees.

Example 2.15. Suppose that G1 and G2 are graphs with at least n ≥ 5

vertices and suppose that they have the same number of 4-cycles. Let

d(G1) = (d1, d2, . . . , dn) and let d(G2) = (δ1, δ2, . . . , δn) be their respective

degree sequences. If G1 and G2 are cospectral show that

n∑

i=1

d2i =

n∑

i=1

δ2i .

82



CHAPTER 2. THE ADJACENCY MATRIX

Figure 2.2: Two non-isomorphic cospectral trees with distinct degree se-
quences; there are many others.

Solution: If G1 and G2 are cospectral then their characteristic polynomials

are equal, and in particular the coefficient c4 of tn−4 in their characteristic

polynomials are equal. Also, they must have the same number of edges.

Since G1 and G2 have the same number of C4’s, Theorem 2.4.11 implies that∑n
i=1 d

2
i =

∑n
i=1 δ

2
i . This example is applicable to trees since trees have no

cycles.

Example 2.16. Suppose thatG is a bipartite graph with spectrum spec(G) =

(λ1, λ2, . . . , λn). Prove that if k is odd then

pk(λ1, λ2, . . . , λn) = λk
1 + λk

2 + · · ·+ λk
n = 0.

Solution: Let {X, Y } be a bipartition of G. Suppose that (w0, w1, . . . , wk)

is a closed walk in G and without loss of generality suppose that w0 ∈ X.

Then wi ∈ Y for i odd and wj ∈ X for j even. Since wk = w0 ∈ X it follows

that k is necessarily even. Hence, all closed walks in G have even length. By

Proposition 2.4.8, tr(Ak) = pk(λ1, . . . , λn) for all k ≥ 1, and tr(Ak) is the

total number of closed walks of length k. Hence, tr(Ak) = 0 for k odd and

the claim is proved.

Example 2.17. The graph G has spectrum spec(G) = (−2, 1−
√
5, 0, 0, 1+√

5) and degree sequence d(G) = (4, 3, 3, 3, 3). Find the number of edges,

triangles, and 4-cycles in G.

Example 2.18. Use Theorem 2.4.11 to find the characteristic polynomial of

P5. (Hint: P5 is bipartite.)
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2.4.1 Exercises

Exercise 2.21. Prove that if G is a k-regular graph with n vertices and

spec(G) = (λ1, λ2, . . . , λn) then

n∑

i=1

λ2
i = kn.

Exercise 2.22. A 3-regular graph G with n = 8 vertices has characteristic

polynomial

p(t) = t8 − 12t6 − 8t5 + 38t4 + 48t3 − 12t2 − 40t− 15.

Find the number of edges m, number of triangles t, and number of 4-cycles

q of G.

Exercise 2.23. Two treesG1 andG2 have degree sequence d(G1) = (5, 3, 2, 2,

1, 1, 1, 1, 1, 1) and d(G2) = (3, 3, 2, 2, 2, 2, 1, 1, 1, 1). Could G1 and G2 be

cospectral? Explain.

Exercise 2.24. A graph G has spectrum spec(G) = (−2,−1, 0, 0, 1, 2). How

many closed walks of length 4 are in G? What about closed walks of length

5?

Exercise 2.25. A tree G has degree sequence d(G) = (1, 1, 1, 2, 3). Find the

characteristic polynomial of G. (Hint: Recall that a tree is bipartite, and

recall Theorem 2.3.6.)

2.5 Bipartite Graphs

The following is a spectral characterization of bipartite graphs.
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Theorem 2.5.1

Let G be a graph on n vertices. The following are equivalent.

(i) G is bipartite

(ii) λ is a non-zero eigenvalue of A if and only if −λ is an eigenvalue of

A

(iii)
∑n

i=1 λ
k
i = 0 for k odd.

(iv) tr(Ak) = 0 for k odd.

Proof. Suppose that G is bipartite and let V = V (G). The vertex set V can

be partitioned into two disjoint parts X and Y such that any edge e ∈ E(G)

has one vertex in X and one in Y . Therefore, by an appropriate labelling of

the vertices, the adjacency matrix of G takes the form

A =

[
0 B

BT 0

]

where B is a |X| × |Y | matrix. Suppose that ξ =
[
ξ1
ξ2

]
is an eigenvector of A

with eigenvalue λ 6= 0, where ξ ∈ R|X | and ξ2 ∈ R|Y |. Then Aξ = λξ implies

that

Aξ =

[
Bξ2
BT ξ1

]
= λ

[
ξ1
ξ2

]
.

Consider the vector ξ̃ =
[
−ξ1
ξ2

]
. Then

Aξ̃ =

[
Bξ2

−BT ξ1

]
=

[
λξ1
−λξ2

]
= −λ

[
−ξ1
ξ2

]
= −λξ̃.

Hence, ξ̃ is an eigenvector of A with eigenvalue −λ. This proves (i) =⇒
(ii). Now assume that (ii) holds. Then there are an even number of non-zero

eigenvalues, say ±λ1,±λ2, . . . ,±λr, where n = 2r+ q, and q is the number of

zero eigenvalues. If k is odd then
∑n

i=1 λ
k
i = 0. This proves (ii) =⇒ (iii). Now

assume that (iii) holds. Since tr(Ak) =
∑n

i=1 λ
k
i it follows that tr(A

k) = 0 for

k odd. This proves (iii) =⇒ (iv). Now assume (iv) holds. It is known that
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the (i, i) entry of Ak are the number of walks starting and ending at vertex i.

Hence, the total number of cycles of length k in G is bounded by tr(Ak). By

assumption, if k is odd then tr(Ak) = 0 and thus there are no cycles of odd

length in G. This implies that G is bipartite and proves (iv) =⇒ (i). This

ends the proof.

From the previous theorem, it follows that if ±λ1,±λ2, . . . ,±λr are the

non-zero eigenvalues of A and A has the zero eigenvalue of multiplicity p ≥ 0

then the characteristic poly of A is

p(t) = tp(t2 − λ2
1)(t

2 − λ2
2) · · · (t2 − λ2

r)

From this it follows that at least half of the coefficients s1, s2, . . . , sn in the

expansion of p(t) are zero, namely all the odd coefficients. For example, if

say r = 3 and p = 1 then

p(t) = t(t2 − λ2
1)(t

2 − λ2
2)(t

2 − λ2
3)

= t(t6 − s2t
4 + s3t

2 − s2)

= t7 − s2t
5 + s4t

3 − s6t

so that s1 = s3 = s5 = s7 = 0. Another way to see this is using the Newton

identities.

Corollary 2.5.2

Let G be a bipartite graph on n vertices and let p(t) be the characteristic

polynomial of G:

p(t) = tn − s1t
n−1 + s2t

n−2 + · · ·+ (−1)n−1sn−1t+ (−1)nsn.

Then sk = 0 for k odd.

Proof. Using the Newton identities, we have

sk =
1
k(−1)k−1

k−1∑

j=0

pk−jsj
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for 1 ≤ k ≤ n. If G is bipartite then pℓ = tr(Aℓ) = 0 for all ℓ ≥ 1 odd. Let k

be odd and assume by induction that s1, s3, . . . , sk−1 are all zero. Then the

only terms pk−jsj that survive in the expression for sk are those where j is

even. If j is even then necessarily k − j is odd, and thus pk−j = 0. Hence

sk = 0 as claimed.

As a consequence of Corollary 2.5.2, if G is a bipartite graph on n vertices

and n is odd then then sn = 0 and thus λ = 0 is an eigenvalue of A.
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Chapter 3

Graph Colorings

A university is organizing a conference on undergraduate research that will

contain n student presentations. Prior to the conference, the participants

selected which presentations they plan to attend and the conference organiz-

ers would like to schedule the presentations (each of the same time length)

so that participants can attend all the presentations they selected and the

presentation they will deliver. The university has many rooms to use for

the conference and can therefore schedule presentations in parallel. The or-

ganizers would like to minimize the time for all presentations to complete.

This scheduling problem can be described using a graph as follows. Let

v1, v2, . . . , vn be the presentations. The presentations vi and vj are adjacent

if there is a participant who will attend both vi and vj. Let {1, 2, . . . , k} be

the number of time slots during which parallel presentations will be held.

The scheduling problem is then to assign to each presentation a time slot

s ∈ {1, 2, . . . , k} so that adjacent presentations receive a distinct time slot.

3.1 The basics

We begin with the definition of a graph coloring.

Definition 3.1.1: Colorings

Let G = (V, E) be a graph and let k be a positive integer. A k-coloring
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of the graph G is a function f : V → {1, 2, . . . , k} such that if vi and vj

are adjacent then f(vi) 6= f(vj). If G has a k-coloring then we say that

G is k-colorable. The set of numbers {1, 2, . . . , k} are called the colors

of the coloring f .

Example 3.1. For each graph, find a coloring.

(a) G = C4 ∨K1

(b) G = P5

(c) G is two K3’s connected by a bridge

(d) G = E4

(e) G = K4

Suppose that f : V (G) → {1, . . . , k} is a k-coloring of G. Let Ci = {v ∈
V | f(v) = i} and assume Ci 6= ∅ for each i = 1, 2, . . . , k. By definition, Ci

consists of vertices that are colored with the same color i and we call Ci a

color class induced by f . By definition of a coloring, any two vertices in Ci

are not adjacent. In general, a non-empty subset C ⊂ V (G) is called an in-

dependent set if no two vertices in C are adjacent. Hence, if C1, C2, . . . , Ck

are the color classes induced by f then each non-empty color class Ci is an in-

dependent set. Moreover, since each vertex receives a color, {C1, C2, . . . , Ck}
is a partition of the vertex set V (G).

Example 3.2. Obtain a coloring of the given graph and list the color classes.

v1

v2

v3

v4

v5

v6

v7

v8

If G is k-colorable then it is also k′-colorable for any k′ ≥ k (prove this!).

Given a graph G, it is natural then to ask for the smallest integer k ≥ 1 such

that G is k-colorable. This number is given a special name.
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Definition 3.1.2: Chromatic Number

The chromatic number of G, denoted by χ(G), is the smallest integer

k such that G is k-colorable.

It is clear that if G has at least one edge then χ(G) ≥ 2.

Example 3.3. Prove that

χ(Cn) =

{
2, if n is even,

3, if n is odd.

Solution: Label the vertices of Cn so thatE(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}
and recall that we must have n ≥ 3. Suppose that n ≥ 3 is odd. Define

f : V → {1, 2, 3} as follows: let f(vi) = 1 if i < n is odd, let f(vj) = 2 if j is

even, and let f(vn) = 3. Then f : V (Cn) → {1, 2, 3} is a coloring. Suppose

by contradiction that f̃ : V → {1, 2} is a coloring of Cn. We can assume

without loss of generality that f̃(v1) = 1. Then f̃(vj) = 2 if j is even. Since

vn ∼ vn−1, and n− 1 is even, we must have f̃(vn) = 1. However, vn ∼ v1 and

thus f̃ is not a coloring. Hence, χ(Cn) = 3 if n is odd.

Now suppose that n ≥ 3 is even. Then f : V → {1, 2} define by f(vi) = 1

if i is odd and f(vj) = 2 if j is even is a coloring. Hence, χ(Cn) ≤ 2 and thus

χ(G) = 2 since Cn is not the empty graph.

Example 3.4. Compute the chromatic numbers of the wheels W5 = C5∨K1

and W6 = C6 ∨K1. What about Wn = Cn ∨K1 for any n ≥ 3?

Example 3.5. Prove that χ(G1⊕G2⊕· · ·⊕Gr) = max{χ(G1), χ(G2), . . . , χ(Gr)}.

Example 3.6. Prove that if χ(G) = n then G = Kn.

3.2 Bounds on the chromatic number

Given a graph G with n vertices, we may color each vertex with a distinct

color and obtain a n-coloring. This shows that χ(G) ≤ n. It is clear that a
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coloring of Kn must have at least n colors and thus χ(Kn) = n. On the other

hand, the empty graph En can be colored (properly) with only one color and

thus χ(En) = 1. However, if G has at least one edge then 2 ≤ χ(G). We

therefore have the following.

Proposition 3.2.1

For any graph G not equal to Kn or En, we have that 2 ≤ χ(G) ≤ n− 1.

A lower bound on χ(G) is obtained through the notion of a clique and

clique number of a graph.

Definition 3.2.2: Cliques

A subset W ⊂ V (G) is called a clique if all vertices in W are mutually

adjacent. In other words, W is a clique if and only if G[W ] is a complete

graph. The clique number of a graph G is the cardinality of a largest

clique in G, and is denoted by ω(G).

Example 3.7. What is the clique number of a cycle? More generally, of a

bipartite graph?

If W is a clique in G then any coloring of G must assign distinct colors to

vertices in W , and thus any coloring of G must contain at least ω(G) colors.

We therefore obtain the following.

Theorem 3.2.3

For any graph G we have ω(G) ≤ χ(G).

Example 3.8. As an example of a graph for which ω(G) < χ(G), take a

cycle Cn of odd length. In Example 3.3 we showed that χ(Cn) = 3 if n is

odd; on the other hand ω(Cn) = 2 for all n ≥ 3.

Recall that C ⊂ V (G) is an independent set if no two vertices in C

are adjacent. The independence number of G, denoted by α(G), is the

cardinality of a largest independent set in G.
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Example 3.9. Prove that ω(G) = α(G).

Solution: Let C be an independent set with cardinality α(G). Then C is

a clique in G and therefore α(G) ≤ ω(G). Conversely, suppose that W is a

largest clique inG. ThenW is an independent inG. Therefore, ω(G) ≤ α(G).

This proves the claim. �

Suppose that {C1, C2, . . . , Ck} are the color classes of a k-coloring in G.

Then |Ci| ≤ α(G) for all i = 1, 2, . . . , k. It follows that

n =
k∑

i=1

|Ci| ≤
k∑

i=1

α(G) = kα(G).

We may take k = χ(G) and therefore

n ≤ χ(G)α(G).

Suppose now that C is a largest independent set in V (G), and thus |C| =
α(G). Color all vertices in C with color 1. The remaining n− α(G) vertices

may be colored with distinct colors, say {2, . . . , n− α(G)}. This produces a
k = n− α(G) + 1 coloring of G. Therefore,

χ(G) ≤ n− α(G) + 1.

To summarize:

Theorem 3.2.4

For every graph G it holds that

n

α(G)
≤ χ(G) ≤ n− α(G) + 1

We now describe a greedy algorithm that always produces a coloring.

Let v1, v2, . . . , vn be an ordering of the vertices of G. For each vertex vi, let

ni ≥ 0 be the number of vertices adjacent to vi that are lower in the order,

that is, νi = |{vj | j < i, vivj ∈ E(G)}|. It is clear that µi ≤ ∆(G) and thus

µ = max1≤i≤n µi ≤ ∆(G). Hence, for each vertex vi, the number of neighbors

of vi that are lower in the order is at most µ ≥ 0.
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Theorem 3.2.5: Greedy Colorings

With the notation above, it holds that χ(G) ≤ µ + 1. In particular,

χ(G) ≤ ∆(G) + 1.

Proof. Consider the set of colors {1, . . . , µ+ 1}. Color v1 with the color 1.

Suppose that v1, . . . , vi have been colored so that no adjacent vertices received

the same color. Now consider vi+1. The number of vertices adjacent to vi+1

that have already been colored is at most µ. Hence, we can color vi+1 with

µ + 1 or with a lower color and thereby produce a proper coloring of the

vertices v1, . . . , vi+1. By induction, this proves that G can be colored with at

most µ+ 1 colors.

The following example shows that the number of colors needed in the

greedy algorithm depends on the chosen ordering of the vertices.

Example 3.10. Consider the cycle C6 with vertices labelled in two different

ways as shown below. Apply the greedy coloring algorithm in each case.

v1

v2v3

v4

v5v6

v1

v3

v4

v5

v2

v6

Example 3.11. Verify that if G is a complete graph or a cycle with an odd

number vertices then the inequality in Theorem 3.2.5 is an equality when

µ = ∆(G).

I turns out that complete graphs and cycles of odd length are the only

graphs for which equality holds in Theorem 3.2.5. This is known as Brook’s

theorem.
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Theorem 3.2.6: Brook’s Theorem

If G is a connected graph that is neither a complete graph or an odd cycle

then χ(G) ≤ ∆(G).

Example 3.12 (Greedy algorithm producing chromatic coloring). In this

exercise, we are going to prove that there is a labelling of the vertices of

G so that the greedy algorithm uses exactly k = χ(G) colors. Suppose

that C1, C2, . . . , Ck are the color classes of some chromatic coloring of G

and let mi = |Ci| for i = 1, 2 . . . , k. Label the vertices of G so that the

first m1 vertices are in C1, the next m2 vertices are in C2, and repeatedly

until the last mk vertices are in Ck. Explicitly, C1 = {v1, v2, . . . , vm1
}, C2 =

{vm1+1, vm1+2, . . . , vm1+m2
}, until finally Ck = {vn−mk+1, vn−mk+2, . . . , vn}. Since

C1 is an independent set, we can color all vertices in C1 with color 1. Now

consider the vertices in C2. If v ∈ C2 is adjacent to a vertex in C1 then we

must color v with color 2, otherwise we can color v with color 1. Since C2 is

an independent set, after this re-coloring the vertices in C2 receiving the same

color are not adjacent. Now consider the vertices in C3. For v ∈ C3, we can

choose one of the colors {1, 2, 3} to color v; for example, if v is not adjacent

to any vertex in C1 then color v with color 1, if v is not adjacent to any vertex

in C2 then color v with color 2; otherwise we need to color v with 3. Since

C3 is an independent set, the vertices in C3 receiving the same color are not

adjacent. By induction, suppose that we have colored all vertices up to and

including Cj−1. Any vertex in v ∈ Cj is adjacent to at most j − 1 colored

vertices, all of which have been colored with one of 1, 2, . . . , j − 1. Hence,

to color v ∈ Cj we can choose the smallest available color from {1, 2, . . . , j}.
This proves that the greedy algorithm uses at most k colors. Since k = χ(G),

the greedy algorithm uses exactly k colors. We note that, in general, the new

coloring will produce distinct color classes.

As an example, consider the chromatic 4-coloring of the graph G in Fig-

ure 3.1. The coloring is indeed chromatic since χ(G) = ω(G) = 4. The
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v1

v6

v7

v10

v2

v8

v5

v4
v9

v3

v1

v6

v7

v10

v2

v8

v5

v4
v9

v3

Figure 3.1: A labelling of G from a chromatic coloring for which the greedy
algorithm produces a (new) chromatic coloring

color classes are C1 = {v1, v2, v3}, C2 = {v4, v5, v6}, C3 = {v7, v8}, and

C4 = {v9, v10}. Starting with the labelling shown in Figure 3.1, and per-

forming the greedy algorithm, we obtain a new coloring with color classes

C̃1 = {v1, v2, v3}, C̃2 = {v4, v5, v6, v7}, C̃3 = {v8, v9}, and C̃4 = {v10}. Note

that this produces a distinct chromatic coloring of G.

Example 3.13. Let G be a k-chromatic graph, that is, k = χ(G). Show

that in every k-coloring of G, there exists at least one vertex in each color

class that is adjacent to at least one vertex in each of the other color classes.

Deduce that G has at least k vertices with degree at least k − 1.

Solution: Let C1, C2, . . . , Ck be the color classes of a k-chromatic coloring

of G. Suppose by contradiction that some color class Ci contains no vertex

that is adjacent to at least one vertex in each of the other classes. We can

assume without loss of generality that this color class is Ck. We will re-color

the vertices in Ck to produce a (k− 1) coloring as follows. Since each v ∈ Ck

is non-adjacent to at least one of the other color classes, there is a color

available in {1, 2, . . . , k − 1} to re-color v ∈ Ck. Hence, this re-coloring of G

produces a (k − 1) coloring which is a contradiction since k = χ(G). Thus,

every color class has at least one vertex adjacent to the other color classes.

This clearly implies the existence of k vertices with degree at least k − 1. �
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The following theorem gives in many cases a better upper bound than

Brook’s theorem [4].

Theorem 3.2.7

Let G be a graph and let λmax denote the largest eigenvalue of the adja-

cency matrix of G. Then χ(G) ≤ 1 + λmax. Moreover, equality holds if

and only if G is a complete graph or an odd cycle.

If G has a large clique then χ(G) is also large since ω(G) ≤ χ(G). In

every non-trivial clique (i.e., a clique containing at least 3 vertices), there

is a triangle. Hence, if G has no triangles then ω(G) = 2, and thus it is

reasonable to investigate whether graphs with no triangles have small χ(G).

Surprisingly, this is not the case.

Theorem 3.2.8: Mycielski 1955

For any k ≥ 1, there exists a k-chromatic graph with no triangles.

Proof. The proof is by induction on k ≥ 1. If k = 1 then K1 is a triangle-free

k-chromatic graph and when k = 2 then K2 is a triangle-free k-chromatic

graph. Assume that Gk is a triangle-free k chromatic graph and let v1, v2,

. . . , vn be the vertices of Gk. Add new vertices u1, u2, . . . , un and v, and

connect ui to v and also to the neighbors of vi, for i = 1, 2, . . . , n. Denote the

resulting graph by Gk+1. Any k-coloring of Gk can be extended to a (k+ 1)-

coloring of Gk+1 by coloring ui with the same color as vi, for i = 1, 2, . . . , n,

and coloring v with k + 1. Hence, χ(Gk+1) ≤ k + 1. Assume that Gk+1 is

k-colorable and suppose without loss of generality that v is colored with k.

Then no vertex ui is colored with k. If vj is colored with k then recolor it with

the same color as uj. Since no vertex ui is colored with k, this produces a

(k− 1)-coloring of Gk, which is a contradiction. Hence, χ(Gk+1) = k+1. We

now prove Gk+1 is triangle-free. Since {u1, u2, . . . , un} is an independent set

in Gk+1 and no vertex vi is adjacent to v, any triangle in Gk+1 (if any) must

97



3.3. THE CHROMATIC POLYNOMIAL

consist of two vertices vi and vj and one vertex uk. But if vi, vj, uk are the

vertices of a triangle in Gk+1 then vi ∼ uk and vj ∼ uk implies that vi ∼ vk

and vj ∼ vk and thus vi, vj, vk are the vertices of a triangle in Gk, which is a

contradiction. Hence, Gk+1 is triangle-free and the proof is complete.

The punchline of Theorem 3.2.8 is that the chromatic number can get ar-

bitrarily high even if we limit in the strongest way the size of the largest

clique.

3.3 The Chromatic Polynomial

For each non-negative integer k ≥ 0 let PG(k) be the number of distinct

k-colorings of G. The function PG was introduced by George Birkhoff

(1912) in his quest to prove the Four Color Theorem for planar graphs. Let

us clarify what we mean by “distinct colorings”. Recall that a k-coloring of

G is a function f : V (G) → {1, . . . , k}. Hence, f1 and f2 are two distinct

k-colorings if f1(v) 6= f2(v) for at least one vertex v ∈ V (G), that is, at least

one vertex of G is colored differently in the colorings f1 and f2. Before we

proceed we note that if G has at least one vertex then PG(0) = 0 since there

is no way to color the vertices of a graph with k = 0 colors.

Example 3.14. For each graph shown below, produce two distinct colorings

using k = 2 and k = 3 colorings, respectively.

b

b b

b

b

b

b

b

Let us prove that PG is an invariant.
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Theorem 3.3.1

If G1 andG2 are isomorphic graphs then PG1
(k) = PG2

(k) for every integer

k ≥ 0.

Proof. This is left as an important exercise.

Consider the empty graph G = En and let k ≥ 1. We can color vertex

v1 with any of the colors {1, 2, . . . , k}, we can color v2 with any of the colors

{1, 2, . . . , k}, etc. Any such k-coloring is and thus the number of k-colorings

of G = En is PG(k) = kn.

Now consider the other extreme, i.e., consider G = Kn. If k < n then

there are no k-colorings of G, and thus PG(k) = 0 for k < n. Suppose then

that k ≥ n. We start by coloring v1 by choosing any of the k colors. Then

we have (k − 1) color choices to color v2, then (k − 2) color choices to color

v3, and inductively we have (k − (n − 1)) color choices for vn. Hence, the

number of k-colorings of Kn is

PKn
(k) = k(k − 1)(k − 2) . . . (k − (n− 1)).

Notice that our formula for PKn
(k) is a polynomial function in k, as was for

PEn
(k) = kn. Now, the polynomial expression we obtained for PKn

(k) has

the property that Pkn(x) = 0 if x ∈ {0, 1, . . . , n − 1} which is exactly the

statement that there are no colorings of Kn using less than n colors. If for

example k = n then we obtain

PKn
(n) = n(n− 1)(n− 2) . . . 1 = n!

Proposition 3.3.2

For any graph G it holds that

χ(G) = min{k ∈ {0, 1, . . . , n} | PG(k) > 0}.
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Equivalently, PG(k) > 0 if and only if k ≥ χ(G).

Proof. If PG(k) > 0 then there is a k-coloring of G and thus by definition of

χ(G) we have χ(G) ≤ k. If on the other hand k ≥ χ(G) then since we can

color G with χ(G) colors then we can certainly color G with k colors and thus

PG(k) > 0. By definition of χ(G), if k < χ(G) then there are no k-colorings

of G and thus PG(k) = 0.

Directly finding PG(k) for anything other than G = Kn or G = En as we

did above quickly becomes a non-trivial exercise. There is, as we describe

below, a recursive reductive approach to compute PG(k). Before we state the

relevant theorem, we need some notation. If e is an edge recall that G− e is

the graph obtained by deleting the edge e. We define the graph G/e as the

graph obtained by removing the edge e, identifying the end-vertices of e, and

eliminating any multiple edges.

Example 3.15. Draw any graph G, pick an edge e, and draw G/e.

Theorem 3.3.3: Chromatic Reduction

For any graph G and e ∈ E(G) it holds that

PG(k) = PG−e(k)− PG/e(k).

Proof. We consider the number of colorings of G − e. We partition the of

colorings of G−e into two types. The first are the colorings in which the end-

vertices of e are colored differently. Each such coloring is clearly a coloring

of G. Hence, there are PG(k) such colorings. The second are the colorings

in which the end-vertices of e are colored the same. Each such coloring is

clearly a coloring of G/e. The number of such colorings is PG/e(k). Hence,

the total number of colorings of G− e is

PG−e(k) = PG(k) + PG/e(k)

and the claim follows.
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The upshot of the reduction formula

PG(k) = PG−e(k)− PG/e(k)

is that PG/e has one less vertex and edge than G and G− e has one less edge

and might have more components than G. Regarding the latter case, the

following will be useful.

Proposition 3.3.4: Colorings of Unions

If G = G1 ⊕G2 then

PG(k) = PG1
(k)PG2

(k).

Proof. By definition, V (G1 ⊕ G2) = V (G1) ∪ V (G2). The number of ways

to properly color the vertices in V (G1) is PG1
(k) and the number of ways to

properly color the vertices in V (G2) is PG2
(k). Since both colorings can be

done independently, the result follows.

Example 3.16. Find the chromatic polynomials of the graphs shown in Fig-

ure 3.2.

G1 G2 G3

Figure 3.2: Graphs for Example 3.16

We now prove some basic properties of the function PG(k).

Theorem 3.3.5: Chromatic Polynomial

Let G be a graph of order n. The function PG(k) is a monic polynomial

of degree n with integer coefficients.
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Proof. We induct over the number of edges. If G has no edges then G = En

and we showed above that PG(k) = kn. This proves the base case. Now

suppose the claim holds for all graphs with no more than m ≥ 0 edges and

let G be a graph with m + 1 edges and n vertices. Pick any edge e ∈ E(G).

By the chromatic reduction theorem, PG(k) = PG−e(k)−PG/e(k). The graph

G − e contains m edges and n vertices, and G/e has n − 1 vertices and no

more than m edges. By induction, PG−e(k) is a monic polynomial of degree

n with integer coefficients and PG/e(k) is a monic polynomial of degree n− 1

with integer coefficients. Hence, PG(k) is a monic polynomial of degree n

with integer coefficients.

Based on the result of Theorem 3.3.5, we call PG(k) the chromatic poly-

nomial of the graph G.

Lemma 3.3.6: Alternating Coefficients

For any graph G, the chromatic polynomial PG(k) can be written in the

form

PG(k) = kn − a1k
n−1 + a2k

n−2 − a3k
n−3 + · · ·+ (−1)n−1an−1k

where aj ≥ 0.

Proof. We induct over the number of edges. If G is the empty graph then

PG(k) = kn clearly satisfies the claim. Suppose the claim is true for all graphs

with no more than m ≥ 0 edges and let G be a graph with m+ 1 edges and

n vertices. By induction, we may write that

PG−e(k) = kn +
n−1∑

j=1

(−1)jajk
n−j

where aj ≥ 0 and

PG/e(k) = kn−1 +

n−1∑

j=2

(−1)j+1bjk
n−j
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where bj ≥ 0. Then

PG(k) = PG−e(k)− PG/e(k)

= kn +
n−1∑

j=1

(−1)jajk
n−j − kn−1 +

n−1∑

j=2

(−1)jbjx
n−j

= kn − (a1 + 1)kn−1 +

n−1∑

j=2

(−1)j(aj + bj)k
n−j

and this proves the claim.

We now prove an important property about the coefficients of PG(k) when

G is connected but first we need the following lemma.

Lemma 3.3.7

Suppose that G contains n ≥ 2 vertices. If G is connected then G/e is

connected for any e ∈ E(G).

Proof. The proof is left as an exercise.

Theorem 3.3.8

If G is connected then the coefficients of k, k2, . . . , kn in PG(k) are all

non-zero.

Proof. The proof is by induction on the number of edges. If m = 1 then G =

P2 and it is not hard to see that PG(k) = k(k−1) = k2−k. Hence, the claim

holds for m = 1. Assume that the claim holds for all connected graphs with

at most m ≥ 1 edges and let G be a graph with m+1 edges and n vertices. If

e ∈ E(G) then G/e has at mostm edges and thus by induction the coefficients

of k, k2, . . . , kn−2 in PG/e(k) are non-zero. Using the notation in the proof of
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Lemma 3.3.6, we may write that PG/e(k) = kn−1+
∑n−1

j=2 (−1)j+1bjk
n−j where

bj > 0. Again, using the notation in the proof of Lemma 3.3.6 we may write

PG(k) = kn − (a1 + 1)kn−1 +
n−1∑

j=2

(−1)j(aj + bj)k
n−j

where aj ≥ 0. This proves that the coefficients of k, k2 . . . , kn−1 in PG(k) are

all non-zero.

We now consider the case of disconnected graphs.

Theorem 3.3.9

If G = G1 ⊕G2 ⊕ · · · ⊕Gr and G has n vertices then

PG(k) = kn − a1k
n−1 + a2k

n−2 − · · ·+ (−1)n−ran−rk
r.

Moreover, aj > 0 for all j = 1, . . . , n− r.

Proof. By Proposition 3.3.4 we have

PG(k) = PG1
(k)PG2

(k) · · ·PGr
(k)

Since each PGi
(k) has no constant term, the smallest possible non-zero term

in PG(k) is kr. By Theorem 3.3.8, the coefficient of k in each of PGi
(k) is

non-zero. The coefficient of kr in PG(k) is the product of the coefficients of k

in PGi
(k) for i = 1, 2, . . . , r. Hence, the coefficient of kr in PG(k) is non-zero.

We now prove that each aj > 0 for j = 1, 2, . . . , n − r. The proof is

by induction on the number of vertices. The case n = 1 is trivial. Assume

that the claim holds for all graphs with at most n ≥ 1 vertices and let

G be a graph with n + 1 vertices and r components G1, G2, . . . , Gr. Then

G/e is a graph with n vertices and r components and G − e is a graph

with n + 1 vertices and at least r components. We may therefore write

that PG−e(k) = kn+1 +
∑n+1−r

j=1 (−1)jajk
n+1−j where aj ≥ 0 and by induction
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PG/e(k) = kn +
∑n−r

j=1(−1)jbjk
n−j where bj > 0. Therefore,

PG(k) = kn+1 − (a1 + 1)kn +
n−r∑

j=1

(−1)j(aj+1 + bj)k
n−j

and since a1 + 1 > 0 and aj+1 + bj > 0 for j = 1, . . . , n − r this proves the

claim.

We now discuss some of the properties of the roots of a chromatic polyno-

mial. Let χ = χ(G) and suppose that k is a non-negative inter. If 0 ≤ k < χ

then there are no colorings k-colorings and therefore PG(k) = 0. Thus, there

exists integers mj ≥ 1, for j = 0, 1, . . . , χ − 1, and a polynomial f(z) not

having 0, 1, . . . , χ− 1 as roots such that

PG(z) = zm0(z − 1)m1 · · · (z − (χ− 1))mχ−1f(z).

If k ≥ χ then PG(k) > 0 and therefore f(k) > 0. Thus, f has no non-negative

integer roots. Any negative integer roots of PG would therefore be supplied

entirely by f . However, the following shows that will not happen.

Theorem 3.3.10: Non-Negative Roots

The chromatic polynomial of any graph does not contain any roots in

(−∞, 0).

Proof. By Proposition 3.3.4, we can sssume that G is connected. Thus

PG(x) = xn +

n−1∑

j=1

(−1)jajx
n−j

where aj > 0 (by Theorem 3.3.8). Suppose that −λ ∈ (−∞, 0) and thus
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λ > 0. Then

PG(−λ) = (−1)nλn +

n−1∑

j=1

(−1)jaj(−1)n−jλn−j

= (−1)n

(
λn +

n−1∑

j=1

ajλ
n−j

)
.

Since λ > 0 and aj > 0 for all j = 1, . . . , n−1, it follows that PG(−λ) 6= 0.

Many graphs, however, have chromatic polynomials with complex roots.

Example 3.17. The chromatic polynomial of the graph in Figure 3.3 is

PG(x) = x(x− 1)(x− 2)(x2 − 4x+ 5) which has complex roots 2± i.

Figure 3.3: Graph with complex chromatic roots

Proposition 3.3.11

For any graph G of order n and m edges, the coefficient of kn−1 in PG(k)

is −m.

Proof. The proof is by induction on the number of edges. If G has m = 1

edges and n vertices then G is the union of P2 and En−2. Therefore,

PG(k) = PP2
(k)PEn−2

(k) = k(k − 1)kn−2 = kn−1(k − 1) = kn − kn−1

and the claim follows. Assume that the claim holds for all graphs with at

most m ≥ 1 edges and suppose that G has (m+ 1) edges and n vertices. By
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the proof of Lemma 3.3.6, we have

PG(k) = kn − (a1 + 1)kn−1 +

n−1∑

j=2

(−1)jkn−j.

where PG−e(k) = kn − a1k
n−1 + · · · + (−1)n−1an−1k. By induction a1 = m

and the claim holds.

Theorem 3.3.12: Chromatic Polynomial of a Tree

A graph G with n vertices is a tree if and only if

PG(k) = k(k − 1)n−1.

Proof. We first prove that ifG is a tree on n vertices then PG(k) = k(k−1)n−1.

The proof is by induction on n ≥ 2. If G = P2 then PG(k) = k(k − 1) and

the claim follows. Assume by induction that the claim holds for all trees

with at most n ≥ 2 vertices and let G be a tree with n + 1 vertices. Since

G is a tree, it has a leaf u whose neighbor is say v. Let e = {u, v}. By the

chromatic reduction theorem, PG(k) = PG−e(k)− PG/e(k). The graph G/e is

a tree with n vertices and thus PG/e(k) = k(k − 1)n−1. On the other hand,

G−e is the union of a tree on n vertices and K1. Thus, by induction we have

PG−e = k(k − 1)n−1k = k2(k − 1)n−1. Therefore,

PG(k) = k2(k − 1)n−1 − k(k − 1)n−1 = k(k − 1)n−1(k − 1) = k(k − 1)n

and the claim follows.

Now suppose that G has n vertices and PG(k) = k(k − 1)n−1. Expanding

we obtain

PG(k) = k(kn−1−(n−1)kn−2+· · ·+(−1)n−1) = kn−(n−1)kn−1+· · ·+(−1)n−1k

and thus by Propositon 3.3.11 we have |E(G)| = n− 1. Since the coefficient

of k in PG(k) is non-zero, by Theorem 3.3.9 it follows that G is connected.

Hence, G is a tree.
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Example 3.18 (Chromatic polynomial of cycle graph). Use the chro-

matic reduction theorem to prove that the chromatic polynomial of a cycle

G = Cn is

PG(k) = (k − 1)n + (−1)n(k − 1)

Solution: For n = 3 we have

PG(k) = k(k − 1)(k − 2)

= (k − 1 + 1)(k − 1)(k − 1− 1)

= (k − 1 + 1)(k − 1)2 − (k − 1 + 1)(k − 1)

= (k − 1)3 + (k − 1)2 − (k − 1)2 − (k − 1)

and thus PG(k) = (k− 1)3+ (−1)3(k− 1) as claimed. Assume that the claim

holds for n and consider G = Cn+1. For any e ∈ E(Cn+1) we have that

Cn+1 − e is Pn+1 and Cn+1/e is Cn. Using the chromatic reduction theorem,

the induction hypothesis, and the fact that Pn+1 is a tree we obtain

PG(k) = k(k − 1)n − [(k − 1)n + (−1)n(k − 1)]

= k(k − 1)n − (k − 1)n + (−1)n+1(k − 1)

= (k − 1)n+1 + (−1)n+1(k − 1)

and this completes the proof.

Example 3.19. Show that PG∨K1
(k) = kPG(k − 1). Use this to find the

chromatic polynomial of the wheel graph Wn = Cn ∨K1.

3.3.1 Exercises

Exercise 3.1. In this question you are going to prove that the chromatic

polynomial is an isomorphism invariant.

(a) Suppose that G1 and G2 are isomorphic and σ : V (G1) → V (G2) is

an isomorphism. Suppose that f : V (G1) → {1, . . . , k} is a coloring of

G1. Define the function fσ : V (G2) → {1, . . . , k} by fσ(u) = f(σ−1(u)).

Prove that fσ is a coloring of G2.
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(b) Deduce from part (a) that PG1
(k) ≤ PG2

(k).

(c) Now explain why PG2
(k) ≤ PG1

(k).

(d) Conclude.

Exercise 3.2. Let C1, C2, . . . , Ck be the color classes of a coloring of G. We

will say that Ci is adjacent to Cj if there exists vi ∈ Ci and vj ∈ Cj such that

vi ∼ vj.

(a) Give an example of a connected graph and a coloring of that graph that

produces color classes C1, C2, . . . , Ck for which there exists some Ci and

Cj (distinct) that are not adjacent.

(b) Prove that if C1, C2, . . . , Ck are the color classes of a chromatic coloring

of a graph G (that is, k = χ(G)) then Ci is adjacent Cj for every distinct

color classes Ci and Cj.

(c) Deduce from part (b) that the number of edges in a graph G is at least(
χ(G)
2

)
.

Exercise 3.3. Provide a proof of Lemma 3.3.7, that is, prove that if G is

connected then G/e is connected for any e ∈ E(G).

Exercise 3.4. Find PG(x) if G = P2 ∨ E3. (Hint: G is planar so draw it

that way.)

Exercise 3.5. Explain why P (x) = x6 − 12x5 + 53x4 − 106x3 + 96x2 − 32x

is not the chromatic polynomial of any graph G. (Hint: WolframAlpha)

Exercise 3.6. For any graph G, let t(G) be the number of triangles in G. If

PG(k) = kn +
∑n−1

j=1 (−1)jajk
n−j prove that

a2 =

(
m

2

)
− t(G)

where m = |E(G)|. (Hint: Induct over the number of edges m ≥ 2 and use

the Chromatic Reduction theorem. You will also need Proposition 3.3.11.)
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Chapter 4

Laplacian Matrices

4.1 The Laplacian and Signless Laplacian Ma-

trices

We first define the incidence matrix of a graph.

Definition 4.1.1: Incidence Matrix

Let G = (V, E) be a graph where V = {v1, v2, . . . , vn} and E = {e1, e2,
. . . , em}. The incidence matrix of G is the n×m matrix M such that

M(i, j) =




1, if vi ∈ ej

0, otherwise.

Hence, the rows of M are indexed by the vertices of G and the columns

of M are indexed by the edges of G. The only non-zero entries of column

M(:, j) (there are only two non-zero entries) correspond to the indices of the

vertices incident with edge ej. Similarly, the non-zero entries of the rowM(i, :

) correspond to all the edges incident to vertex vi. Hence,
∑m

j=1M(i, j) =

deg(vi).

Example 4.1. Find the incidence matrix of the graphs given below.
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v5 v6

v4

v3
v2v1

v7 v1

v2v3

v4

v5 v6

Figure 4.1: Two graphs

The signless Laplacian matrix of G is the n× n matrix defined as

Q(G) := MMT

When no confusion arises we write Q instead of Q(G). Notice that

QT = (MMT)T = (MT )TMT = MMT

and thus Q is a symmetric matrix. We now find an alternative expression

for Q. Let D be the n × n diagonal matrix whose ith diagonal entry is

D(i, i) = deg(vi). The matrix D is called the degree matrix of G.

Proposition 4.1.2

For any graph G it holds that Q = D+A.

Proof. We have that

Q(i, j) = M(i, :)MT(:, j) =
m∑

k=1

M(i, k)MT(k, j) =
m∑

k=1

M(i, k)M(j, k)

If i = j then

Q(i, i) =

m∑

k=1

M(i, k)M(i, k) =

m∑

k=1

M(i, k) = deg(vi).

On the other hand, if i 6= j then Q(i, j) is the product of the ith row and the

jth row of M, and the only possibly non-zero product is when M(i, :) and

M(j, :) have a non-zero entry in the same column, which corresponds to vi

and vj incident with the same edge.
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Before we can define the Laplacian matrix of a graph we need the notion

of an orientation on a graph. An orientation of G is an assignment of a

direction to each edge e ∈ E by declaring one vertex incident with e as the

head and the other vertex as the tail. Formally, an orientation of G is a

function g : E(G) → V (G) × V (G) such that g({u, v}) is equal to one of

(u, v) or (v, u). If g({u, v}) = (u, v) then we say that u is the tail and v is

the head of the edge e = {u, v}.

Definition 4.1.3: Oriented Incidence Matrix

Let G = (V, E) be a graph where V = {v1, v2, . . . , vn} and E = {e1, e2,
. . . , em}, and let g : E → V × V be an orientation of G. The oriented

incidence matrix N of G is the n×m matrix defined by

N(i, j) =






1, if vi the head of ej

−1, if vi the tail of ej

0, if vi /∈ ej

The Laplacian matrix of G relative to the orientation g is the n×n matrix

L(G) := NNT .

As with the signless Laplacian matrix, the Laplacian matrix is a symmetric

matrix. When no confusion arises, we write L instead of L(G).

Example 4.2. Assign an orientation to the left graph in Figure 4.1 and

compute the associated oriented incidence matrix N. Then compute L =

NNT .

Proposition 4.1.4

For any graph G it holds that L(G) = D −A. Consequently, L is inde-

pendent of the orientation chosen.
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Proof. The proof is similar to the that of the signless Laplacian matrix. That

L is independent of the orientation follows since D and A are independent

of any orientation.

Let e = (1, 1, . . . , 1) be the all ones vector. Then

Le = De−Ae =




deg(v1)
deg(v2)

...
deg(vn)


−




deg(v1)
deg(v2)

...
deg(vn)


 = 0

Therefore λ = 0 is an eigenvalue of L with corresponding eigenvector e. We

now show that Q and L have non-negative eigenvalues. To that end, we say

that a symmetric matrix Z is positive semi-definite if xTZx ≥ 0 for all

non-zero x and is positive definite if xTZx > 0 for all non-zero x.

Proposition 4.1.5: Positive Definite Matrices

A symmetric matrix Z is positive definite if and only if every eigenvalue

of Z is positive. Similarly, Z is positive semi-definite if and only if every

eigenvalue of Z is non-negative.

Proof. Since Z is symmetric, there exists an orthonormal basis x1,x2, . . . ,xn

of Rn consisting of eigenvectors of Z. Thus, xT
i xj = 0 if i 6= j and xT

i x
T
i = 1.

Let λ1, λ2, . . . , λn denote the corresponding eigenvalues, that is, Zxi = λixi.

Suppose that Z is positive definite (the proof for positive semi-definiteness is

identical). Then xTZx > 0 for all non-zero x. Now,

xT
i Zxi = xT

i (λixi) = λix
T
i xi = λi

Therefore, λi = xT
i Zxi > 0 is positive. This shows that if Z is positive

definite then all eigenvalues of Z are positive. Conversely, suppose that Z

has all positive eigenvalues and let x be an arbitrary non-zero vector. Since

x1,x2, . . . ,xn is a basis for Rn, there are constants c1, . . . , cn, not all zero,

such that x = c1x1 + c2x2 + · · ·+ cnxn. Then,

xTZx = c21λ1 + c22λ2 + · · ·+ c2nλn
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and since at least one ci is non-zero and all eigenvalues are positive, we

conclude that xTZx > 0.

Corollary 4.1.6

The Laplacian and signless Laplacian matrices are positive semi-definite.

Proof. Recall that Le = 0 and thus eTLe = 0. Now, by definition of L, for

any vector x we have

xTLx = xTNNTx = (NTx)T · (NTx) = ‖NTx‖2 ≥ 0.

We conclude that xTLx ≥ 0 for all x, and therefore L is positive semi-definite.

The proof for Q is identical.

Since L is a symmetric matrix, and as we have just shown is positive semi-

definite, the eigenvalues of L can be ordered as

0 = µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µn

The Laplacian matrix reveals many useful connectivity properties of a

graph.

Theorem 4.1.7

A graph G is connected if and only if µ1 = 0 is a simple eigenvalue of L.

Moreover, the algebraic multiplicity of µ1 is the number of components

of G.

Proof. We first recall that e is an eigenvector of L with eigenvalue µ1 = 0.

Suppose that G = G1 ⊕G2 ⊕ · · · ⊕Gk. For any vector x we have

xTLx = xTNNTx = ‖NTx‖2 =
∑

vivj∈E
(xi − xj)

2.
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Since E(G) = E(G1)⊔E(G2)⊔ · · · ⊔E(Gk) (where ⊔ denotes disjoint union)

we can write

xLTx =
∑

vivj∈E(G1)

(xi − xj)
2 +

∑

vivj∈E(G2)

(xi − xj)
2 + · · ·+

∑

vivj∈E(Gk)

(xi − xj)
2

Suppose now that Lx = 0, that is, x is an eigenvector of L with eigen-

value µ1. Then xTLx = 0 and from our computation above we deduce that∑
vivj∈E(Ga)

(xi − xj)
2 = 0 for each component Ga of G. Hence, the entries

of x are equal on each component of G. If G is connected then x has all

entries equal and thus x is a multiple of e. This proves that the geometric

multiplicity, and thus the algebraic multiplicity, of µ1 is one and thus µ1 is

a simple eigenvalue. Conversely, assume that G is disconnected with compo-

nents G1, G2, . . . , Gk where k ≥ 2, and let n = |V (G)|. Let zi ∈ Rn be the

vector with entries equal to 1 on each vertex of component Gi and zero else-

where. Then NTzi = 0 and therefore Lzi = NNTzi = 0. Since z1, z2, . . . , zk

is a linearly independent set of vectors, this proves that the multiplicity of µ1

is at least k. However, since each component Gi is by definition connected

and we have proved that a connected graph has µ1 as a simple eigenvalue, µ1

has algebraic multiplicity exactly k.

Since Q is a symmetric matrix and is semi-positive definite, the eigenval-

ues of Q can be ordered as

0 ≤ q1 ≤ q2 ≤ · · · ≤ qn

Note that in general we can only say that 0 ≤ q1.

Example 4.3. The signless Laplacian matrix of the graph on the left in

Figure 4.1 is

Q =




2 0 1 1 0 0
0 2 1 1 0 0
1 1 3 1 0 0
1 1 1 5 1 1
0 0 0 1 2 1
0 0 0 1 1 2



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and det(Q) = 80. Hence, 0 < q1.

Theorem 4.1.8

Suppose that G is connected. The least eigenvalue of Q is q1 = 0 if and

only if G is bipartite. In this case, 0 is a simple eigenvalue.

Proof. As in the proof for the Laplacian matrix, for any x ∈ Rn we have

xTQx = xTMMTx = ‖MTx‖2 =
∑

vivj∈E
(xi + xj)

2.

Suppose that x = (x1, x2, . . . , xn) is an eigenvector of Q with eigenvalue

q1 = 0. Then xTQx = 0 and therefore xi = −xj for every edge vivj ∈ E. Let

C1 = {vi ∈ V | xi > 0}, C2 = {vj ∈ V | xj < 0}, and C3 = {vk ∈ V | xk = 0}.
Since x is a non-zero vector, C1 and C2 are non-empty, and moreoverC1∩C2 =

∅. Any vertex in C3 is not adjacent to any vertex in C1 or C2. Indeed, if

vk ∈ C3 and vk ∼ vi then necessarily 0 = xk = −xi = 0 and thus vi ∈ C3.

Since G is connected this implies that C3 = ∅. This proves that C1 and C2

is a partition of V (G). Moreover, if vivj ∈ E and vi ∈ C1 then necessarily

vj ∈ C2, and vice-versa. This proves that {C1, C2} is a bipartition of G, and

thus G is bipartite.

Now suppose that G is bipartite and let {X, Y } be a bipartition of G.

Let α 6= 0 and let x be the vector whose entries on X are α and on Y are

−α. Thus, if M denotes the incidence matrix of G then MTx = 0. Therefore

Qx = MMTx = 0 and thus x is an eigenvector of Q with eigenvalue q1 = 0.

Now suppose that z is another eigenvector of M with eigenvalue q1. Then

Mz = 0 implies that zi = −zj for vivj ∈ E. Since G is connected, z is

completely determined by its value at i since there is a path from vi to any

vertex in G. Thus z is a multiple of x, and this proves that q1 = 0 is a simple

eigenvalue.
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Corollary 4.1.9

For any graph G, the multiplicity of q1 = 0 as an eigenvalue of G is the

number of bipartite components of G.

Example 4.4. Prove that L(G) + L(G) = nI− J and use it to show that if

spec(L) = (0, µ2, µ3, . . . , µn) then spec(L) = (0, n− µn, n− µn−1, . . . , n− µ2)

where L is the Laplacian of G.

Example 4.5. Suppose that the adjacency matrix of G has eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. If G is a k-regular graph, find the eigenvalues of L and Q.

Example 4.6. Find the Laplacian and signless Laplacian eigenvalues of the

complete graph Kn.

4.1.1 Exercises

Exercise 4.1. Label the vertices of C4 so that vi ∼ vi+1 for i = 1, 2, 3. Find

the Laplacian matrix of C4. Do the same for C5. What about for Cn for

arbitrary n ≥ 4?

Exercise 4.2. Recall that for any n×nmatrixZ with eigenvalues λ1, λ2, . . . , λn,

if

det(tI− Z) = tn − s1t
n−1 + s2t

n−2 + · · ·+ (−1)nsn

is the characteristic polynomial of Z then

s1 = tr(Z) = λ1 + λ2 + · · ·+ λn

sn = det(Z) = λ1λ2 · · · λn

Using this fact, find the coefficient of tn−1 of the characteristic polynomial

det(tI − L) for any Laplacian matrix L. What about the constant term of

det(tI− L)?
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Exercise 4.3. Let G1 be a graph with n1 vertices and Laplacian eigenvalues

0 = α1 ≤ α2 ≤ · · · ≤ αn1
, and let G2 be a graph with n2 vertices and

Laplacian eigenvalues 0 = β1 ≤ β2 ≤ · · · ≤ βn2
. In this problem you are

going to find the Laplacian eigenvalues of G = G1 ∨ G2. Recall that G

is obtained by taking the union of G1 and G2 and then connecting each

vertex in G1 to every vertex in G2. Hence |V (G)| = n1 + n2 and E(G) =

E(G1) ∪ E(G2) ∪ {{u, v} | u ∈ V (G1), v ∈ V (G2)}.
(a) Suppose that the vertices of G are labelled so that the first n1 vertices

are from G1 and the next n2 vertices are from G2. Let L1 = L(G1) and

L2 = L(G2), and we note that L1 is a n1 × n1 matrix and L2 is a n2 × n2

matrix. Explain why

L(G) =

[
L1 + n2I −J

−J L2 + n1I

]
.

where as usual I is the identity matrix and J is the all ones matrix, each

of appropriate size.

(b) Consider the vector z = (n2, n2, . . . , n2,−n1,−n1, . . . ,−n1) where n2 ap-

pears n1 times and n1 appears n2 times. Note that z can be written as

z = (n2e,−n1e) where e is the all ones vector of appropriate size. Show

that z is an eigenvector of L(G) and find the corresponding eigenvalue.

(c) Suppose that x ∈ Rn1 is an eigenvector of L1 with eigenvalue αi for i ≥ 2.

Let z = (x, 0n2
) where 0n2

is the zero vector in Rn2. Using the fact that

eTx = 0, show that z is an eigenvector of L with eigenvalue n2 + αi.

Hence, this shows that n2 + α2, . . . , n2 + αn1
are eigenvalues of L.

(d) Suppose that y ∈ Rn2 is an eigenvector of L2 with eigenvalue βj for j ≥ 2.

Let z = (0n1
,y) where 0n1

is the zero vector in Rn1. Using the fact that

eTy = 0, show that z is an eigenvector of L with eigenvalue n1 + βj.

Hence, this shows that n1 + β2, . . . , n1 + βn2
are eigenvalues of L.

(e) Parts (a), (b), (c) produce n1 + n2 − 1 eigenvalues of L. What is the

missing eigenvalue of L?
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4.2 The Matrix Tree Theorem

Recall that H is a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). A

subgraph H of G is a spanning subgraph of G if V (H) = V (G). Hence, a

spanning subgraph of G is obtained by deleting some of the edges of G but

keeping all vertices. If H is a spanning subgraph of G and H is a tree then

we say that H is a spanning tree of G. The proof of the following lemma

is left as an exercise.

Lemma 4.2.1

A graph G is connected if and only if G has a spanning tree.

Example 4.7. Find all of the spanning trees of the graph G shown below.

The Matrix Tree theorem provides a way to count the number of spanning

trees in a graph G using the cofactors of the Laplacian matrix L. Recall that

for any n × n matrix Z, the (i, j)-cofactor of Z is (−1)i+j det(Zi,j) where

Zi,j is the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the

jth column of Z. Clearly, if Z is an integer matrix then each cofactor is an

integer. The cofactor matrix of Z is the n× n matrix Cof(Z) with entries

Cof(Z)(i, j) = (−1)i+j det(Zi,j). Using the definition of the determinant, one

can show that

ZCof(Z)T = det(Z)I. (4.1)

Moreover, if Z is symmetric then Cof(Z) is also symmetric.

Lemma 4.2.2

For any graph G, there exists an integer τ(G) such that Cof(L) = τ(G)J,

in other words,

τ(G) = (−1)i+j det(Li,j)

for all i, j.
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Proof. Using the fact that det(L) = 0 and (4.1) we obtain LCof(L)T =

det(L)I = 0. Suppose that G is connected. Then any vector in the kernel

of L is a multiple of e. Now since LCof(L)T = 0, it follows that each row

of Cof(L) is a multiple of the all ones vector e, i.e., each row of Cof(L) is

constant. Since Cof(L) is symmetric, this implies that Cof(Z) is a constant

matrix, i.e., Cof(L) = τ(G)J for some integer τ(G). If G is disconnected,

then the kernel of L is at least two-dimensional and therefore rank(L) ≤ n−2.

This implies that every cofactor of L is zero. Hence, in this case τ(G) = 0.

Theorem 4.2.3: Matrix Tree Theorem

For any graph G, τ(G) is the number of spanning trees of G.
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Chapter 5

Regular Graphs

5.1 Strongly Regular Graphs

A graph G is called strongly regular with parameters (n, k, s, t) if G is a

n-vertex, k-regular graph such that any two adjacent vertices have s common

neighbors and any two non-adjacent vertices have t common neighbors.

Lemma 5.1.1

If G is strongly regular with parameters (n, k, s, t) then G is strongly

regular with parameters (n, k, s, t) where

k = n− k − 1

s = n− 2− 2k + t

t = n− 2k + s

Proof. It is clear that k = n− k − 1. Let vi and vj be two adjacent vertices

in G, and thus vj and vj are non-adjacent in G. In G, let Ωi be the vertices

adjacent to vi that are not adjacent to vj and let Ωj be the vertices adjacent

to vj that are not adjacent to vi, and let Γi,j be the set of vertices not adjacent

to neither vi nor vj. Therefore, in G the non-adjacent vertices vi and vj have

|Γi,j| common neighbors. Since |Ωi| = |Ωj| = k − s − 1 and Ωi ∩ Ωj = ∅ we

have

n = |Γi,j|+ |Ωi|+ |Ωj|+ s+ 2
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from which it follows that |Γi,j| = n− 2k+ s. Hence, in G, any non-adjacent

vertices have t = n− 2k + s common neighbors. The formula for s is left as

an exercise (Exercise 5.1).

Example 5.1. Let G be a strongly regular graph with parameters (n, k, s, t)

and suppose that G is not the complete graph. Prove that G is connected if

and only if t > 0. In this case, deduce that diam(G) = 2.

Proposition 5.1.2

Let G be a strongly regular graph with parameters (n, k, s, t). Then

A2 = kI+ sA+ t(J− I−A) (5.1)

Proof. The (i, j) entry of A2 is the number of walks of length 2 from vi to vj.

If vi and vj are adjacent then they have s common neighbors and each such

neighbor determines a walk from vi to vj of length 2. On the other hand,

if vi and vj are non-adjacent then they have t common neighbors and each

such neighbor determines a walk from vi to vj of length 2. If vi = vj then the

number of walks from vi to vj is k. Hence,

(A2)i,j =





s, vivj ∈ E(G)

t, vivj /∈ E(G)

k, i = j

This yields the desired formula for A2.

Theorem 5.1.3: Eigenvalues of a SRG

The adjacency matrix of a strongly regular graph has only three eigen-

values. If G is a strongly regular graph with parameters (n, k, s, t) then
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the eigenvalues of A besides k are

α =
(s− t) +

√
∆

2

β =
(s− t)−

√
∆

2

where ∆ = (s− t)2 + 4(k − t), with algebraic multiplicities

mα =
1

2

(
(n− 1)− 2k + (n− 1)(s− t)√

∆

)

mβ =
1

2

(
(n− 1) +

2k + (n− 1)(s− t)√
∆

)

Proof. Let z be an eigenvector of A corresponding to an eigenvalue λ not

equal to k. Then z is orthogonal to the all ones vector and thus Jz = 0.

Then from (5.1) we have A2 − (s− t)A− (k − t)I = tJ and therefore

(λ2 − (s− t)λ− (k − t))z = 0

and therefore λ2 − (s − t)λ − (k − t) = 0. The roots of the polynomial

x2 − (s − t)x − (k − t) = 0 are precisely α and β. Since tr(A) is the sum

of the eigenvalues of A, tr(A) = 0, and k has multiplicity one, we have

mα + mβ = n − 1 and αmα + βmβ + k = 0. Solving these equations for

mα and mβ yield mα = − (n−1)β+k
α−β and mβ = (n−1)α+k

α−β , and substituting the

expression for α and β yield stated expressions.

5.1.1 Exercises

Exercise 5.1. Finish the proof of Lemma 5.1.1.
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Quotient Graphs

6.1 Linear algebra review

Let us first recall some basics from linear algebra. Let Y be a n× n matrix.

The kernel of Y (frequently called the nullspace of Y) is the set

ker(Y) = {v ∈ Rn | Yv = 0}.

In other words, the kernel of Y consists of vectors that get mapped to the

zero vector when multiplied by Y. Clearly, the zero vector 0 is in ker(Y)

since Y0 = 0 and in fact ker(Y) is a subspace of Rn because it is closed

under scalar multiplication and scalar addition (verify this!). We say that Y

has a trivial kernel if ker(Y) = {0}, that is, if the only vector in ker(Y) is

the zero vector. In a first course in linear algebra you proved that Y has a

trivial kernel if and only if Y is invertible (if and only if det(Y) 6= 0).

Now let M be a n× n matrix with real entries. Given a non-zero vector

v ∈ R if it holds that

Mv = λv

for some number λ ∈ R then we say that v is an eigenvector of M with

eigenvalue λ. We will say that (v, λ) is an eigenpair of M. Notice that

we require v to be non-zero, and that v ∈ Rn and also λ ∈ R. We are

restricting our considerations only to real eigenvectors and real eigenvalues

although it is easy to construct matricesM with real entries that do not have
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real eigenvectors/eigenvalues, such as

M =

[
0 1
−1 0

]
.

However, because the matrices we will study have only real eigenvectors and

eigenvalues, this lost of generality will not be too restrictive.

If (v, λ) is an eigenpair of M, then from Mv = λv we can write that

λv −Mv = 0 or equivalently by factoring v on the right we have

(λI−M)v = 0.

Hence, M will have an eigenvector v associated to λ if the matrix

Yλ = λI−M

has a non-trivial kernel. Now, Yλ as a non-trivial kernel if and only if Yλ

is not invertible if and only if det(Yλ) = 0. Hence, the only way that λ is an

eigenvalue of M is if

det(λI−M) = 0.

If we replace λ by a variable x then to find the eigenvalues of M we must

therefore find the roots of the polynomial

p(x) = det(xI−M)

that is, we must find numbers λ such that p(λ) = 0. The polynomial p(x) is

called the characteristic polynomial of M and we have just showed that

the roots of p(x) are exactly the eigenvalues of M. Notice that to compute

the polynomial p(x) we do not need any information about the eigenvectors

of M and p(x) is only used to find the eigenvalues. However, if λ is known

to be a root of p(x) then any vector in ker(λI − M) is an eigenvector of

M with corresponding eigenvalue λ. Now since ker(λI − M) is a subspace

of Rn it has a basis, say βλ = {v1,v2, . . . ,vk}, consisting of eigenvectors of

M with eigenvalue λ. The dimension of the subspace ker(λI −M) is called
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the geometric multiplicity of λ and ker(λI −M) is sometimes called the

eigenspace associated to λ because it is where all the eigenvectors associated

to λ live.

If λ is an eigenvalue of M, the algebraic multiplicity of λ is the number

of times that λ appears as a root of the characteristic polynomial p(x). An

eigenvalue is said to be simple if its algebraic multiplicity is one and said

to be repeated otherwise. The geometric multiplicity is always less than or

equal to the algebraic multiplicity.

Example 6.1. Suppose that M is a 6× 6 matrix with characteristic polyno-

mial

p(x) = det(xI−M) = x6 − 4x5 − 12x4.

By inspection we can factor p(x):

p(x) = x4(x2 − 4x− 12) = x4(x− 6)(x+ 2).

Therefore, the eigenvalues of M are λ1 = 0, λ2 = 6 and λ3 = −2, and thus M

has only three distinct eigenvalues (even though it is a 6 × 6 matrix). The

algebraic multiplicity of λ1 is 4 and it is thus repeated, while λ2 and λ3 are

both simple eigenvalues. Thus, as a set, the eigenvalues of M are {0, 6,−2},
whereas if we want to list all the eigenvalues of M in say increasing order we

obtain

(−2, 0, 0, 0, 0, 6).

The latter is sometimes called the “set of eigenvalues listed with multiplici-

ties” or the “list of eigenvalues with multiplicities”.

Example 6.2 (This is an important example). If M is a n × n matrix and

has n simple eigenvalues λ1, λ2, . . . , λn (i.e., all have algebraic multiplicity 1)

then each eigenspace ker(λiI −M) is one-dimensional (i.e., it is a line in Rn

through the origin). Therefore, if v and w are two eigenvectors associated to

the same eigenvalue λi then v and w are scalar multiplies of each other, that

is, v = αw for some non-zero α ∈ R.
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Let us now focus on the case that M is a symmetric matrix, that is,

MT = M. One of the most important results in linear algebra is that the

eigenvalues ofM are all real numbers and moreover there exists an orthonor-

mal basis of Rn consisting of eigenvectors of M. Hence, if λ1, λ2, . . . , λn

denote the eigenvalues of M (some of which may be repeated) then we are

guaranteed the existence of an orthonormal basis β = {v1,v2, . . . ,vn} of Rn

such thatMvi = λivi for all i = 1, 2, . . . , n. If we set Λ = diag(λ1, λ2, . . . , λn)

to be the diagonal matrix with ith diagonal entry equal to λi and set X =[
v1 v2 · · · vn

]
then the condition Mvi = λivi for all i = 1, 2, . . . , n can be

written as the matrix equation

MX = XΛ

and therefore

M = XΛX−1.

However, since X−1 = XT (because X is an orthogonal matrix) we have that

M = XΛXT .

Example 6.3. In Python, one can compute the eigenvalues and eigenvectors

of a symmetric matrix by using the function eigh which is contained in the

module numpy.linalg or scipy.linalg. The function eigh returns a 2-

tuple where the first element is an array of the eigenvalues and the second

element is an orthogonal matrix consisting of the eigenvectors. For example,

a typical call to eigh is

E, X = numpy.linalg.eigh(M)

and E is a 1 × n array that stores the eigenvalues and X is a n × n numpy

array whose columns consist of orthonormal eigenvectors of M. For example,

to confirm that the 3rd column of X is an eigenvector whose eigenvalue is the

3rd entry of E we type

M @ X[:, 2] - E[2] * X[:, 2]
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and the returned value should be the zero vector of length n. To verify that

X is an orthogonal matrix (i.e., that XTX = I) type:

X.T @ X

6.2 Automorphisms and eigenpairs

Recall that if P is the permutation matrix of the permutation σ ∈ Sn then

σ ∈ Aut(G) if and only if PTAP = A or equivalently AP = PA. Our first

result describes how eigenvectors behave under the action of an automorphism

of G.

Proposition 6.2.1

Let G be a graph with adjacency matrix A and suppose that P is the

permutation matrix representation of an automorphism σ ∈ Aut(G). If

(v, λ) is an eigenpair of A then so is (Pv, λ).

Proof. Let v be an eigenvector of A with eigenvalue λ, that is, Av = λv.

Since P is an automorphism of G we have that AP = PA and therefore

APv = PAv = Pλv = λPv.

Thus, Pv is an eigenvector of A with the same eigenvalue λ as v.

Example 6.4. Consider the graph G shown in Figure 6.1 with adjacency

matrix

A =




0 1 1 0 0 0
1 0 1 1 1 0
1 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 0 1
0 0 0 1 1 0



.

The spectrum spec(G) = (λ1, λ2, λ3, λ4, λ5, λ6) of G and corresponding

eigenvectors written as the columns of the matrixX =
[
v1 v2 v3 v4 v5 v6

]
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v1

v2

v3

v4

v5

v6

Figure 6.1: Graph for Example 6.4

are

spec(G) =

(
−2,−1,−1,

3−
√
17

2
, 1,

3 +
√
17

2

)

X =




−1 0 0 1 −2 1
1 0 −1 −0.28 −1 1.78
1 0 1 −0.28 −1 1.78

−1 −1 0 −0.28 1 1.78
−1 1 0 −0.28 1 1.78
1 0 0 1 2 1




One can verify that for instance σ = (1 6)(2 5)(3 4) is an automorphism of

G. If P denotes the permutation matrix of σ, one can verify that Pv1 = −v1

which is an eigenvector ofA with same eigenvalue as v1. As another example,

one can verify that Pv4 = v4 and that Pv2 = v3. Hence, in some cases Pvi

is a scalar multiple of vi and in some cases Pvi is a non-scalar multiple of

vi; the latter case can occur if the eigenvalue associated to vi is repeated as

it occurs with v2 and v3 (in this case λ2 = λ3 = −1).

Our next result relates the algebraic multiplicities of the eigenvalues of A

with the order of the automorphisms of G.

Proposition 6.2.2

Let G be a graph with adjacency matrix A. If A has simple eigenvalues

then every non-identity automorphism ofG has order k = 2. In particular,

the automorphism group Aut(G) is an abelian group.

Proof. Since A has simple eigenvalues then ker(λI −A) is one-dimensional,

and therefore Pv = αv for some scalar α 6= 0 (see Example 6.2). Therefore,
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multiplying the equation Pv = αv by P on the left we obtain

P2v = Pαv = αPv = α2v.

Now since P is an orthogonal matrix, ‖Pv‖ = ‖v‖, and thus α = ±1 which

implies that α2 = 1. Therefore,

P2v = v.

Hence, the matrix P2 has v as an eigenvector with eigenvalue 1. Since v

was an arbitrary eigenvector of A, if β = {v1,v2, . . . ,vn} is a basis of Rn

consisting of orthonormal eigenvectors of A then β consists of eigenvectors of

P2 all of which have eigenvalue 1. Therefore, if X =
[
v1 v2 · · · vn

]
then

P2X = X

and therefore since X is invertible we have

P2 = I.

Thus σ2 is the identity permutation and consequently σ has order k = 2.

That Aut(G) is abelian then follows from Example 1.28.

Remark 6.1. Proposition 6.2.2 does not say that Aut(G) will necessarily

contain non-trivial automorphisms (of order 2). In fact, most graphs will have

distinct eigenvalues and a trivial automorphism group, that is, Aut(G) =

{id}. What Proposition 6.2.2 does say is that if there is any non-trivial

automorphism σ ∈ Aut(G) then σ has order k = 2 whenever A has distinct

eigenvalues.

Before we move on, we need to recall the notion of a partition of a

set V . A partition of V is a collection π = {C1, C2, . . . , Ck} of subsets

Ci ⊂ V such that V =
⋃k

i=1Ci and Ci ∩ Cj = ∅ for all i 6= j. The

subsets Ci are called the cells of the partition π. If π has k-cells then it

is called a k-partition. For example, if V = {1, 2, 3, . . . , 10} then π =
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{{6, 9, 5, 10}, {1, 4}, {2, 3, 7}, {8}} is a partition of V and it has k = 4 cells.

The unit partition of V = {1, 2, . . . , n} is the partition that contains only

one cell, namely, {{1, 2, . . . , n}} and the discrete partition of V is the par-

tition that contains n cells, namely, {{1}, {2}, . . . , {n}}. We will refer to

these partitions as the trivial partitions of V .

Remark 6.2. Given a set V = {1, 2, . . . , n}, how many partitions of V are

there? The total number of partitions of an n-element set is theBell number

Bn. The first several Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5,

B4 = 15, B5 = 52, and B6 = 203. The Bell numbers satisfy the recursion

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

See the Wiki page on Bell numbers for more interesting facts.

Every permutation σ ∈ Sn induces a partition of V as follows. Suppose

that σ has r cycles in its cycle decomposition:

σ = (i1 i2 · · · im1
)︸ ︷︷ ︸

σ1

(im1+1 im1+2 · · · im2
)︸ ︷︷ ︸

σ2

· · · (imr−1+1 imr−1+2 · · · imr
)︸ ︷︷ ︸

σr

.

The r sets formed from the integers within each cycle of σ and the singleton

sets formed from the remaining integers fixed by σ forms a partition of the

vertex set V = {1, 2, . . . , n}. In other words, if j1, j2, . . . , jm are the integers

fixed by σ, and we set k = r +m, then if we set

C1 = {i1, i2, · · · , im1
}

C2 = {im1+1, im1+2, · · · , im2
}

...

Cr = {imr−1+1, imr−1+2, · · · , imr
}

Cr+1 = {j1}
...

Ck = {jm}
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then π = {C1, C2, . . . , Ck} is a partition of V = {1, 2, . . . , n}. The notation

is messy but an example will make the above clear.

Example 6.5. As an example, consider σ ∈ S12 given by

σ = (1 5)(2 3)(7 8 4 11)(9 12 6)(10)

Hence, σ fixes the integer 10. Thus, if we set C1 = {1, 5}, C2 = {2, 3},
C3 = {7, 8, 4, 11}, C4 = {9, 12, 6}, C5 = {10}, then π = {C1, C2, C3, C4, C5}
is a partition of the vertex set V = {1, 2, . . . , 12}. We say that the partition

π is induced by the permutation σ.

Suppose now that σ ∈ Aut(G) and let π = {C1, C2, . . . , Ck} be the par-

tition of V induced by the cycle decomposition of σ. Pick a cell Ci and pick

a vertex u ∈ Ci and suppose that u has d neighbors in cell Cj, say that they

are {v1, . . . , vd}. Since σ sends a vertex in one cell to a vertex in the same

cell (recall that each cell consists of the integers in a cycle) then necessarily

σ(u) ∈ Ci and σ(vℓ) ∈ Cj for ℓ = 1, . . . , d. Now since σ ∈ Aut(G), it fol-

lows that {σ(u), σ(vℓ)} ∈ E(G) and therefore the neighbors of σ(u) in Cj are

{σ(v1), σ(v2), . . . , σ(vd)}. Hence, the number of vertices in Cj adjacent to

σ(u) is equal to the number of vertices in Cj adjacent to u, in this case d.

Since σ cycles through all the vertices in Ci, it follows that all the vertices

in Ci have the same number of neighbors in Cj. Surprisingly, this

observation turns out to be an important one.

We introduce some notation to capture what we have just discussed.

Given a partition π = {C1, C2, . . . , Ck} of V , define for any vertex v ∈ V

the degree of v in Cj by

deg(v, Cj) = the number of vertices in Cj adjacent to v.

Formally, if N(v) denotes all the vertices adjacent to v then

deg(v, Cj) = |N(v) ∩ Cj|.
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Using this notation, what we showed above is that for any two cells Ci and

Cj contained in a partition induced by an automorphism of G, the number

deg(u, Cj)

is the same for all u ∈ Ci. Now, deg(u, Cj) could be zero and it is certainly

less than |Cj|. We can reverse the role of the cells Ci and Cj and conclude

that deg(v, Ci) is the same for all v ∈ Cj. However, it is not necessarily the

case that deg(v, Ci) will equal deg(u, Cj). Lastly, we could also consider the

case that Ci = Cj and thus for u ∈ Ci the number deg(u, Ci) is the number of

vertices in Ci adjacent to u. We summarize our discussion with the following

lemma.

Lemma 6.2.3

Suppose that σ ∈ Aut(G) and let π = {C1, C2, . . . , Ck} be the partition

induced by the cycle decomposition of σ. Then for any pair of cells Ci

and Cj it holds that

deg(u, Cj) = deg(v, Cj)

for all u, v ∈ Ci.

Example 6.6. Consider the graph G shown in Figure 6.2, which is called

the Petersen graph. One can verify that σ = (1 10)(2 8 5 7)(3 6 4 9) is an

v1

v2

v3 v4

v5v6

v7v8

v9
v10

Figure 6.2: The Petersen graph

automorphism of G. Consider the induced partition π = {{1, 10}, {2, 8, 5, 7},
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{3, 6, 4, 9}}, and let C1, C2, C3 be the cells of π. For any vertex v ∈ C1, one

can verify that deg(v, C1) = 1, deg(v, C2) = 2, and deg(v, C3) = 0. For

any vertex w ∈ C2, one can verify that deg(w,C1) = 1, deg(w,C2) = 0,

and deg(w,C3) = 2. Lastly, for any vertex u ∈ C3, one can verify that

deg(u, C1) = 0, deg(u, C2) = 2, and deg(u, C3) = 1. We summarize our

results using a matrix which we denote by

Aπ =




deg(v, C1) deg(v, C2) deg(v, C3)

deg(w,C1) deg(w,C2) deg(w,C3)

deg(u, C1) deg(u, C2) deg(u, C3)


 =




1 2 0
1 0 2
0 2 1



 .

As another example, σ = (1 3 9)(4 6 10)(5 8 7) is an automorphism of

G and the induced partition is π = {{1, 3, 9}, {4, 6, 10}, {5, 8, 7}, {2}}. One

can verify that for any v ∈ C1 it holds that deg(v, C1) = 0, deg(v, C2) = 1,

deg(v, C3) = 1, and deg(v, C4) = 1. Also, for any w ∈ C2 it holds that

deg(w,C1) = 1, deg(w,C2) = 0, deg(w,C3) = 2, and deg(v, C4) = 0. Similar

verifications can be made for vertices in C3 and C4, and in this case

Aπ =




0 1 1 1
1 0 2 0
1 2 0 0
3 0 0 0


 .

In the next section, we will see how the degree conditions that exist for a

partition induced by an automorphism exist for more general partitions not

necessarily arising from an automorphism.

6.3 Equitable partitions of graphs

In this section, we will introduce the notion of an equitable partition of a

graph and how we can use such partitions to define a notion of a quotient

graph. We begin with two examples.
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Example 6.7. Consider again the Petersen graph in Figure 6.2. One can

verify that π = {{1, 2, 3, 4, 7, 10}, {5, 8, 9}, {6}} is not the partition induced

by any automorphism of G. However, one can verify that for any v ∈ C1 it

holds that deg(v, C1) = 2, deg(v, C2) = 1, and deg(v, C3) = 0, that for any

u ∈ C2 it holds that deg(u, C1) = 2, deg(u, C2) = 0, and deg(u, C3) = 1; and

finally that for any w ∈ C3 it holds that deg(w,C1) = 0, deg(w,C2) = 3, and

deg(w,C3) = 0. Hence, even though π is not induced by any automorphism,

it still satisfies the degree conditions that are satisfied by a partition induced

by an automorphism. In this case,

Aπ =




2 1 0
2 0 1
0 3 0



 .

Example 6.8. Consider the graph G shown in Figure 6.3, which is called the

Frucht graph. This graph has a trivial automorphism group, i.e., Aut(G) =

{id}. However, it contains the type of partitions that satisfy the degree

conditions of the partitions induced by an automorphism. For example, for

π = {{1, 5, 7, 12}, {3, 6, 9, 11}, {2, 4, 8, 10}}, one can verify that for any u ∈
C1 it holds that deg(u, C1) = 1, deg(u, C2) = 1, and deg(u, C3) = 1; for any

v ∈ C2 it holds that deg(v, C1) = 1, deg(v, C2) = 0, and deg(v, C3) = 2; and

finally for any w ∈ C3 it holds that deg(w,C1) = 1, deg(w,C2) = 2, and

deg(w,C3) = 0. Hence, in this case

Aπ =



1 1 1
1 0 2
1 2 0


 .

Let us now define the vertex partitions that will be of interest to us and

that generalize the partitions induced by automorphisms of a graph.
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v1

v2 v3

v4

v5

v6

v7v8

v9

v10

v11

v12

Figure 6.3: A graph with trivial automorphism group but with non-trivial
equitable partitions

Definition 6.3.1: Equitable Partitions

Let G = (V, E) be graph and let π = {C1, C2, . . . , Ck} be a partition

of V . If for each pair of cells (Ci, Cj) (not necessarily distinct) it holds

that deg(u, Cj) = deg(v, Cj) for every u, v ∈ Ci then we say that π is an

equitable partition of V .

By Lemma 6.2.3, every partition induced by an automorphism is an eq-

uitable partition, however, Examples 6.7-6.8 show that the converse does not

hold, that is, not every equitable partition is induced by an automor-

phism. In fact, numerical evidence indicates that the proportion of equitable

partitions induced by an automorphism tends to zero as n → ∞.

There is an elegant linear-algebraic way to characterize an equitable par-

tition that is very useful and which gives insight into the structure of the

eigenvectors of a graph. We first need to introduce some notation and review

more linear algebra.

Let π = {C1, C2, . . . , Ck} be a partition of V = {1, 2, . . . , n}. For any cell

Ci let ci ∈ Rn denote the vector whose entries are equal to 1 on the integer

indices in Ci and zero elsewhere. For example, if Ci = {2, 4, 7} and n = 9

then ci = (0, 1, 0, 1, 0, 0, 1, 0, 0), i.e., ci has a 1 in positions {2, 4, 7} and zero

elsewhere. The vector ci is called the characteristic vector (or indicator
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vector) of the cell Ci. We define the characteristic matrix of π as the n×k

matrix whose columns are the characteristic vectors of the cells of π:

C =
[
c1 c2 · · · ck

]
.

Notice that if π has k cells then C is a n × k matrix. Also, and more

importantly, since π is a partition of V , the columns of C are orthogonal,

and thus rank(C) = k.

Example 6.9. If V = {1, 2, 3, 4, 5, 6, 7, 8} then π = {{1, 4, 6}, {2, 5}, {7, 8},
{3}} is a partition of V with cells C1 = {1, 4, 6}, C2 = {2, 5}, C3 = {7, 8},
C4 = {3}, and π is a 4-partition. The characteristic matrix of π is

C =




1 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0




.

Now, since C has orthogonal columns then we have

CTC =




cT1 c1 0 0 0
0 cT2 c2 0 0
0 0 cT3 c3 0
0 0 0 cT4 c4


 =




3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1


 .

Notice that the diagonals are just the cardinalities of the cells, i.e., cTi ci =

|Ci|.

For any n× k matrix C recall that the image of C (frequently called the

range of C) is

img(C) = {Cx | x ∈ Rk}.
The image of C is a subspace and more concretely, it is the subspace spanned

by the columns of C (frequently called the column space of C). To see this,
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if C =
[
c1 c2 · · · ck

]
then for x = (x1, x2, . . . , xk) we have

Cx = x1c1 + x2c2 + · · ·+ xkck

and thusCx is a linear combination of the columns ofC, i.e.,Cx ∈ span{c1, c2,
. . . , ck}. We now introduce the following important notion.

Definition 6.3.2: Invariant Subspace

Let A be a n × n matrix and let W ⊆ Rn be a subspace. If for every

x ∈ W it holds that Ax ∈ W then we say that W is A-invariant.

Hence, a subspace W is A-invariant if A maps any element in W back to

an element in W. There is no reason to expect that this will be true for

an arbitrary subspace and so that is why such subspaces are singled out.

Suppose that W is A-invariant and let β = {y1,y2, . . . ,yk} be a basis for W

and consider the matrix W =
[
y1 y2 · · · yk

]
. Now, since W is A-invariant

then Ayi ∈ W and therefore Ayi can be written as a linear combination of

the basis vectors β. Therefore, there is some vector bi ∈ Rk such that

Ayi = Wbi.

This holds for each i = 1, 2, . . . , k and therefore if we setB =
[
b1 b2 · · · bk

]

then

AW = WB.

Example 6.10. Suppose thatA has eigenvalue λ and let β = {v1,v2, . . . ,vm}
be a set of linearly independent eigenvectors of A with eigenvalue λ (m is

necessarily ≤ the geometric multiplicity of λ). Consider the subspace W =

span{v1,v2, . . . ,vm}. Let x ∈ W so that there exists constants α1, α2, . . . , αm

such that x = α1v1 + α2v2 + · · ·+ αmvm. Then,

Ax = A(α1v1 + α2v2 + · · ·+ αmvm)

= A(α1v1) +A(α2v2) + · · ·+A(αmvm)

= α1Av1 + α2Av2 + · · ·+ αmAvm

= α1λv1 + α2λv2 + · · ·+ αmλvm
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from which we see that Ax ∈ span{v1,v2, . . . ,vm}, that is, Ax ∈ W. Hence,

W is A-invariant.

Although not true for a general matrix A, if A is symmetric then every

A-invariant subspace W has a basis of eigenvectors of A. This fact is so

important that we state it as a theorem.

Theorem 6.3.3

If A is a symmetric n× n matrix and W is A-invariant then there exists

a basis of W consisting of eigenvectors of A.

Proof. Suppose that W is k-dimensional and let β = {w1,w2, . . . ,wk} be an

orthonormal basis ofW. SinceW isA-invariant then for each i ∈ {1, 2, . . . , k}
there exists constants b1,i, b2,i, . . . , bk,i such that

Awi = b1,iw1 + b2,iw2 + · · ·+ bk,iwk.

If we let B be the k × k matrix with entries Bj,i = bj,i and we put W =[
w1 w2 · · · wk

]
then

AW = WB. (6.1)

Now since β is an orthonormal basis we have thatWTW = Ik×k and therefore

multiplying (6.1) by WT on the left we obtain that

B = WTAW.

Now since A is symmetric it follows that B is symmetric and thus B has k

linearly independent eigenvectors, say v1,v2, . . . ,vk, with associated eigen-

values λ1, λ2, . . . , λk. We claim that xi = Wvi is an eigenvector of A with
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eigenvalue λi. We compute

Axi = AWvi

= WBvi

= Wλivi

= λiWvi

= λixi.

The eigenvectors x1,x2, . . . ,xk are clearly contained in W and they are lin-

early independent since v1,v2, . . . ,vk are linearly independent and the matrix

W has rank k.

We are now finally ready to characterize an equitable partition in terms

of the invariant subspaces of the adjaceny matrix.

Theorem 6.3.4: Equitable Partitions and Invariant Subspaces

Let G = (V, E) be a graph with adjacency matrix A. Let π be a k-

partition of V with characteristic matrix C. Then π is an equitable

partition of G if and only if img(C) is A-invariant. Equivalently, π is

equitable if and only if there exists a matrix B ∈ Rk×k such that AC =

CB. In this case, B = (CTC)−1CTAC.

Proof. Let π = {C1, C2, . . . , Ck} and let C =
[
c1 c2 · · · ck

]
, where ci is

the characteristic vector of cell Ci. Let Ci = diag(ci), in other words, Ci is

the diagonal matrix containing a 1 in diagonal entry (j, j) if j ∈ Ci and zero

other wise. Hence, I = C1 +C2 + · · ·+Ck. For any cell Cj let

dj =




deg(v1, Cj)
deg(v2, Cj)
deg(v2, Cj)

...
deg(vn, Cj)



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Then it is not hard to see that Acj = dj, and therefore we can write

Acj = C1dj +C2dj + · · ·+Ckdj.

For each i ∈ {1, 2, . . . , k} we have

(Cidj)(u) =




deg(u, Cj), if u ∈ Ci

0, otherwise

Therefore, if deg(u, Cj) = deg(v, Cj) for all u, v ∈ Ci thenCidj = deg(u, Cj)ci

for any u ∈ Ci. Hence, if π is equitable then

Acj = deg(u1, Cj)c1 + deg(u2, Cj)c2 + · · ·+ deg(uk, Cj)ck

where ui ∈ Ci, and thus Acj ∈ img(C). Conversely, if Acj ∈ img(C) then

our computations above show that necessarily deg(u, Cj) = deg(v, Cj) for all

u, v ∈ Ci, and thus π is equitable.

The matrix B in Theorem 6.3.4 is actually B = Aπ that appeared in Ex-

amples 6.7-6.8. To be precise, if π = {C1, C2, . . . , Ck} is an equitable partition

then deg(u, Cj) is the same for all u ∈ Ci. We can therefore unambiguously

define

deg(Ci, Cj) = deg(u, Cj)

for some u ∈ Ci. Then one can show that

Aπ =




deg(C1, C1) deg(C1, C2) · · · deg(C1, Ck)
deg(C2, C1) deg(C2, C2) · · · deg(C2, Ck)

...
... · · · ...

deg(Ck, C1) deg(Ck, C2) · · · deg(Ck, Ck)




and as discussed before in general deg(Ci, Cj) 6= deg(Cj, Ci), i.e., Aπ is not

necessarily symmetric. The proof of Theorem 6.3.4 shows that

AC = CAπ

that is, Aπ = (CTC)−1CTAC.
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Let us now discuss how the existence of an equitable partition imposes

constraints on the eigenvectors of A. Suppose that π is a partition of V and

C is its characteristic matrix. Then img(C) consists of vectors that have the

same numerical value on the entries of each cell. For instance, if

C =




1 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0




then if x = (α, β, γ, ρ) then

y = Cx = α




1
0
0
1
0
1
0
0




+ β




0
1
0
0
1
0
0
0




+ γ




0
0
0
0
0
0
1
1




+ ρ




0
0
1
0
0
0
0
0




=




α
β
ρ
α
β
α
γ
γ




.

Hence, a vector y ∈ img(C) has the same values on the entries C1 = {1, 4, 6},
the same values on entries C2 = {2, 5}, the same values on entries C3 = {7, 8},
and the same values on entries C4 = {3} (this is trivial because C4 is a

singleton cell). Now, if π is an equitable partition then W = img(C) is

A-invariant and therefore by Theorem 6.3.3 since A is symmetric there is a

basis of img(C) consisting of eigenvectors of A. These eigenvectors therefore

have entries that are equal on each of the cells of π and there will be k of

these eigenvectors (linearly independent) if π is a k-partition.

We consider a specific example. Consider again the Frucht graph G which

we reproduce in Figure 6.4. The Frucht graph has three non-trivial equitable
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partitions, one of which is

π = {{1, 5, 7, 12}, {3, 6, 9, 11}, {2, 4, 8, 10}}.

Hence, since π is a k = 3 partition then there exists k = 3 linearly independent

eigenvectors of A whose entries on the cells of π are equal. The eigenvectors

v1

v2 v3

v4

v5

v6

v7v8

v9

v10

v11

v12

Figure 6.4: The Frucht graph

(rounded to two decimal places) of A are (as columns):

X =




0.17 0.00 −0.48 0.40 −0.17 0.12 0.41 0.11 0.33 0.18 0.36 −0.29
−0.14 0.35 −0.00 −0.56 −0.17 0.00 −0.20 0.44 0.00 0.31 0.32 −0.29
−0.20 −0.35 0.27 0.14 0.50 −0.27 −0.20 −0.14 0.27 0.40 0.22 −0.29
0.44 0.35 0.00 −0.04 −0.17 −0.00 −0.20 −0.63 0.00 0.31 −0.18 −0.29

−0.51 −0.00 −0.12 0.03 −0.17 −0.33 0.41 −0.16 −0.48 0.18 −0.21 −0.29
−0.31 −0.35 −0.15 −0.10 −0.17 0.60 −0.20 −0.02 0.21 0.04 −0.43 −0.29
0.39 0.00 0.00 −0.27 0.50 0.00 0.41 0.29 −0.00 −0.00 −0.43 −0.29

−0.10 0.35 0.27 0.46 −0.17 −0.27 −0.20 0.33 0.27 −0.22 −0.35 −0.29
0.36 −0.35 0.21 0.27 −0.17 0.15 −0.20 0.26 −0.60 0.04 0.14 −0.29

−0.20 0.35 −0.27 0.14 0.50 0.27 −0.20 −0.14 −0.27 −0.40 0.22 −0.29
0.15 −0.35 −0.33 −0.30 −0.17 −0.48 −0.20 −0.09 0.12 −0.49 0.07 −0.29

−0.05 −0.00 0.60 −0.16 −0.17 0.21 0.41 −0.24 0.15 −0.36 0.28 −0.29




Observe that the eigenvectors in columns 2, 7, 12 all have entries that are

constant on the cells of π. What can we say about the eigenvectors of A

not contained in img(C)? It turns out that because A is symmetric then the

orthogonal complement of the subspace W = img(C) is also A-invariant,

where the orthogonal complement of W is the set of vectors orthogonal to

vectors in W. The orthogonal complement of a subspace W is denoted by
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W
⊥ and thus

W
⊥ = {z ∈ Rn | 〈z,w〉 = 0 for all w ∈ W}.

Since W⊥ is A-invariant, by Theorem 6.3.3, there is a basis of W⊥ consisting

of eigenvectors A. One can show that for W = img(C) it holds that

W
⊥ = ker(CT ).

It is not hard to see that z ∈ ker(CT ) if and only if the sum of the entries

of z on each cell sum to zero. Hence, the remaining eigenvectors of A not

contained in img(C) have the property that the sum of their entries on each

cell sum to zero. We summarize with the following.

Proposition 6.3.5

Suppose that π = {C1, C2, . . . , Ck} is an equitable partition of G. Then

the eigenvectors of A can be split into two groups, namely, those that are

constant on the cells of π (i.e., contained in img(C)) and those that sum

to zero on the cells of π (i.e., contained in ker(CT )).

Example 6.11. Another partition of the Frucht graph is

π = {{3, 7, 10}, {1, 2, 4, 5, 6, 8, 9, 11, 12}}

so that π is a k = 2 partition. One can verify that A has k = 2 linearly

independent eigenvectors that are constant on the cells of π, namely, the 5th

eigenvector and the last. The remaining n − k = 12 − 2 = 10 eigenvec-

tors sum to zero on the cells of π. For example, for the first eigenvector v1 =

(0.17,−0.14,−0.20, 0.44,−0.51,−0.31, 0.39,−0.10, 0.36,−0.20, 0.15,−0.05) the

sum of the entries on cell C1 = {3, 7, 10} is −0.20 + 0.39− 0.20 ≈ 0 (due to

rounding errors) and the sum of the entires on cell C2 = {1, 2, 4, 5, 6, 8, 9, 11, 12}
is 0.17− 0.14 + 0.44− 0.51− 0.31− 0.10+ 0.36 + 0.15− 0.05 ≈ 0 (again due

to rounding errors).
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