
Numerical Analysis

Cesar O. Aguilar
Department of Mathematics

State University of New York at Geneseo



2



Contents

1 Introduction 5

1.1 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Sequences and Round-Off Error . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Algorithms and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Root-Finding in One Variable Equations 15

2.1 Bisection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Fixed-Point Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Error Analysis of General Iterative Methods . . . . . . . . . . . . . . . . . . 29

3 Interpolation 35

3.1 Lagrange Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Chebyshev Polynomials and Interpolation Error Minimization . . . . . . . . 48

3.3 Newton’s Divided Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Piecewise Interpolation with Cubic Splines . . . . . . . . . . . . . . . . . . . 63

4 Numerical Differentiation and Integration 71

4.1 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Direct Methods for Linear Systems 87

5.1 Gaussian Elimination with Partial Pivoting . . . . . . . . . . . . . . . . . . . 87

5.2 LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 LU-Decomposition with Row Interchanges . . . . . . . . . . . . . . . . . . . 95

5.4 Diagonally Dominant and Positive Definite Matrices . . . . . . . . . . . . . . 99

3



CONTENTS

6 Iterative Techniques for Solving Linear Systems 107

6.1 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Eigenvalues and Convergent Matrices . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Iterative Methods and Convergence . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Jacobi and Gauss-Siedel Methods . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Approximating Eigenvalues 125

7.1 The Power Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Symmetric Power Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 PageRank Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5 SVD and Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Numerical Solutions to Ordinary Differential Equations 143

8.1 Ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Taylor Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.4 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4



1

Introduction

1.1 Taylor’s Theorem

Many problems in science and engineering cannot be solved with explicit formulas yielding

exact results, i.e. solved analytically. Numerical analysis is concerned with developing

algorithms that produce approximate solutions and establish estimates on the accuracy of

the solution.

b

θ(t)

Figure 1.1: Pendulum swinging under the action of gravity

Example 1.1. Consider a pendulum free to hang from one of its end and under the force of

gravity, see Figure 1.1. Let θ(t) denote the angle the rod makes with the vertical measured

counter clockwise. Then applying Newton’s Law’s, we obtain the differential equation

θ′′(t) = − sin(θ(t)).

For every initial condition θ(0) and θ′(0) there exists a unique function θ(t) defined for all

t ∈ R and solving the above differential equation. Analytic expression for θ(t) in terms of

elementary functions from calculus are unknown.

Consider the problem of computing cos(0.01). Recall that if (p, q) are the Cartesian

coordinates of the point on the unit circle such that the line from the origin (0, 0) to (p, q)
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1.1. TAYLOR’S THEOREM

makes an angle x ∈ [0, 2π) with the x-axis then p = cos(x). However, in general there are no

closed form solutions for cos(x), except in very few cases such as cos(0) = 1, cos(π/2) = 0,

or cos(π/3) = 1/2. However, we can use Taylor’s Theorem to approximate cos(0.01) and

also give a bound on the error in the approximation.

Theorem 1.1: Taylor’s Theorem

Let f : [a, b] → R be such that f, f (1), . . . , f (n) are continuous on [a, b] and that f (n+1)

exists on (a, b). Let x0 ∈ [a, b]. Then for any x ∈ [a, b] there exists a number ξ(x)
between x0 and x such that

f(x) = Pn(x) +Rn(x)

where

Pn(x) = f(x0) + f (1)(x0)(x− x0) +
1

2!
f (2)(x0)(x− x0)

2 + · · ·+ 1

n!
f (n)(x0)(x− x0)

n

and

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ(x))(x− x0)

n+1.

The term Pn(x) is called the n-th order Taylor polynomial of f centered at x0 and

Rn(x) is called the remainder/truncation term. If f(x0), f
(1)(x0), . . . , f

(n)(x0) are easy

to compute and x is close to x0, for example |x− x0| < 1, then Rn(x) will be small provided

that n is large enough and f (n+1)(ξ(x)) is not too big. In fact, if for instance |f (n+1)(z)| ≤ M

for all z ∈ [a, b] then

|f(x)− Pn(x)| =
∣∣∣∣

1

(n + 1)!
f (n+1)(ξ(x))(x− x0)

n+1

∣∣∣∣

=
1

(n + 1)!
|f (n+1)(ξ(x))||x− x0|n+1

≤ 1

(n+ 1)!
M |x− x0|n+1

Hence, if |x− x0| is small then the error term |Rn(x)| = |f(x)− Pn(x)| becomes small as n

increases. The next example illustrates the use of Taylor’s theorem.

Example 1.2. Let f(x) = cos(x) and let x0 = 0.

(a) Determine P2(x) at x0 and use it to approximate cos(0.01). Determine an upper bound

for | cos(0.01)− P2(0.01)|.
(b) Repeat with P3(x).

6



1.1. TAYLOR’S THEOREM

Solution. We have that f (1) = − sin(x), f (2)(x) = − cos(x), f (3)(x) = sin(x), and f (4)(x) =

cos(x). Hence f (1)(0) = 0, f (2)(0) = −1, and f (3)(0) = 0. Hence,

P2(x) = 1− 1

2
x2.

Thus P2(0.01) = 1 − 1
2
(0.01)2 = 0.99995 is an approximation to cos(0.01). To estimate the

error in the approximation we determine a bound on R2(0.01). Now, R2(x) =
1
3!
sin(ξ(x))(x−

0)3, where ξ(x) is in between x and x0 = 0, and since | sin(z)| ≤ 1 for all z ∈ R it follows

that

| cos(0.01)− P2(0.01)| = |R2(0.01)|

=

∣∣∣∣
1

6
sin(ξ(0.01))0.013

∣∣∣∣

=

∣∣∣∣
1

6
| sin(ξ(0.01))||0.01|3

∣∣∣∣

≤ 1

6
0.013

=
1

6
10−6

Hence, P2(0.01) = 0.99995 approximates cos(0.01) to within six decimal places. We can

actually do better. Indeed, since | sin(z)| ≤ |z| for all z ∈ R and 0 < ξ(0.01) < 0.01 it follows

that

| cos(0.01)− P2(0.01)| = |R2(0.01)|

=

∣∣∣∣
1

6
sin(ξ(0.01))0.013

∣∣∣∣

=
1

6
| sin(ξ(0.01))||0.01|3

≤ 1

6
|ξ(0.01)||0.01|3

≤ 1

6
(0.01)−4

=
1

6
10−8

Hece, P2(0.01) approximates cos(0.01) to within eight decimal places. Now we consider

P3(x). It is straightforward to compute that

P3(x) = 1− 1

2
x2 and R3(x) =

1

4!
cos(ξ(x))x4.
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Thus, P3(0.01) = 0.999995. Now, | cos(z)| ≤ 1 for all z ∈ R and therefore

| cos(0.01)− P3(0.01)| =
∣∣∣∣
1

4!
cos(ξ(0.01))0.014

∣∣∣∣

≤ 1

24
0.014

< 0.42 · 10−9.

Hence, 0.99995 approximates cos(0.01) to within nine decimal places.

The previous example illustrates two main objectives with numerical analysis, namely:

(a) Find an approximation to the solution of a given problem.

(b) Determine a bound for the error of the approximation.

Example 1.3. Let f(x) =
√
x. Find P3(x) centered at x0 = 1 and use it to approximate√

1.25. Give an upper bound for |f(1.25)− P3(1.25)|.

Solution. We compute that f ′(x) = 1/2x−1/2, f (2)(x) = −1/4x−3/2, f (3)(x) = 3/8x−5/2, and

f (4)(x) = −15/16x−7/2. Hence,

P3(x) = 1 +
1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3 and R3(x) = − 15

16 · 4!(ξ(x))
−7/2(x− 1)4

Then P3(1.25) = 1.1181640625. Now since 1 < ξ(1.25) < 1.25 we have that (ξ(x))−7/2 < 1

and therefore

|
√
1.25− P3(1.25)| =

15

16
|ξ(1.25)|−7/20.25

4

4!

≤ 0.254

4!
≈ 0.16 · 10−3

Hence, P3(1.25) = 1.1181640625 approximates
√
1.25 to within three decimal places. In fact,√

1.25 = 1.1180339887 . . ..

1.2 Sequences and Round-Off Error

Recall that by a sequence of real numbers we mean an infinite list (x1, x2, x3, . . .) such

that each number xi ∈ R. We use the short-hand notation {xn}∞n=1 or (xn) to denote a

sequence. The n-th term of the sequence (xn) is xn. Technically speaking, a sequence is a

function from N to R but we side-step this technicality.
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1.2. SEQUENCES AND ROUND-OFF ERROR

Definition 1.2

The sequence (xn) converges to the number L if for any arbitrary number ε > 0 there
exists a term xN in the sequence such that |xN −L| < ε, |xN+1−L| < ε, |xN+2−L| < ε,
and the same holds for all subsequent terms. In other words, |xn−L| < ε for all n ≥ N .
In this case, we write that

lim
n→∞

xn = L or xn → L.

Example 1.4. Consider the sequence xn = 1
n2 + 2. We claim that xn → 2. Let ε > 0 be

arbitrary. When does |xn − 2| < ε? That is, when does

|xn − 2| =
∣∣∣∣
1

n2

∣∣∣∣ < ε ?

Now, 1
n2 < ε when 1√

ε
< n. Hence, if we choose N to be the greatest integer such that

1√
ε
< N then |xn − 2| < ε for all n ≥ N . For instance, if ε = 0.001 then 1√

0.001
≈ 31.6, and

thus if N = 32 then |xn − 2| < 0.001 for all n ≥ 32.

Sequences arise naturally in numerical analysis when solving problems using iteration or

recursion. At this point, we will use sequences to understand the potential undesirable side-

effects of numerical round-off error. In numerical computations with a computer, round-off

error is unavoidable but it is important to understand if round-off error will yield a useless

approximation. Roughly speaking, round-off error occurs when we use computers to store

numbers with finite precision and use them to perform computations. Every real number x

can be written in the form

x = ±0.d1d2 · · · dk · · · × 10n

where 1 ≤ d1 ≤ 9 and 0 ≤ di ≤ 9 for each i = 2, 3, . . .. Since a computer has a finite

amount of memory, the sequence of numbers d1, d2, . . . cannot all be stored and some sort

of approximation must be done to represent x. The floating-point form of x, denoted by

fl(x), is obtained by terminating the sequence d1, d2, . . . at some k decimal place. There are

two common ways that the termination is done. The first is called chopping and consists

of simply discarding the digits dk+1, dk+2, . . .. This produces the floating-point form

fl(x) = 0.d1d2 · · · dk × 10n.

The other method, called rounding, is obtained by adding 5 × 10n−(k+1) to x and then

chopping. If dk+1 < 5 then this amounts to rounding-down at the kth decimal plane, that

is, we simply discard all digits after dk. If dk+1 ≥ 5 then we add 1 to dk and then chop at

the kth decimal place.
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1.2. SEQUENCES AND ROUND-OFF ERROR

Example 1.5. Consider x = 3.102399654 . . . = 0.3102399654 . . . × 101. The seven-digit

floating-point form of x obtained by chopping is

fl(x) = 0.3102399× 101 = 3.102399

whereas the seven-digit floating-point form via rounding is

fl(x) = 0.3102400× 101 = 3.102400

since d7 = 6 ≥ 5.

When we measure error, it is important to take into account the overall magnitude of

the quantity being approximated. For example, an error of ε = 0.5 in approximating say

p = 3558 is much more acceptable than the same error in approximating p = 3.

Definition 1.3

Suppose that p∗ is an approximation to p. The absolute error is |p − p∗| and the

relative error is
|p− p∗|

|p| provided p 6= 0.

Example 1.6. Let x = 5/7 = 0.714285 and let u = 0.714251. Suppose that we use 5-digit

chopping to store numbers. Then fl(x) = 0.71428×100 and fl(u) = 0.71425×100. Consider

the error in computing p = x − u with 5-digit arithmetic and floating-point representation

from chopping. We have that fl(x)− fl(u) = 0.00003 = 0.3× 10−4 and thus

p∗ = fl(fl(x)− fl(u)) = 0.3× 10−4.

Now

p = x− u = 0.347143 . . .× 10−4

so that

|p− p∗| = 0.47143 . . .× 10−5.

Although the absolute error is small the relative error is

|p− p∗|
|p| =

∣∣∣∣
0.47143× 10−5

0.347143× 10−4

∣∣∣∣ ≈ 0.136.

Considering the magnitudes of p and p∗, this is a large relative error.

Example 1.7. Use three-digit rounding arithmetic to compute 2
9
× 9

7
. Compute the absolute

and relative error with the exact value determined to at least five decimal places.
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1.2. SEQUENCES AND ROUND-OFF ERROR

Solution. Let x = 2
9
= 0.2222 and let y = 9

7
= 1.285714286 . . . = 0.128571 . . .× 101. Then

using three-digit rounding, fl(x) = 0.222 and fl(y) = 1.29. Then fl(x)× fl(y)) = 0.28638,

and therefore p∗ = fl(fl(x)× fl(y)) = 0.286 is our approximation of p = xy = 0.28571 . . ..

The absolute error is |p− p∗| = 0.286× 10−3 and the relative error is |p−p∗|
|p| = 10−3.

The following example illustrates how finite digit representation can lead to serious round-

off error.

Example 1.8. Consider the sequence of numbers (p0, p1, p2, . . .) defined recursively as

pn =
10

3
pn−1 − pn−2, for n ≥ 2

where p0, p1 are arbitrarily set. It can be shown that

pn = c1

(
1

3

)n

+ c23
n

satisfies the recursion equation, where the numbers c1 and c2 are determined by p0 and p1.

If we set p0 = 1 and p1 =
1
3
then c1 = 1 and c2 = 0. Hence, in this case pn =

(
1
3

)n
and thus

the true solution converges to zero exponentially.

Now suppose that floating-point representation and arithmetic up to five digits (using

chopping) is used to compute pn recursively. Then p̂0 = 1.0000 and p̂1 = 0.33333 and then

ĉ1 = 1.0000 and ĉ2 = −0.12500× 10−5. The sequence generated is then

p̂n = 1.0000

(
1

3

)n

− 0.12500× 10−5(3)n.

The absolute round-off error is then

pn − p̂n = 0.12500× 10−5(3n).

Hence the error grows exponentially as n → ∞. In fact, using 16-digit arithmetic to compute

pn we obtain the data shown in Table 1.1.

n p̂n

10 1.6935× 10−5

20 3.0309× 10−8

30 1.7727× 10−3

40 1.0468× 102

50 2.0604× 106

Table 1.1: Instability due to round-off error
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1.3 Algorithms and Stability

An algorithm is a well-defined and unambiguous computational procedure that takes a set

of inputs and produces a set of outputs. An important property of an algorithm is the

effect on the output it produces under small changes to its input. An algorithm is called

stable if a small change in the initial input produces a small change in the output, otherwise,

it is called unstable. Stability of an algorithm can be illustrated by how an approximation

error propagates through a computation. Suppose an algorithm is executing and at some

point of the computation an error E0 > 0 is introduced. Let En represent the magnitude of

the error after n subsequent operations. If

En ≈ CnE0

where C is a constant, then the growth of the error is said to be linear. If

En ≈ CnE0

where C > 1 then the growth of the error is called exponential. Algorithms whose error is

linear are considered stable and those whose error is exponential are considered unstable.

Example 1.9. Recall that the solution to the recursion

pn =
10

3
pn−1 − pn−2, for n ≥ 2

is

pn = c1

(
1

3

)n

+ c23
n

where the numbers c1 and c2 are determined by p0 and p1. If we set p0 = 1 and p1 = 1
3

then pn =
(
1
3

)n
. Using five-digit floating-point representation we have that the computed

approximation to pn is

p̂n = 1.0000

(
1

3

)n

− 0.12500× 10−5(3)n.

An error is introduced in the computation at p̂2 = 0.33333. This error propagates as we

perform the arithmetic operations defining the recursion. As shown before, the absolute

round-off error is

|pn − p̂n| = 0.12500× 10−5(3n).

Hence the error grows exponentially as n → ∞.
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Example 1.10. Consider the recursion

pn = 2pn−1 − pn−2, n ≥ 2.

With p0 = 1 and p1 = 1/3 the solution is pn = 1 − 2
3
n. Using floating-point representation

with five-digit accuracy, we compute that

p̂n = 1.0000− 0.66667n

and therefore

|pn − p̂n| = (0.66667− 0.666666)n.

Hence the error propagates linearly when making a small change to the value p2.

To give an overview of the fundamental steps of an algorithm we can use pseudocode,

as the next examples illustrates.

Example 1.11. Use pseudocode to compute the average of the numbers x1, x2, . . . , xN , given

that N and the numbers x1, x2, . . . , xN are the inputs.

Solution. The pseudocode is shown in Algorithm 1.1. Notice that the variable avg needs to

be initialized before it can be used in the for loop.

Algorithm 1.1 Average

input: x1, x2, . . . , xN

output: The average value of x1, x2, . . . , xN , avg = 1
N

∑N
i=1 xi

1: set avg = 0

2: for i = 1, 2, . . . , N do

3: set avg = avg + xi

4: set avg = 1
N
avg

5: output avg

Example 1.12. Consider the sequence xn = 1√
n
. Clearly limn→∞

1√
n
= 0. Use pseudocode

to determine the minimum N such that |xn − 0| < ε for all n ≥ N for a given ε > 0.

Solution. The pseudocode is shown in Algorithm 1.2. Notice that we are using the fact that

the sequence xn = 1√
n
is strictly decreasing so that if 1√

N
< ε then 1√

n
< ε for all n ≥ N .

13
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Algorithm 1.2 Sequence xn = 1√
n

input: ε > 0

output: Minimum N such that 1√
n
< ε for n ≥ N

1: set N = 1

2: while 1√
N

≥ ε do

set N = N + 1

3: output N

Example 1.13. Let PN(x) be the Taylor polynomial of ex centered at x0 = 0. Write

pseudocode for an algorithm that returns the minimum value of N required for

|e−0.5 − PN (−0.5)| < 10−8

given that e−0.5 is known with infinite precision.

Solution. Recall that PN(x) =
∑N

k=0
1
k!
xk. The pseudocode is shown in Algorithm 1.3.

Algorithm 1.3 Maclaurin Polynomial of ex

input: e−0.5, 10−8

output: minimum N such that |e−0.5 − PN(−0.5)| < 10−8

1: set N = 0, P = 1

2: while |e−0.5 − P | ≥ ε do

set N = N + 1

set P = P + (−0.5)N

N !
(adds the next Taylor polynomial term)

3: output N

14



2

Root-Finding in One Variable Equations

The point p ∈ [a, b] is called a zero of the function f : [a, b] → R if f(p) = 0. A zero p

of f is also called a root of the equation f(x) = 0. In this section, we consider the very

important problem of finding/approximating a zero of a function. Finding zeros/roots of

functions/equations is one of the oldest problems in mathematics. For instance, the roots of

the equation ax2+ bx+ c = 0 are given by the well-known quadratic formula p = −b±
√
b2−4ac
2a

.

In general, however, there are no explicit formulas for the roots of polynomials of degree

five or higher in terms of the coefficients of the polynomial and using the usual algebraic

operations and radicals. Hence, in general one must resort to numerical methods to find

approximations to the roots in these cases and in cases involving more complex equations.

2.1 Bisection Method

The first root-finding method we consider is the Bisection method which is an application

of the Intermediate Value Theorem.

Theorem 2.1: Intermediate Value Theorem

Let f : [a, b] → R be a continuous function. Suppose that f(a) and f(b) are non-zero
and have opposite signs, that is f(a)f(b) < 0. Then there exists p ∈ (a, b) such that
f(p) = 0.

Suppose that f : [a, b] → R is continuous and f(a)f(b) < 0. Suppose for simplicity that

f has a unique zero p in (a, b). Consider the midpoint p1 = a+b
2

of the interval [a, b]. If

f(p1) = 0 then we have found a zero of f , otherwise if f(p1) 6= 0 then f(p1) has opposite

sign with either f(a) or f(b). Suppose that without loss of generality that f(a) and f(p1)

have opposite sign, that is, that f(a)f(p1) < 0. Then necessarily p ∈ (a, p1) by the IVT.

Now let a2 = a and b2 = p1 and consider the midpoint p2 =
a2+b2

2
. If f(p2) = 0 then we have

found a zero of f , otherwise if f(p2) 6= 0 then f(p2) has opposite sign with either f(a2) or

15
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f(b2). Suppose that f(p2)f(b2) < 0. Then necessarily p ∈ (p2, b2) by the IVT. Let a3 = p2

and b3 = b2. We repeat this procedure with [a3, b3] so that either f(p3) = 0 or p ∈ (p3, b3)

or p ∈ (a3, p3). Continuing in this way we obtain either p = pN for some N , or a sequence

of distinct points (p1, p2, p3, . . .) and a sequence of intervals [an, bn] such that p ∈ (an, pn) or

p ∈ (pn, bn) and thus

|p− pn| <
bn − an

2
. (2.1)

For notational consistency, we have set a1 = a and b1 = b. Now b2 − a2 = b1−a1
2

, b3 − a3 =
b2−a2

2
= b−a

22
, and by induction

bn − an =
b− a

2n−1

for n ≥ 1. Therefore,

|p− pn| <
bn − an

2
=

b− a

2n−1 · 2 =
b− a

2n
.

It follows that limk→∞ pn = p and thus we have generated a sequence (pn) that converges

to the zero p of f . We say that the sequence (p1, p2, p3, . . .) is generated by the Bisection

method for the function f : [a, b] → R. In summary, we have the following.

Theorem 2.2

Suppose that f : [a, b] → R is a continuous function and f(a)f(b) < 0. Let (p1, p2, p3, . . .)
be the sequence generated by the Bisection method for f . Then (pn) converges to a zero
p ∈ (a, b) of the function f . In fact, for n ≥ 1 it holds that

|p− pn| <
b− a

2n
.

Hence, according to inequality (2.1), if n is such that

bn − an
2

=
b− a

2n
< ε (2.2)

then |p− pn| < ε. Condition (2.2) can therefore be used to test when pn approximates p to

within ε. The pseudocode for an algorithm that implements the Bisection method in shown

in Algorithm 2.1.

The condition
bn − an

2
< ε

in Step 4 of Algorithm 2.1 guarantees that after a successful run of the algorithm we have

|p− pn| < ε. The next example illustrates the Bisection method.

Example 2.1. Consider the function f(x) = x3 + 3x2 − 8. Use the Bisection method to

compute an approximation p∗ to a zero p of f so that |p− p∗| < 1× 10−5.
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2.1. BISECTION METHOD

Algorithm 2.1 Bisection Method

input: a, b, ε, Nmax

output: Approximate zero p∗ of f or message of failure

1: set an = a, bn = b

2: for n = 1, 2, . . . , Nmax do

3: set p = bn+an
2

4: if f(p) = 0 or bn−an
2

< ε do

5: return p

break

6: else

7: if f(an)f(p) < 0 do

8: set bn = p

9: else

10: set an = p

11: print(“Maximum number of iterations reached.”)

Solution. We observe that f(0) = −8 and f(2) = 12. Hence, f has a zero in the interval

[0, 2]. Applying the Bisection method we obtain Table 2.1. We have that

1

2
|b18 − a18| = 0.762939× 10−5

and therefore

|p− p18| <
1

2
|b18 − a18| = 0.762939× 10−5 < 1× 10−5.

In fact, using Python’s root finding function in the numpy.polynomial.polynomial module,

we obtain that |p−p18| = 0.714×10−5. However, one finds that the error |p−p17| is smaller:

|p−p17| = 0.49×10−6 but the algorithm does not stop at N = 17 since 1
2
(b17−a17) = 1.5259×

10−5 > 1×10−5. Hence, our stopping criteria for accuracy, namely 1
2
(bn−an) < ε, may miss

approximations to p that are more accurate than what is actually produced. However, the

Bisection method has the important property that our sequence (pn) converges to a zero of

f with error bound |p− pn| < b−a
2n

.

We introduce some notation regarding the order of convergence of a sequence (xn) to L.

Definition 2.3

Suppose that (βn) is such that βn → 0 and (xn) converges to L. If there exists a number

17



2.1. BISECTION METHOD

n an bn pn |p− pn|
1 0.00000000 2.00000000 1.00000000 0.35530140
2 1.00000000 2.00000000 1.50000000 0.14469860
3 1.00000000 1.50000000 1.25000000 0.10530140
4 1.25000000 1.50000000 1.37500000 0.01969860
5 1.25000000 1.37500000 1.31250000 0.04280140
6 1.31250000 1.37500000 1.34375000 0.01155140
7 1.34375000 1.37500000 1.35937500 0.00407360
8 1.34375000 1.35937500 1.35156250 0.00373890
9 1.35156250 1.35937500 1.35546875 0.00016735
10 1.35156250 1.35546875 1.35351562 0.00178577
11 1.35351562 1.35546875 1.35449219 0.00080921
12 1.35449219 1.35546875 1.35498047 0.00032093
13 1.35498047 1.35546875 1.35522461 0.00007679
14 1.35522461 1.35546875 1.35534668 0.00004528
15 1.35522461 1.35534668 1.35528564 0.00001575
16 1.35528564 1.35534668 1.35531616 0.00001476
17 1.35528564 1.35531616 1.35530090 0.00000049
18 1.35530090 1.35531616 1.35530853 0.00000714

Table 2.1: Bisection method for f(x) = x3 + 3x2 − 8.

K > 0 such that for large enough n we have

|xn − L| ≤ K|βn|

then we say that (xn) converges to L with order of convergence O(βn). In this
case we write that xn = L+O(βn).

The expression O(βn) is read “big-oh of βn”. Almost always, one seeks to show order of

convergence O(βn) with

βn =
1

np

for some p > 0 or that

βn = cn

for some 0 < c < 1.

Example 2.2. Consider the sequences xn = n+1
n2 and yn = n+3

n3 . Show that

xn = O

(
1

n

)
and yn = O

(
1

n2

)

Solution. To see this notice we have

xn =
n + 1

n2
≤ n + n

n2
= 2

1

n

18



2.1. BISECTION METHOD

and

yn =
n + 3

n3
≤ n + 3n

n3
= 4

1

n2

When applied to the sequence generated by the Bisection method we obtain the following.

Corollary 2.4

The sequence (pn) generated by the Bisection method for f : [a, b] → R converges to a
zero p ∈ (a, b) of f with order of convergence O

(
1
2n

)
.

Proof. We showed that

|p− pn| <
b− a

2n
.

Although the sequence (pn) satisfies |p− pn| < b−a
2n

, we may be interested in the behavior

of f(pn). For this we introduce the following definition.

Definition 2.5

A function f : [a, b] → R is called Lipschitz if there exists a constant K > 0 such that
for every x, y ∈ [a, b], we have |f(x)− f(y)| ≤ K|x− y|.

Proposition 2.6

If f : [a, b] → R is Lipschitz on [a, b] then f is continuous on [a, b].

Suppose that f : [a, b] → R is Lipschitz on [a, b] with constant K > 0. Suppose that

p ∈ (a, b) is a zero of f and (pn) is the sequence generated by the Bisection method. Then

since p, pn ∈ [a, b] we have

|f(p)− f(pn)| ≤ K|p− pn| < K
b− a

2n

But f(p) = 0 and therefore

|f(pn)| < K
b− a

2n
.

Hence, f(pn) = O
(

1
2n

)
. Hence, when f is Lipschitz we are guaranteed that the convergence

of f(pn) is also exponential. The following gives a sufficient condition for the Lipschitz

condition.
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2.1. BISECTION METHOD

Proposition 2.7

Suppose that f : [a, b] → R has a derivative that is bounded on [a, b] by K > 0, that is,
|f ′(x)| ≤ K for all x ∈ [a, b]. Then f is Lipschitz on [a, b] with constant K.

Proof. Let x, y ∈ [a, b]. Then by Taylor’s theorem

f(x) = f(y) + f ′(ξ(x))(x− y)

where ξ(x) lies in between x and y. Now since |f ′(z)| ≤ K for all z ∈ [a, b] it follows that

|f(x)− f(y)| = |f ′(ξ(x))(x− y)| ≤ K|x− y|.

Since x, y are arbitrary, this proves that f is Lipschitz.

The previous proposition can be combined with the following.

Proposition 2.8: Extreme Value Theorem

Let h : [a, b] → R be a continuous function. Then there exists x1, x2 ∈ [a, b] such that
f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b], and in particular h is bounded on [a, b]. In
particular, |f(x)| ≤ max{|f(x1)|, |f(x2)|}.

Now, if f ′ is continuous on [a, b] then by the Extreme Value Theorem f ′ is bounded on

[a, b]. Consequently, f is Lipschitz with constant K = maxx∈[a,b] |f ′(x)|.

Example 2.3. Consider f(x) = x3 + 3x2 − 8 on the interval [0, 2]. We have that f ′(x) =

3x2 + 6x and therefore |f ′(x)| ≤ 24 and the maximum of |f ′(x)| occurs at x = 2. Therefore,

for all x, y ∈ [0, 2] we have |f(x)− f(y)| ≤ K|x − y| with K = 24. Now, from our previous

analysis,

|f(pn)| < K
b− a

2n
= 24

1

2n−1
= 3

1

2n−4
.

In Figure 2.1, we plot the sequence |f(pn)| and the error estimate K(b − a)2−n for n =

1, 2, . . . , 10. Notice that the estimate is very conservative for n small.

Example 2.4. Let f(x) = sin(x) and let g(x) = 1− x2 and consider the problem of finding

p such that f(p) = g(p), i.e., where the graphs of f and g intersect. We are interested in

approximating p with p∗ so that |f(p∗)− g(p∗)| < 10−6. To this end, let

h(x) = f(x)− g(x) = sin(x)− 1 + x2.

Then p is a zero of h if and only if it is a root of the equation f(x) = g(x). Now h(0) = −1

and h(1) = sin(1) > 0. Hence, h has a zero in the interval [0, 1]. Now, h′(x) = cos(x) + 2x
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1 2 3 4 5 6 7 8 9 10
n
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10
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25
|f(pn)|
K(b− a)/2n

Figure 2.1: Error estimage K(b− a)2−n and |f(pn)| from Example 2.3

and since h′′(x) = − sin(x) + 2 > 0 for all x then h′(x) is an increasing function. Therefore,

the maximum value of h′(x) on [0, 1] is h′(1) = cos(1)+ 2 < 3. Hence, let K = 3. Therefore,

if (pn) is the Bisection method sequence applied to h on the interval [0, 1] then

|h(pn)| < 3(1− 0)
1

2n
=

3

2n
.

Now, 3
2n

< 10−6 if and only if
ln(3 · 106)

ln(2)
< n.

Now ln(3·106)
ln(2)

≈ 21.52 and thus if n ≥ 22 then |h(pn)| = |f(pn)− g(pn)| < 10−6. In fact, one

computes that h(p20) = 0.839956× 10−6.

2.2 Fixed-Point Iteration

A point p is a fixed point of the function g if g(p) = p. In this case, it is easy to see that

the graph of g intersects the graph of h(x) = x at p.

Fixed points and zeros of functions are related in the following way. Suppose that f(p) =

0. Then the point p is a fixed point of the function g(x) = x−f(x) since g(p) = p−f(p) = p.

In fact, for any function φ(x), if g(x) = x − φ(x)f(x) then g(p) = p − φ(p)f(p) = p.

Conversely, if g has a fixed point at p then f(x) = x − g(x) has a zero at p since f(p) =

p− g(p) = p− p = 0.

In this section, we will introduce the fixed-point iteration method for finding fixed points

of functions. Finding fixed points is an alternative, and sometimes more powerful, method
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for finding the zeros of a function. In fact, if φ is chosen so that φ(p) 6= 0, then g(x) =

x− φ(x)f(x) has a fixed point at p if and only if p is a zero of f . It might be easier to find

a fixed point of g then to find a zero of f directly, and we will see that understanding the

fixed-point problem can be useful in finding zeros of functions. Before giving the Fixed-Point

Theorem, we need the following.

Theorem 2.9: Mean Value Theorem

Suppose that f : [a, b] → R is continuous and f ′(x) exists for all x ∈ (a, b). Then there
exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Theorem 2.10: Fixed-Point Theorem

Let g : [a, b] → R be a continuous function.
(a) If g(x) ∈ [a, b] for all x ∈ [a, b] then g has a fixed point in [a, b].
(b) In addition, if g is Lipschitz with constant 0 < K < 1 then g has a unique fixed

point in [a, b].

Proof. (a) If g(a) = a or g(b) = b we are done, so suppose that a < g(a) and g(b) < b.

Consider h(x) = x − g(x). Then h(a) = a − g(a) < 0 and h(b) = b − g(b) > 0. Hence,

by the IVT, there exists p ∈ (a, b) such that h(p) = 0, that is p = g(p). Hence g has a

fixed point at p.

(b) Suppose that g has two distinct fixed points p and q in [a, b]. Then,

|p− q| = |g(p)− g(q)| ≤ K|p− q|

and therefore K ≥ 1. Hence, if K < 1 then g has a unique fixed point.

Example 2.5. Apply Theorem 2.10 to g(x) = (x2 − 1)/3 on the interval [−1, 1] to show

that g has a unique fixed point in [−1, 1].

Solution. We need to show that g([−1, 1]) ⊂ [−1, 1]. Since g is continuous, it’s maximum and

minimum values are either at the end-points of [−1, 1] or where g′(x) = 0. Now, g′(x) = 2
3
x

and thus g′(x) = 0 at x = 0. Now g(−1) = 0, g(1) = 0, and g(0) = −1/3. Hence,

−1
3
≤ g(x) ≤ 0 for all x ∈ [−1, 1]. Hence, g has a fixed point in [−1, 1]. Now for x ∈ [−1, 1]

we have that |g′(x)| = 2
3
|x| ≤ 2

3
< 1. Hence, in fact g has a unique fixed point on [−1, 1]. In

fact, the fixed point p satisfies p = p2−1
3

or p2 − 3p− 1 = 0. Thus p = 1
2
(3−

√
13) ∈ [−1, 1].
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Now, on the interval [3, 4], g also has a fixed point, namely p = 1
2
(3 +

√
13), however we

cannot use Theorem 2.10 to conclude the existence nor uniqueness of p in [3, 4] since g(4) = 5

and g′(4) = 8
3
> 1. This shows that the conditions in Theorem 2.10 are not necessary for

existence and uniqueness of fixed points.

We now describe how iteration can be used to determine a fixed point of a function

g(x). Before we can do that we need the following theorem.

Theorem 2.11

Let f : [a, b] → R be a continuous function and suppose that (pn) is a sequence contained
entirely in [a, b] and converging to p ∈ [a, b]. Then

lim
n→∞

f(pn) = f(p) = f
(
lim
n→∞

pn

)
.

Let p0 be an initial condition and define iteratively pn = g(pn−1) for n ≥ 1. This generates

a sequence (pn). If (pn) converges, say to p = limn→∞ pn then since g is continuous we have

g(p) = g
(
lim
n→∞

pn

)
= lim

n→∞
g(pn) = lim

n→∞
pn+1 = p.

Hence, p is a fixed point of g. This technique of finding fixed points is called fixed-point

iteration. Below we write pseudocode to implement fixed point iteration.

Algorithm 2.2 Fixed-Point Iteration

input: p0, ε, Nmax

output: Approximate fixed-point p of g or message of failure

1: set pold = p0

2: for n = 1, 2, . . . , Nmax do

3: set pnew = g(pold)

4: if |pnew − pold| < ε do

5: return pnew

break

6: else

7: set pold = pnew

8: print(“Maximum number of iterations reached.”)

Note that the tolerance condition in Step 4. of Algorithm 2.2 is equivalent to |g(pold)−
pold| < ε, i.e., it checks whether pold is a fixed point of g with error no more than ε. Also

note that we return pnew since if |pnew − pold| < ε then

|g(pnew)− pnew| = |g(pnew)− g(pold)| ≤ K|pnew − pold| < Kε
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Figure 2.2: Example 2.6
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Figure 2.3: Example 2.7

and since K < 1 then |g(pnew)− pnew| < ε.

Example 2.6. Consider g(x) = 2x3−3x2+8
3x2−6x+2

on the interval [2, 6]. The graph of g and h(x) = x

is shown in Figure 2.6. We see that g has a unique fixed point in [2, 6]. Suppose we set p0 = 5

and compute (pn) via fixed-point iteration. We compute that

p1 = 3.893617021276595

p2 = 3.340747402373615

p3 = 3.179810015624071

p4 = 3.166402441514069

p5 = 3.166312751395192

p6 = 3.166312747397789

p7 = 3.166312747397789

p8 = 3.166312747397789

If we run the fixed-point iteration algorithm we obtain that forN = 6 we have |g(p6)−p6| < ε,

or |p7 − p6| < ε, for ε = 10−10. Hence, fixed-point iteration seems to generate a sequence

(pn) converging to a fixed point of g.

Example 2.7. Consider g(x) = −x3 − 4x2 + x + 10 on the interval [0, 2]. In Figure 2.7 we

show the graph of g and h(x) = x, and observe that g has a unique fixed point in [0, 2]. Let
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p0 = 1.5. We compute using pn = g(pn−1) that

p1 = −0.875000000000000

p2 = 6.732421875000000

p3 = −4.697200120016932× 102

p4 = 1.027545551873851× 108

p5 = −1.084933870531746× 1024

p6 = 1.277055591444378× 1027

p7 = −2.082712908581027× 10216

p8 = NaN

Here NaN stands for Not-a-Number and arises in computer computations as a result of

mathematically undefined operations like 1
0
or ∞−∞. In this case, −p(7)3 ≈ 8× 10648 and

4p(7)2 ≈ 1.6× 10432. On a computer using 64 bits to represent numbers, the largest number

that can be stored is approximately 1 × 10308. Any computation resulting in a number

larger that this number is set to ∞ = Inf and this is an instance of overflow. Hence,

the computation −p(7)3 − 4p(7)2 yields ∞−∞, which is undefined. In any case, based on

these computations, it seems as though fixed-point iteration is unsuccessful in generating a

sequence (pn) converging to the fixed point of g.

It is important then to establish sufficient conditions when fixed-point iteration yields a

sequence converging to a fixed-point.

Theorem 2.12: Fixed-Point Iteration

Suppose that g : [a, b] → R satisfies the properties in Theorem 2.10, that is, g([a, b]) ⊂
[a, b] and g is Lipschitz with constant 0 < K < 1. Then for any p0 ∈ [a, b], the sequence

pn = g(pn−1), n ≥ 1

converges to the unique fixed point of g in [a, b].

Proof. By Theorem 2.10, g has a unique fixed point p ∈ [a, b]. Now, since g([a, b]) ⊂ [a, b] it

follows that pn is well-defined and moreover pn ∈ [a, b]. Now,

|pn − p| = |g(pn−1)− g(p)| ≤ K|pn−1 − p|.

By induction,

|pn − p| ≤ Kn|p0 − p|.

Now since 0 < K < 1,then limn→∞Kn|p0 − p| = 0 and therefore (pn) converges to p.
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Corollary 2.13

Suppose that g : [a, b] → R satisfies the properties in Theorem 2.10. Then

|pn − p| ≤ Kn max{p0 − a, b− p0}

and

|pn − p| ≤ Kn

1−K
|p1 − p0|, n ≥ 1.

Proof. For the first claim, |p− p0| ≤ max{p0 − a, b − p0} since p ∈ [a, b]. The second claim

is left as an exercise.

Hence, Theorem 2.12 determines when fixed point iteration yields a sequence converging

to a fixed point. However, the conditions are not necessary. In the case that g(x) = 2x3−3x2+8
3x2−6x+2

on the interval [2, 6], we do have that g([2, 6]) ⊂ [2, 6] but g′(x) has range [−12, 0.61].

Example 2.8. Consider the function g(x) =
√

10
4+x

on the interval [1, 2]. It is clear that

g is decreasing on [1, 2]. Now 1 < g(1) =
√
2 < 2 and 1 < g(2) =

√
10/6 < 2. Hence,

g([1, 2]) ⊂ [1, 2]. Now, for all x ∈ [1, 2], we have

|g′(x)| =
∣∣∣∣

−5√
10(4 + x)(3/2)

∣∣∣∣

≤ 5√
10(5)(3/2)

=
1√
10
√
5

< 1.

In fact, |g′(x)| < 0.15. Hence, according to Theorem 2.12, for any p0 ∈ [1, 2], the sequence

pn = g(pn−1) converges to the fixed point of g. For instance, with p0 = 1 one finds that

|g(p11)− p11| < 10−10 and p11 = 1.365230013468209 is thus a good approximation to p.

2.3 Newton’s Method

Newton’s method is a powerful root-finding method implemented as a fixed-point iteration.

Suppose that f ′′(x) is continuous on [a, b] and we are interested in finding a zero p ∈ [a, b] of

f . Suppose that p0 ∈ [a, b] is close to p, so that in particular, |p−p0| is small, and f ′(p0) 6= 0.

From Taylor’s theorem,

f(p) = f(p0) + f ′(p0)(p− p0) +
f ′′(ξ(p))

2
(p− p0)

2
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where ξ(p) is in between p and p0. Now since f(p) = 0, we have

0 = f(p0) + f ′(p0)(p− p0) +
f ′′(ξ(p))

2
(p− p0)

2.

Since |p− p0| is small, the term (p− p0)
2 is small and we have

0 ≈ f(p0) + f ′(p0)(p− p0)

or

p ≈ p0 −
f(p0)

f ′(p0)
.

Hence, the number p1 = p0 − f(p0)
f ′(p0)

is an approximation to p provided f ′′(ξ(p))
2

(p − p0)
2 is

small. We can repeat this process with p1 to obtain that

p ≈ p1 −
f(p1)

f ′(p1)

and thus p2 = p1 − f(p1)
f ′(p1)

is an approximation to p. We can repeat this iterative process and

obtain a sequence (pn) defined by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, n ≥ 1

which is well-defined provided that f ′(pn) 6= 0 for all n. Below is the algorithm for Newton’s

method.

Algorithm 2.3 Newton’s Method

input: p0, ε, Nmax

output: Approximate zero p of f or message of failure

1: set pold = p0

2: for n = 1, 2, . . . , Nmax do

3: set pnew = pold − f(pold)/f
′(pold)

4: if |pnew − pold| < ε do

5: return pnew

break

6: else

7: set pold = pnew

8: print(“Maximum number of iterations reached.”)

Notice that Newton’s method is a fixed-point iteration with

g(x) = x− f(x)

f ′(x)
.

Clearly, Newton’s method cannot proceed if f ′(pn) = 0 for some n.
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n Fixed-Point |f(pn)| Newton |f(pn)| Bisection |f(pn)|
0 0.785398 7.829138e-02 0.785398 7.829138e-02 0.785398 7.829138e-02
1 0.707107 5.313782e-02 0.739536 7.548747e-04 0.392699 5.311805e-01
2 0.760245 3.557712e-02 0.739085 7.512987e-08 0.589049 2.424210e-01
3 0.724667 2.405240e-02 0.739085 6.661338e-16 0.687223 8.578706e-02
4 0.748720 1.615904e-02 0.739085 1.110223e-16 0.736311 4.640347e-03
5 0.732561 1.090337e-02 0.739085 0.000000e+00 0.760854 3.660739e-02

Table 2.2: Comparison of the bisection method, direct fixed-point iteration, and Newton’s
method to find the zero of f(x) = x− cos(x). Newton’s method displays very rapid conver-
gence.

Example 2.9. Consider the problem of finding a zero of f(x) = x− cos(x) on the interval

[0, π/2]. A zero of f is a fixed point of g1(x) = cos(x). Hence, we can generate a fixed-point

iteration sequence with g1(x). Alternatively, we can generate a fixed-point iteration sequence

using Newton’s method with

g2(x) = x− f(x)

f ′(x)
= x− x− cos(x)

1 + sin(x)
.

For the initial condition p0 =
π
4
, we include the results in Table 2.2 for both cases and also

using the bisection method. The numerical results indicate that Newton’s method has very

fast convergence.

The previous example shows that Newton’s method can converge very quickly and we

will see why this is the case in the next section. For now, the next theorem gives sufficient

conditions for when Newton’s method will converge. The main point of the theorem is that

if the initial approximation p0 is close to p then convergence is guaranteed.
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Theorem 2.14

Suppose that f is such that f ′′ is continuous on [a, b] and p ∈ (a, b) is such that f(p) = 0
and f ′(p) 6= 0. Then there exists δ > 0 such that Newton’s method generates a sequence
(pn) that converges to p for all initial conditions p0 ∈ [p− δ, p+ δ].

Proof. The approach is to apply the fixed-point iteration theorem (Theorem 2.12) to the

function g(x) = x− f(x)
f ′(x)

. Choose any 0 < K < 1. Since f ′(x) is continuous and f ′(p) 6= 0,

there exists δ1 > 0 such that g′(x) is well-defined on [δ1 − p, p+ δ1]. Now,

g′(x) =
f(x)f ′′(x)

[f ′(x)]2

and since f (2) is continuous, it follows that g′(x) is continuous on [δ1 − p, p + δ1]. Since

g′(p) = 0 there exists δ < δ1 such that |g′(x)| ≤ K for all x ∈ I = [p− δ, δ + p]. This proves

that g is Lipschitz on the interval I with constant K < 1. It remains to show that g(I) ⊂ I.

For any x ∈ I, we have

|g(x)− p| = |g(x)− g(p)| ≤ K|x− p| ≤ |x− p| ≤ δ

Hence g(x) ∈ I. Theorem 2.12 applied to g completes the proof.

The above theorem/proof shows that under reasonable assumptions on f , if p0 is close

to p then Newton’s method converges to a zero of f . Moreover, the bound |g′(x)| ≤ K

controls the convergence of Newton’s method. In particular, if f ′′(x)
[f ′(x)]2

is not too large then

since f(p) = 0, we should see convergence of order pn = p+O(Kn).

2.4 Error Analysis of General Iterative Methods

In this section, we introduce a way to measure the speed of convergence of a sequence and

use this measure to describe the convergence of fixed-point iteration methods. Recall that a

sequence (xn) converges to L with order of convergence O(βn) if

|xn − L| ≤ K|βn|

where K > 0 and (βn) → 0. This definition of order of convergence is of a comparison type

because it says that (xn) converges to L at least as fast as (βn) converges to 0. The following

notion of order of convergence, however, is meant to describe the speed in which a sequence

converges relative to how subsequent elements of the sequence are approaching the limit.
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Definition 2.15

Suppose that (pn) converges to p. If there are positive numbers α and K such that

|pn+1 − p| ≤ K|pn − p|α (2.3)

then we say that (pn) converges to p of order α. If α = 1 then the convergence is said
to be at least linear and if α = 2 then the convergence is said to be at least quadratic.

Note that (2.3) is equivalent to
|pn+1 − p|
|pn − p|α ≤ K

which is sometimes more useful to work with.

Example 2.10. Analyze the order of convergence of the following sequences.

(a) Suppose that k is a positive integer and consider the sequence pn = 1
nk , which converges

to p = 0. Then

pn+1 =
1

(n+ 1)k
=

1

nk + · · ·+ 1
≤ 1

nk
= pn.

Hence, pn+1 ≤ pn and therefore (pn) converges to p = 0 at least linearly. Let α be a

positive number. Then

pn+1

pαn
=

1
(n+1)k

nαk
=

nαk

(n + 1)k
.

If α > 1 then the ratio pn+1

pn
is unbounded as n → ∞. Therefore, it does not hold that

pn+1

pαn
≤ K

for some K > 0.

(b) Consider the sequence pn = Cn where 0 < C < 1, which converges to p = 0. Then

pn+1 = Cn+1 = Cpn.

Hence, (pn) converges to p = 0 linearly.

(c) Let 0 < C < 1 and consider the sequence qn = C2n , which converges to p = 0. Then

qn+1 = C2n+1

= C2n·2 = (C2n)2 = q2n.

Thus, (qn) converges to p = 0 quadratically.
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As shown in the previous example, the sequence pn = Cn converges to p = 0 linearly and

the sequence qn = C2n converges quadratically. In Figure 2.4 and Table 2.3, we compare

the convergence speed of these two sequences. Notice that for the quadratically convergent

sequence, the value of q11 is smaller than the smallest number that can be stored on a com-

puter using 64 bits to represent numbers (approximately 1× 10−308).

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
Linear vs Quadratic Convergence

linear
quadratic

Figure 2.4: pn = Cn (linear) and qn = C2n

(quadratic) for C = 0.5.

linear quadratic

n pn = Cn qn = C2n

1 5.0000e-01 5.0000e-01
2 2.5000e-01 1.2500e-01
3 1.2500e-01 7.8125e-03
4 6.2500e-02 3.0518e-05
5 3.1250e-02 4.6566e-10
6 1.5625e-02 1.0842e-19
7 7.8125e-03 5.8775e-39
8 3.9062e-03 1.7272e-77
9 1.9531e-03 1.4917e-154
10 9.7656e-04 1.1125e-308
11 4.8828e-04 0.0000e+00

Table 2.3: Numerical values of pn and qn.

We now analyze the expected convergence speed of a sequence generated by the fixed-

point iteration method.

Theorem 2.16

Suppose that g : [a, b] → R has a continuous derivative g′ on [a, b] and g(x) ∈ [a, b] for all
x ∈ [a, b]. Assume further that there exists a constant 0 < K < 1 such that |g′(x)| ≤ K
for all x ∈ [a, b]. Let p ∈ [a, b] denote the unique fixed point of g. If g′(p) 6= 0 then
for any p0 ∈ [a, b] (not equal to p) the sequence (pn) generated by fixed-point iteration
using g converges only linearly to p.

Proof. Since pn, p ∈ [a, b], by the Mean Value theorem we have

g(pn)− g(p)

pn − p
= g′(ξn)

where ξn is in between pn and p. Therefore,

|pn+1 − p| = |g(pn)− g(p)| = |g′(ξn)(pn − p)| ≤ K|pn − p|

and thus (pn) converges to p at least linearly. Now suppose that α > 1 and consider the

ratio
|pn+1 − p|
|pn − p|α .
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We have that

|pn+1 − p|
|pn − p|α =

|g′(ξn)(pn − p)|
|pn − p|α =

|g′(ξn)||pn − p|
|pn − p|α =

|g′(ξn)|
|pn − p|α−1

.

Since ξn is in between pn and p, and (pn) converges to p, then by the Squeeze theorem

(ξn) also converges to p. Thus, since g′ is continuous we have limn→∞ g′(ξn) = g′(p) 6= 0.

Therefore, since limn→∞ |pn − p|α−1 = 0, we have

lim
n→∞

|pn+1 − p|
|pn − p|α = lim

n→∞

|g′(pn)|
|pn − p|α−1

= ∞

and thus (pn) converges only linearly.

The previous theorem suggests that in order for the fixed-point iteration sequence (pn) to

converge quadratically we need g′(p) = 0. The following theorem provides further sufficient

conditions for quadratic convergence.

Theorem 2.17: Quadratic Convergence

Suppose that g(p) = p, that g′(p) = 0, and g(2) is continuous on a closed interval I
containing p in its interior. Then there exists a δ > 0 such that for any p0 ∈ [p−δ, p+δ],
the sequence (pn) obtained by fixed-point iteration with g converges at least quadratically
to p.

Proof. Let 0 < K < 1. Then as in the proof of Theorem 2.14, there exists a δ > 0 such that

|g′(x)| ≤ K and g(x) ∈ [p−δ, p+δ] for all x ∈ [p−δ, p+δ]. Moreover, for any p0 ∈ [p−δ, p+δ]

the sequence (pn) converges to p. By making δ smaller, we can assume that [p− δ, p+ δ] ⊂ I

and thus g(2) is continuous on [p − δ, p + δ]. For notational simplicity, let [a, b] denote the

interval [p− δ, p+ δ]. By Taylor’s theorem, we have

g(x) = g(p) + g′(p)(x− p) +
g(2)(ξ)

2
(x− p)2

for all x ∈ [a, b], where ξ is in between x and p. Therefore,

pn+1 = g(pn) = p+
g(2)(ξn)

2
(pn − p)2.

Since g(2) is continuous on [a, b], there exists M > 0 such that |g(2)(x)| ≤ M for all x ∈ [a, b].

Therefore

|pn+1 − p| = 1

2
|g(2)(ξn)(pn − p)2| ≤ M

2
|pn − p|2.

This proves that (pn) converges at least quadratically to p.

We can apply the previous theorem to obtain conditions for when Newton’s method converges

at least quadratically.
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Corollary 2.18

Suppose that f is such that f (3) is continuous on [a, b] and p ∈ (a, b) is such that
f(p) = 0 and f ′(p) 6= 0. Then there exists δ > 0 such that Newton’s method applied
to f generates a sequence (pn) that converges to p at least quadratically for all initial
conditions p0 ∈ [p− δ, p+ δ].

Proof. Recall that in Newton’s method, fixed point iteration is performed with

g(x) = x− f(x)

f ′(x)

and therefore g(p) = p. A direct calculation yields that

g′(x) =
f(x)f ′′(x)

[f ′(x)]2
.

Hence, g′(p) = 0. Moreover, since f (3) is continuous then g′′ is continuous. Theorem 2.17 is

therefore applicable to g and the result follows.
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3

Interpolation

3.1 Lagrange Polynomials

The problem of interpolation is the following. Given data points (x0, y0), (x1, y1), . . . , (xn, yn)

find a function P : [a, b] → R such that yj = P (xj) for all j = 0, 1, . . . , n. We say that

P interpolates the data points (x0, y0), . . . , (xn, yn). The y-values of the data points may

represent the values of an unknown and sought out function f : [a, b] → R. The interpolating

function P could then be used to estimate f at all points x ∈ [a, b]. The x-values x0, x1, . . . , xn

are called the nodes.

The most straightforward interpolating function P (x) that is continuous is a piecewise

linear interpolation. Assuming the nodes are ordered x0 < x1 < · · · < xn, for each subinterval

[xk, xk+1], one uses the line from (xk, yk) to (xk+1, yk+1) to interpolate. This results in a

continuous interpolating function P (x) that is differentiable at all points in [a, b] except

(possibly) at the nodes x0, x1, . . . , xn. For instance, the function f : [−2, 4] → R defined by

f(x) = 3 cos(2x)− sin(0.5x) + 3 sin(3.3x) + 0.5 sin(10x)

with data points x0 = −2, x1 = −1.5, x2 = −1, . . . , x11 = 3.5, x12 = 4 and a linear interpola-

tion P (x) is shown in Figure 3.1.

Usually, interpolation is done when the function f is unknown, but sometimes interpo-

lation is done even when f is known explicitly. For instance, if f is too costly to evaluate

and f will be evaluated repeatedly at many points, we may evaluate f at a few points

x0, x1, . . . , xn and then compute a simple interpolating function P that can be used to ap-

proximate f(x) at other points x ∈ [a, b]. A particularly simple and useful class of functions,

both computationally and to analyze, are the polynomials:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Polynomials are relatively easy to evaluate, differentiate, integrate, etc., and thus are good
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−2 −1 0 1 2 3 4
x

−6

−4

−2

0

2

4
f(x)
linear interp

Figure 3.1: Interpolation by connecting data points with lines

candidates to use for interpolation. Moreover, the following theorem shows that polynomials

can approximate continuous functions to any desired degree of accuracy.

Theorem 3.1: Weierstrass Approximation Theorem

Let f : [a, b] → R be a continuous function. For each ε > 0 there exists a polynomial
P (x) such that |f(x)− P (x)| < ε for all x ∈ [a, b].

In Figure 3.2, we illustrate the Weierstrass Approximation Theorem. The black curve is

a continuous function f(x), the top and bottom red curves are f(x) + ε and f(x) − ε,

respectively, and the green curve is the graph of a function P (x) such that |f(x)−P (x)| < ε

for all x ∈ [0, 3].

We have already encountered the use of polynomials to approximate functions, namely

the Taylor polynomials:

Pn(x) =
n∑

k=0

f (k)(c)

n!
(x− c)k.

One of the potential problems with using Taylor polynomials to approximate f over an

entire interval [a, b] is that, in general, the approximation Pn(x) is accurate only for points

x nearby the base point c. Although it is true that for some functions on an interval [a, b],

with c ∈ (a, b), there exists n ∈ N such that |f(x) − Pn(x)| < ǫ for all x ∈ [a, b], this is

not always the case, even for infinitely differentiable functions. For example, consider the

function f(x) = 1
x2 on the interval [1

2
, 3]. One can compute that for c = 1 we have

Pn(x) =

n∑

k=0

(−1)k(k+1)(x−1)k = 1−2(x−1)+3(x−1)2−4(x−1)3+· · ·+(−1)n(n+1)(x−1)n.
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Figure 3.2: P (x) approximating f(x) within ε at every x ∈ [0, 3]

At x = 2 one finds that

P1(2) = 1, P2(2) = −1, P3(2) = 2, P4(2) = −2, P5(2) = 3, P6(2) = −3, . . .

Thus, as n → ∞, Pn(2) becomes an increasingly worse approximation to f(2) = 1
4
. Although

Taylor polynomials can suffer from this phenomenon, they are still useful in deriving error

estimates and developing numerical algorithms.

We now construct a class of polynomials that can be used to interpolate a set of data

points (x0, y0), (x1, y1), . . . , (xn, yn). The first question we need to answer is whether for a

given set of data points there exists a polynomial that interpolates that data.

Theorem 3.2: Unique Interpolating Polynomial

Suppose that (x0, y0), (x1, y1), . . . , (xn, yn) is a given set of data points with distinct
nodes. Then there exists a unique polynomial P (x) of order at most n such that P (xk) =
yk for k = 0, 1, . . . , n.

Proof. We will show how to explicitly construct such a polynomial

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0.
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The condition that P interpolates that data results in the following (n+ 1) equations

y0 = cnx
n
0 + cn−1x

n−1
0 + · · ·+ c1x0 + c0

y1 = cnx
n
1 + cn−1x

n−1
1 + · · ·+ c1x1 + c0

y2 = cnx
n
2 + cn−1x

n−1
2 + · · ·+ c1x2 + c0

... =
...

yn = cnx
n
n + cn−1x

n−1
n + · · ·+ c1xn + c0

These equations are equivalent to the linear system




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

... · · · ...

1 xn x2
n · · · xn

n




︸ ︷︷ ︸
A




c0

c1

c2

...

cn




︸ ︷︷ ︸
c

=




y0

y1

y2

...

yn




︸ ︷︷ ︸
y

The matrix A is known as a Vandermonde matrix. The linear system Ac = y is uniquely

solvable for c if and only if A is an invertible matrix. Invertibility of A is equivalent to

det(A) 6= 0. Using induction, one can show that

det(A) =
∏

1≤i<j≤n

(xi − xj).

Since all nodes are distinct we have det(A) 6= 0 and thus A is indeed invertible. The unique

coefficients are c = A−1y.

Although the previous theorem gives an explicit method to compute the interpolating

polynomial P of a given data set, there is a more interesting way to construct P . Assume

that the nodes x0, x1, . . . , xn are all distinct. For each k ∈ {0, 1, . . . , n} we define the nth

order polynomial Lk(x) by

Lk(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
,

38

https://en.wikipedia.org/wiki/Vandermonde_matrix


3.1. LAGRANGE POLYNOMIALS

or more succinctly,

Lk(x) =
∏

i 6=k

(x− xi)

(xk − xi)
.

It is not too hard to see that Lk(xi) = 0 for all i 6= k and Lk(xk) = 1. The polynomial Lk(x)

is called the kth Lagrange polynomial at the nodes x0, x1, . . . , xn. We then define

P (x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x) =

n∑

k=0

ykLk(x).

Notice that P (xk) = yk for all k = 0, 1, . . . , n and thus P is indeed the unique interpolating

polynomial for the given data. We have the following.

Theorem 3.3

Consider the set of data points (x0, y0), (x1, y1), . . . , (xn, yn), with distinct nodes x0, x1,
. . ., xn. Then the polynomial

P (x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x) (3.1)

is the unique polynomial of degree at most n such that yk = P (xk).

The decomposition of the form (3.1) of the unique interpolation polynomial for a given

set of data points is said to be in Lagrange form.

Example 3.1. Consider the data

x y
1.0 1.0

1.75 16/49

2.25 16/81

3.0 1/9

(a) Find the 3rd order Lagrange polynomial P interpolating the data.

(b) If the given data if obtained by sampling a function f at the nodes, estimate f(2).
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Solution. (a) The nodes are x0 = 1.0, x1 = 1.75, x2 = 2.25, and x3 = 3.0. Compute:

L0(x) =
(x− 1.75)(x− 2.25)(x− 3)

(1− 1.75)(1− 2.25)(1− 3)
= − 8

15
(x− 1.75)(x− 2.25)(x− 3)

L1(x) =
(x− 1)(x− 2.25)(x− 3)

(1.75− 1)(1.75− 2.25)(1.75− 3)
=

32

15
(x− 1)(x− 2.25)(x− 3)

L2(x) =
(x− 1)(x− 1.75)(x− 3)

(2.25− 1)(2.25− 1.75)(2.25− 3.0)
= −32

15
(x− 1)(x− 1.75)(x− 3)

L3(x) =
(x− 1)(x− 1.75)(x− 2.25)

(3.0− 1)(3.0− 1.75)(3.0− 2.25)
=

8

15
(x− 1)(x− 1.75)(x− 2.25)

Therefore,

P (x) = y0L0(x) + y1L1(x) + y2L2(x) + y3L3(x)

= 1.0L0(x) +
16

49
L1(x) +

16

81
L2(x) +

1

9
L3(x)

and after expanding and simplifying we obtain

P (x) = − 2368

11907
x3 +

17936

11907
x2 − 46252

11907
x+

14197

3969

(b) We find that P (2.0) = 0.24246. The given data was actually obtained by evaluating

f(x) = 1
x2 at the nodes. Here, f(2) = 0.25 and so P (2.0) is a good estimate. The graph

of P and f are shown in Figure 3.3.

Example 3.2. Consider again the function

f(x) = 3 cos(2x)− sin(0.5x) + 3 sin(3.3x) + 0.5 sin(10x)

on the interval [−2, 4]. We construct the 6th, the 12th, and 14th degree Lagrange poly-

nomials. For each case, we divide the interval [−2, 4] into n = 6, n = 12, and n = 14

equal parts yielding the nodes −2 = x0 < x1 < · · · < xn = 4 that are equally spaced

at a distance h = 4−(−2)
n

= 6
n
. In Figure 3.4, we plot f and the Lagrange polynomials.

Notice that near the end-points, the interpolating polynomials vary significantly away from

f(x), especially as the order n increases. A reason for this is that polynomials of very high

degree can vary wildly even in small intervals. For this example, the 51st Lagrange poly-

nomial does very well in approximating f on the interval [−2, 4]; the maximum error is

max−2≤x≤4|f(x) − P (x)| ≈ 0.1514. However, as the order of the polynomial increases, the

error actually increases.
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Figure 3.3: Graph of f(x) = 1
x2 and the 3rd order Lagrange interpolating polynomial through

the nodes x0, x1, x2, x3 for Example 3.1.

In Algorithm 3.1, we implement Lagrange interpolation; the input are data points (x0, y0),

. . ., (xn, yn) and points u1, u2, . . ., uN , and the output are the values P (u1), P (u2), . . ., P (uN)

where P is nth Lagrange polynomial interpolating the (x, y) data points.

Algorithm 3.1 Lagrange Polynomial Interpolation

input: x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn), (u0, u1, . . . , uN)

output: The values [v0, v1, . . . , vN ] obtained by evaluating the n-order interpolating

polynomial of the input data, that is, vi = P (ui), where P is the nth order

Lagrange polynomial

1: set v = zeros(1, N + 1)

2: for k = 0, 1, 2, . . . , n do

3: for j = 0, 1, 2, . . . , N do

4: set L = 1

5: for i = 0, 1, 2, . . . , k − 1, k + 1, . . . , n do

6: set L =
uj − xi

xk − xi
· L

7: set vj = vj + ykL

8: output [v0, v1, v2, . . . , vN ]
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Figure 3.4: As the order of a Lagrange polynomial increases, the error in the interpolation
in the inner nodes decreases but near the boundary nodes the error can vary wildly. In this
example, the Lagrange polynomial of order n = 14 exhibits a large error near the last node
point.

In Algorithm 3.1, the Lagrange polynomial

P (x) =
n∑

k=0

ykLk(x) =
n∑

k=0

yk
∏

i 6=k

x− xi

xk − xi

is evaluated at uj by first computing for each k the value L = Lk(uj) =
∏

i 6=k
uj−xi

xk−xi
and then

updating the running sum of vj = vj + ykL.

The following theorem will be useful to obtain an error bound for |f(x)− P (x)| for each
x ∈ [a, b].

Theorem 3.4

Suppose that x0, x1, . . . , xn are distinct and contained in the interval [a, b] and f (n+1)

is continuous on [a, b]. Let P (x) be the nth Lagrange polynomial for f at nodes
x0, x1, · · · , xn. Then for each x ∈ [a, b] there exists a number ξ(x) ∈ (a, b) such that

f(x) = P (x) +
f (n+1)(ξ(x))

(n + 1)!
(x− x0)(x− x1) · · · (x− xn).

Proof. When x = xj for some j then both sides of the equation are zero regardless of the

value of ξ ∈ (a, b). Hence, suppose that x 6= xj , and let w(x) =
∏n

j=0(x− xj) and define the

function g : [a, b] → R by

g(t) = f(t)− P (t)− f(x)− P (x)

w(x)
w(t).
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Since f (n+1) is continuous, and P and w are polynomials, g(n+1) is also continuous. Moreover,

g has distinct roots x, x0, x1, . . . , xn. Thus, g has n + 2 distinct roots in the interval [a, b].

By applying Rolle’s theorem successively to g, g(1), . . . , g(n), we deduce that there exists

ξ(x) ∈ (a, b) such that g(n+1)(ξ(x)) = 0. Since P (t) is a polynomial of degree at most n and

w(n+1)(t) = (n+ 1)! (because w(t) is monic of degree n + 1) we obtain

0 = f (n+1)(ξ(x))− f(x)− P (x)

w(x)
(n + 1)!

and the result follows.

Using the previous theorem, we will now determine an error bound for the remainder

|f(x) − P (x)| for the case of equally spaced nodes a = x0 < x1 < · · · < xn = b. Hence, let

h = b−a
n

be the length of each subinterval [xj , xj+1]. Then, for j = 0, 1, . . . , n we have

xj = a + jh.

For any x ∈ (a, b), not equal to one of the nodes, we have that x = a+sh for some non-integer

value s ∈ (0, n). Thus,

n∏

j=0

(x− xj) =

n∏

j=0

(a + hs− a− jh) =

n∏

j=0

h(s− j) = hn+1

n∏

j=0

(s− j).

Therefore,

|f(x)− P (x)| ≤ hn+1

(n+ 1)!
|f (n+1)(ξ(x))|

n∏

j=0

|s− j|

To proceed we need the following technical lemma.

Lemma 3.5

Let n ∈ N and let s ∈ (0, n). Then
∏n

j=0 |s− j| ≤ 1
4
n!.

Proof. The proof is by induction. The base case n = 1 gives the polynomial
∏1

j=0 |s− j| =
s(s − 1) which achieves a maximum absolute value of 1

4
at s = 1

2
. Assume the claim holds

for n and consider
∏n+1

j=0 |s − j|. If s ∈ (0, n) then |s − (n + 1)| ≤ n + 1 and thus by the

induction hypothesis

n+1∏

j=0

|s− j| = |s− (n+ 1)|
n∏

j=0

|s− j| ≤ (n+ 1)
1

4
n! =

1

4
(n+ 1)!.
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If on the other hand s ∈ (n, n + 1) then let r = (n+ 1− s) ∈ (0, 1) and thus

n+1∏

j=0

|s− j| =
n+1∏

j=0

|s− (n+ 1) + (n+ 1)− j|

=
n+1∏

j=0

|r + j − (n + 1)|

=

n+1∏

k=0

|r − k|

≤ 1

4
n!(n + 1)

where in the last line we applied the induction hypothesis since r ∈ (0, 1) ⊂ (0, n) and also

used |r − (n+ 1)| < (n+ 1).

Hence, by the previous lemma,

|f(x)− P (x)| ≤ hn+1 1

(n+ 1)!

1

4
n!|f (n+1)(ξ(x))|

and then finally

|f(x)− P (x)| ≤ hn+1 1

4(n+ 1)
max
ξ∈[a,b]

|f (n+1)(ξ)|.

Hence, if f is such that maxx∈[a,b] |f (n+1)(x)| does not grow to fast as n grows, then P will

become a better approximation to f as the order of the interpolating polynomial increases.

The following examples illustrates this point.

Example 3.3. Consider f(x) = xex on the interval [a, b] = [0, 2]. Let P be the nth order

interpolating polynomial with equally-spaced nodes x0, x1, . . . , xn. Estimate the maximum

error |f(x)− P (x)| on the given interval when n = 10.

Solution. One can show that

f (n)(x) = nex + xex = ex(n+ x)

For each x ∈ [0, 2] we have

|f (n)(x)| = |ex(n+ x)| = ex|n+ x| ≤ eb(n+ b).

Therefore, for all x ∈ [a, b], we obtain

|f(x)− P (x)| ≤ hn+1

4(n+ 1)
eb(n + b) =

eb

4

(
b− a

n

)n+1

(n+ b+ 1)
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When n = 10 we obtain

eb

4

(
b− a

n

)n+1

(n + b+ 1) ≈ 4.9181× 10−7

Therefore, for all x ∈ [0, 2] it holds that

|f(x)− P (x)| ≤ 4.9181× 10−7

Example 3.4. Consider the function f(x) = 3 sin(2x) on the interval [−π
2
, π
2
]. Let P be the

nth order interpolating polynomial with equally-spaced nodes x0, x1, . . . , xn. Estimate the

maximum error |f(x)− P (x)| on the given interval when n = 20.

Solution. We have proved that for all

|f(x)− P (x)| ≤ hn+1

4(n+ 1)
max
ξ∈[a,b]

|f (n+1)(ξ)|.

Compute the first few derivatives of f :

f (1)(x) = 3 · 2 cos(2x)
f (2)(x) = −3 · 22 sin(2x)
f (3)(x) = −3 · 23 cos(2x)
f (4)(x) = 3 · 24 sin(2x)

We can see a pattern emerging. When n is odd, f (n)(x) = ±3 · 2n cos(2x), and when n is

even f (n)(x) = ±3 · 2n sin(2x). In either case, |f (n)(x)| ≤ 3 · 2n for all x ∈ [−π
2
, π
2
]. Therefore,

we have the estimate

|f(x)− P (x)| ≤ hn+1

4(n+ 1)
max
x∈[a,b]

|f (n+1)(x)| ≤ hn+1

4(n+ 1)
3 · 2n+1.

Now h = b−a
n

=
π
2
−(−π

2
)

n
= π

n
and therefore

|f(x)− P (x)| ≤ 3

4(n+ 1)

(π
n

)n+1

2n+1 =
3

4(n + 1)

(
2π

n

)n+1

Now since limn→∞
2π
n
= 0 then

lim
n→∞

3

4(n+ 1)

(
2π

n

)n+1

= 0
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Therefore, even though the magnitude of the derivatives of f grow unboundedly, the inter-

polating polynomials P become more accurate estimates to f as n → ∞. When n = 20 we

obtain
3

4(n+ 1)

(
2π

n

)n+1

≈ 9.840× 10−13

Therefore, the maximum error of |f(x)− P (x)| for all x ∈ [−π
2
, π
2
] is no bigger than approx-

imately 9.840× 10−13.

The following example generalizes the previous example.

Example 3.5. Consider using n+1 equally spaced nodes on the interval [a, b] to interpolate

the value of the function f(x) at any x ∈ [a, b]. By the previous theorem, if P is the nth

order interpolating polynomial then

|f(x)− P (x)| ≤ hn+1 1

4(n + 1)
max
ξ∈[0,π]

|f (n+1)(ξ)|

Suppose that there exists some M > 0 and C > 0 such that |f (n+1)(x)| ≤ CMn+1 for all

x ∈ [a, b]. Then

|f(x)− P (x)| ≤
(
b− a

n

)n+1
4

(n + 1)
CMn+1

To simplify the notation, let K = b− a and thus

|f(x)− P (x)| ≤ 4C

(n+ 1)

(
MK

n

)n+1

We will show that the sequence pn = 4C
(n+1)

(
MK
n

)n+1
converges to zero of order O(an+1) for

every 0 < a < 1. Let 0 < a < 1 be arbitrary. Since limn→∞
MK
n

= 0, there exists a natural

number N such that MK
n

< a for all n ≥ N . Therefore, for all n ≥ N we have

(
MK

n

)n+1

< an+1

and then multiplying both sides of the last inequality by 4C
n+1

we obtain

(
MK

n

)n+1
4C

(n + 1)
< an+1 4C

(n+ 1)
< 4Can+1

This proves that pn = O (an+1). Therefore,

lim
n→∞

|f(x)− P (x)| = 0

with order of convergence O (an+1) for any 0 < a < 1.
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Example 3.6. The following example, discovered by C. Runge (1901), shows that interpo-

lation with equally spaced nodes does not always result in a decrease in the maximum error

|f(x)− P (x)| as the order of the interpolating polynomial P increases, i.e., as we add more

node points. In particular, as n increases, the interpolating polynomial could exhibit wild

oscillations near the boundary points of the interval. This is known as Runge’s phenomenon.

Consider the function

f(x) =
1

1 + 25x2

on the interval [−1, 1]. In Figure 3.5, we plot the interpolating polynomial for n ∈ {6, 12, 14}.
Notice how near the end-points of the interval, the interpolating polynomial is a poor ap-

proximation to f . In fact, one can show that

lim
n→∞

(
max

x∈[−1,1]
|f(x)− P (x)|

)
= ∞,

that is, the maximum error between f and P increases without bound as n → ∞.

−1 0 1

0.0

0.2

0.4

0.6

0.8

1.0
7 equally-spaced nodes

f(x)
P(x)

−1 0 1

−3

−2

−1

0

1
13 equally-spaced nodes

f(x)
P(x)

−1 0 1

0

2

4

6

15 equally-spaced nodes

f(x)
P(x)

Figure 3.5: Equally spaced nodes does not always yield a good interpolating polynomial.
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3.2. CHEBYSHEV POLYNOMIALS AND INTERPOLATION ERROR MINIMIZATION

3.2 Chebyshev Polynomials and Interpolation Error

Minimization

We introduce a set of polynomials whose roots give nodes x0, x1, . . . , xn that minimize the

error |f(x)− P (x)| over all possible choices of the nodes. These polynomials are called the

Chebyshev polynomials and are defined as follows. For x ∈ [−1, 1] and an integer n ≥ 0

define

Tn(x) = cos(n arccos(x)).

It is clear that |Tn(x)| ≤ 1. What is not clear is that Tn(x) is a polynomial for each n.

To see how, we note that T0(x) = 1 and T1(x) = x. Now, using the identity cos(α + β) =

cos(α) cos(β)− sin(α) sin(β), we have

Tn+1(x) = cos(n arccos(x) + arccos(x)) = xTn(x)− sin(n arccos(x)) sin(arccos(x)).

Similarly, and using the fact that cosine is an odd function and sine is an even function, we

obtain

Tn−1(x) = xTn(x) + sin(n arccos(x)) sin(arccos(x)).

Therefore,

Tn+1(x) = 2xTn(x)− Tn−1(x).

Since T0(x) = 1 and T1(x) = x, it follows that Tn(x) is an nth order polynomial with leading

coefficient 2n−1, that is,

Tn(x) = 2n−1xn + · · · .

The first ten Chebyshev polynomials are

T0(x) = 1 T5(x) = 16x5 − 20x3 + 5x

T1(x) = x T6(x) = 32x6 − 48x4 + 18x2 − 1

T2(x) = 2x2 − 1 T7(x) = 64x7 − 112x5 + 56x3 − 7x

T3(x) = 4x3 − 3x T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T4(x) = 8x4 − 8x2 + 1 T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

Figure 3.6 shows the first few Chebyshev polynomials plotted over the interval [−1, 1].

From the definition of Chebyshev polynomials, the (n + 1) roots of Tn+1(x) are readily

available. For j ∈ {0, 1, . . . , n} let

xj = cos

(
2j + 1

2n+ 2
π

)
(3.2)
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Figure 3.6: The first few Chebyshev polynomials.

and then

Tn+1(xj) = cos

(
(n + 1)

2j + 1

2n+ 2
π

)

= cos((2j + 1)π
2
)

= 0.

Hence, x0, x1, . . . , xn are the roots of the polynomial Tn+1(x). We will call the roots (3.2)

the (n+ 1) Chebyshev nodes on the interval [−1, 1]. We also note that

Tn+1

(
cos

(
jπ

(n+ 1)

))
= (−1)j

for j = 0, 1, . . . , n + 1, and thus Tn+1 achieves its maximum and minimum value of 1 and

−1, respectively, on the interval [−1, 1]. In Figure 3.7, we plot the Chebyshev nodes in the

interval [−1, 1] for n = 20.

Now since Tn+1(x) = 2nxn+1 + · · · , then if we set Qn+1(x) = 2−nTn+1(x), we wee that

Qn+1(x) is a monic polynomial whose roots are the Chebyshev nodes x0, x1, . . . , xn. We may

therefore write

Qn+1(x) = (x− x0)(x− x1) · · · (x− xn).

Now, |Qn+1(x)| = |2−nTn+1(x)| ≤ 2−n for all x ∈ [−1, 1] and thus

max
−1≤x≤1

|Qn+1(x)| = 2−n.
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-1 10

n = 20 Chebyshev nodes 

Figure 3.7: Chebyshev nodes (black) for n = 20. Notice how the nodes clutter near the
boundary points of the interval. The red nodes are located at the angles θj =

2j+1
2n+2

π

The following lemma states that of all the monic polynomials, this is the least maximum

value on the interval [−1, 1].

Lemma 3.6: Optimality of Chebyshev Nodes

Let Q̃(x) be a monic polynomial of degree n+ 1. Then max
−1≤x≤1

|Q̃(x)| ≥ 2−n. Moreover,

if max
−1≤x≤1

|Q̃(x)| = 2−n then Q̃(x) = Qn+1(x).

As a consequence, we obtain the following.

Theorem 3.7

et f : [−1, 1] → R be such that f (n+1) is continuous on [−1, 1]. Let x0, x1, . . . , xn be the
n+ 1 Chebyshev nodes:

xj = cos

(
2j + 1

2n + 2
π

)

Let P (x) be the Lagrange interpolating polynomial of the data set (x0, f(x0)), . . . ,
(xn, f(xn)). Then for all x ∈ [−1, 1] we have

|f(x)− P (x)| ≤ 1

2n(n+ 1)!
max

x∈[−1,1]
|f (n+1)(x)| (3.3)

and this is the best possible bound among all nth order interpolating polynomials with
nodes in [−1, 1].

If f is defined on [a, b] (i.e., not necessarily [−1, 1]), then the zeros of the polynomial
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Tn+1(x) can be shifted to the interval [a, b] by means of the following:

xj =
(a + b)

2
+

(b− a)

2
cos

(
2j + 1

2n+ 2
π

)
(3.4)

for j = 0, 1, . . . , n. We will call the points (3.4) the Chebyshev nodes on the interval [a, b].

In this case, we obtain the following.

Theorem 3.8

Let f : [a, b] → R be such that f (n+1) is continuous on [a, b]. Let x0, x1, . . . , xn be the
n+ 1 Chebyshev nodes in the interval [a, b]:

xj =
(a+ b)

2
+

(b− a)

2
cos

(
2j + 1

2n+ 2
π

)

Let P (x) be the Lagrange interpolating polynomial of the data set (x0, f(x0)), . . . ,
(xn, f(xn)). Then for all x ∈ [a, b] we have

|f(x)− P (x)| ≤
(
b− a

2

)n+1
1

2n(n+ 1)!
max
x∈[a,b]

|f (n+1)(x)| (3.5)

and this is the best possible bound among all nth order interpolating polynomials with
nodes in [a, b].

Example 3.7. Consider again the function

f(x) = 3 cos(2x)− sin(0.5x) + 3 sin(3.3x) + 0.5 sin(10x)

on the interval [−2, 4]. We compute the nth order Lagrange polynomials for n = 6, 12, 14 at

the Chebyshev nodes (3.4) and compare the results when the nodes are equally spaced. In

Figure 3.8 we plot the error |f(x)− P (x)| on [−2, 4] for each case of n using equally spaced

and the Chebyshev nodes. Notice how with the Chebyshev points, the large error near the

end point b = 4 is eliminated. We now prove that as n → ∞, the polynomial P (x) using the

Chebyshev points approximates f(x) uniformly. The function f takes the form

f(x) =
N∑

k=1

Ak cos(ωkx+ θk).

By induction, it is not hard to show that f (n)(x) =
∑N

k=1(±1)ωn
kAk cos(ωkx + θk) when n

is even and f (n)(x) =
∑N

k=1(±1)ωn
kAk sin(ωkx + θk) when n is odd. In either case, since

| sin(x)| ≤ 1 and | cos(x)| ≤ 1 for all x ∈ R, we have

|f (n)(x)| ≤
N∑

k=1

|ωk|n|Ak| ≤ ANωn
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Error with Equally-spaced Nodes
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Figure 3.8: Error comparison with equally spaced and Chebyshev nodes. Notice that for
n = 14, the error with the Chebyshev nodes does not exhibit the large error at the boundary
points like with equally-spaced nodes.

where ω = max |ωk| and A = max |Ak|. It follows from (3.5) that when Chebyshev points

are used for the polynomial P (x) then

|f(x)− P (x)| ≤ AN

2n(n + 1)!
ωn+1.

Since limn→∞
ωn

n!
= 0 for any ω ≥ 0 it follows that for any ε > 0 there exists sufficiently large

n such that |f(x)− P (x)| < ε for all x ∈ [a, b].
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3.3 Newton’s Divided Differences

In this section, we present an alternative algebraic representation of the interpolating polyno-

mial of a given data set {(xj , f(xj))}nj=0. The method is attributed to Sir Isaac Newton and

is called Newton’s Divided-Difference Formula. A major advantage of the divided-difference

representation of the interpolating polynomial is that very little work is required to com-

pute an interpolating polynomial for the nodes x0, x1, . . . , xn+1 if we have the interpolating

polynomial for the nodes x0, x1, . . . , xn. This makes it easy to add new nodes to, for exam-

ple, increase the accuracy of the interpolating polynomial without having to recompute the

polynomial from scratch.

In the divided-difference representation of the interpolating polynomial P (x), we seek a

representation of the form

P (x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0)(x− x0) · · · (x− xn−1)

or more compactly

P (x) = a0 +

n∑

k=1

ak(x− x0)(x− x1) · · · (x− xk−1).

The goal then is to compute the divided-difference coefficients a0, a1, a2, . . . , an. To that end,

we proceed by imposing the constraint that P (xj) = f(xj) and solving for the coefficients

one at a time. To begin, we have

P (x0) = a0

and therefore

a0 = f(x0).

Next, we have

P (x1) = a0 + a1(x1 − x0)

and therefore if P (x1) = f(x1) then after rearranging, and using a0 = f(x0), we obtain

a1 =
f(x1)− f(x0)

x1 − x0

.

Next, we have

P (x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

and therefore if P (x2) = f(x2), and using the previously computed expressions for a0 and

a1, then after some rearranging we obtain

a2 =

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0
. (3.6)
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We continue in this manner and find the remaining coefficients a3, . . . , an. At this point, we

make the observation that the coefficient ak depends only on the nodes x0, x1, . . . , xk, and

therefore if a new node xn+1 is added, we need only compute the coefficient an+1. This is one

of the advantages with the divided-difference representation of P (x). In particular, if Pn(x)

is the interpolating polynomial for the nodes x0, x1, . . . , xn and Pn+1(x) is the interpolating

polynomial for the nodes x0, x1, . . . , xn, xn+1 then

Pn+1(x) = Pn(x) + an+1(x− x0)(x− x1) · · · (x− xn)

and thus if Pn(x) is known then we need only compute an+1 to obtain Pn+1(x). This point

is llustrated in Example 3.9 below.

In practice, the coefficients a1, a2, . . . , an are computed using a recurrence relation in-

volving what are called divided-differences of f with respect to the nodes x0, x1, . . . , xn. For

nodes xi and xi+1 the divided-difference f [xi, xi+1] is defined as

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi

Using this notation, the coefficient a1 can be written as

a1 = f [x0, x1] =
f(x1)− f(x0)

x1 − x0

.

Similarly, for nodes xi, xi+1, xi+2, the divided difference f [xi, xi+1, xi+2] is defined as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

With this notation, from (3.6) the coefficient a2 can be written as

a2 = f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

In general, given nodes xi, xi+1, . . . , xj , where 0 ≤ i < j ≤ n, we define the divided difference

f [xi, xi+1, . . . , xj] by

f [xi, xi+1, . . . , xj ] =
f [xi+1, . . . , xj]− f [xi, . . . , xj−1]

xj − xi
.

With this notation, it can be shown by induction that the coefficient ak for 1 ≤ k ≤ n is

given by

ak = f [x0, x1, . . . , xk].

There is a very efficient computational way to compute the coefficients a1, a2, . . . , an that

is best explained with a table. Suppose that we want to compute the divided-differences
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i = 0 1 2 3 4

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·]

x0 f [x0] ⋆ ⋆ ⋆ ⋆

x1 f [x1] f [x0, x1] ⋆ ⋆ ⋆

x2 f [x2] f [x1, x2] f [x0, x1, x2] ⋆ ⋆

x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3] ⋆

x4 f [x4] f [x3, x4] f [x2, x3, x4] f [x1, x2, x3, x4] f [x0, x1, x2, x3, x4]

Table 3.1: Divided-difference table with n = 4

representation of P (x) given the nodes x0, x1, x2, x3, x4 and the function values f(x0), f(x1),

f(x2), f(x3), f(x4). To compute the coefficients ak = f [x0, x1, . . . , xk] we must compute all

the divided-differences shown in Table 3.1. Notice that the divided-difference coefficients

ak = f [x0, x1, . . . , xk] are contained along the diagonal of the table.

Alternatively, we can view the table as a (n + 1)× (n+ 1) matrix:

F =




f [x0] 0 0 0 0

f [x1] f [x0, x1] 0 0 0

f [x2] f [x1, x2] f [x0, x1, x2] 0 0

f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3] 0

f [x4] f [x3, x4] f [x2, x3, x4] f [x1, x2, x3, x4] f [x0, x1, x2, x3, x4]




Notice that the divided-difference coefficients ak = f [x0, x1, . . . , xk] are the diagonal entries

of F. The matrix F is created one column at a time, starting with the first. The first column

F[: , 0] is simply the given data values f(x0), f(x1), . . . , f(xn). Then, once the entries of F

in the i− 1 column have been computed, to compute the entry of F in the ith column and

jth row (using zero-based indexing), where 1 ≤ i ≤ n and i ≤ j ≤ n, we use

F(j, i) =
F(j, i− 1)− F(j − 1, i− 1)

xj − xj−i

.

For example, consider f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1
. We have that F(3, 2) = f [x1, x2, x3],
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F(3, 1) = f [x2, x3], and F(2, 1) = f [x1, x2], and therefore

F(3, 2) =
F(3, 1)− F(2, 1)

x3 − x1
.

In Algorithm 3.2, we write an algorithm that computes a0, a1, . . . , an using this approach.

Algorithm 3.2 Divided Differences Coefficients

input: x = [x0, x1, . . . , xn], y = [f(x0), f(x1), . . . , f(xn)]

output: The divided-differences coefficients ak = f [x0, x1, . . . , xk], 0 ≤ k ≤ n

1: set F = zeros(n + 1, n+ 1)

2: set F [: , 0] = y # fills the first column with y data

3: for i = 1, 2, . . . , n do

4: for j = i, i+ 1, . . . , n do

5: set F [j, i] =
F[j, i− 1]− F[j − 1, i− 1]

xj − xj−i
.

6: output [F [0, 0], F [1, 1], F [2, 2], . . . , F [n, n]]

Once the divided-difference coefficients have been computed, we can evaluate the inter-

polating polynomial at any given points u = (u0, u1, . . . , uN); this is done in Algorithm 3.3.

Algorithm 3.3 Divided-Difference Interpolation

input: a = [a0, a1, . . . , an] (divided-differences coefficients), u = [u0, u1, . . . , uN ]

output: The values [v0, v1, . . . , vN ] obtained by evaluating the n-order interpolating

polynomial of the input data, that is, vi = P (ui), where P is the nth order

interpolating polynomial in divided-difference form

1: set v = [a0, a0, . . . , a0] # of length N + 1

2: for k = 1, 2, . . . , n do

3: s = [ak, ak, . . . , ak] # of length N + 1

4: for j = 0, 1, . . . , k − 1

5: s = (u− xj) ∗ s # vectorized version, u and s must be numpy arrays!

6: v = v + s

7: output v

Example 3.8. Given the following data, compute the divided-difference table and P (3),

where P (x) is the interpolating polynomial of the data.

x = (1, 2, 4, 5, 7)

y = (1, 3, 3, 4, 2)
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0 1 2 3 4

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·]
1 1 ⋆ ⋆ ⋆ ⋆

2 3 2 ⋆ ⋆ ⋆

4 3 0 −2
3

⋆ ⋆

5 4 1 1
3

1
4

⋆

7 2 −1 −2
3

−1
5

− 3
40

Table 3.2: Divided difference table for Example 3.8

Solution. The divided-difference table is shown in Table 3.2. The divided-differences coeffi-

cients are a = (1, 2,−2/3, 1/4,−3/40) and therefore the interpolating polynomial is

P (x) = 1+2(x−1)− 2

3
(x−1)(x−2)+

1

4
(x−1)(x−2)(x−4)− 3

40
(x−1)(x−2)(x−4)(x−5).

Therefore,

P (3) = 1 + 2(2)− 2

3
(2)(1) +

1

4
(2)(1)(−1)− 3

40
(2)(1)(−1)(−2) =

43

15
.

Example 3.9. Suppose that we add the data point (x5, y5) = (6, 5) to the data set in the

previous example, so that now

x = (1, 2, 4, 5, 7, 6)

y = (1, 3, 3, 4, 2, 5).

Update the divided difference table and recompute P (3) using the new higher-order inter-

polating polynomial.

Solution. The updated divided-difference table is shown in Table 3.3. Therefore, using the

result from the previous example, we obtain

P (3) =
43

15
− 1

120
(3− 1)(3− 2)(3− 4)(3− 5)(3− 7) = 3.

We end this section by presenting an interesting connection between ak = f [x0, x1, . . . , xk]

and the kth derivative of f .
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0 1 2 3 4 5

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·] f [·, ·, ·, ·, ·]
1 1 ⋆ ⋆ ⋆ ⋆ ⋆

2 3 2 ⋆ ⋆ ⋆ ⋆

4 3 0 −2
3

⋆ ⋆ ⋆

5 4 1 1
3

1
4

⋆ ⋆

7 2 −1 −2
3

−1
5

− 3
40

⋆

6 5 −3 −2 −2
3

− 7
60

− 1
120

Table 3.3: Divided difference table for Example 3.9

Theorem 3.9

Let f : [a, b] → R be such that f (k) is continuous on [a, b] and let x0, x1, . . . , xk be distinct
nodes contained in the interval [a, b]. Then there exists a point ξ ∈ [a, b] such that

f [x0, x1, . . . , xk] =
f (k)(ξ)

k!
.

Proof. Let P (x) be the interpolating polynomial for the the data yj = f(xj), j = 0, 1, . . . , k,

and let

g(x) = f(x)− P (x).

Then g(xj) = 0 for j = 0, 1, . . . , k, and thus g has k+1 zeros in [a, b]. Since f (k) is continuous

on [a, b], and P is a polynomial, g(k) is continuous, and therefore by Rolle’s theorem, g(k) has

a zero ξ ∈ [a, b]. Therefore,

0 = f (k)(ξ)− P (k)(ξ).

Using Newton’s divided difference formula, we have

P (x) = f(x0) +

k∑

j=1

f [x0, x1, . . . , xj](x− x0) · · · (x− xj−1) = f [x0, x1, . . . , xk]x
k + · · ·

and therefore P (k)(x) = f [x0, x1, . . . , xk−1]k!. Therefore,

0 = f (k)(ξ)− f [x0, x1, . . . , xk−1]k!

and this ends the proof.

Example 3.10. Fill in the missing entries in the divided-difference Table 3.4
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0 1 2 3 4 5

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·] f [·, ·, ·, ·, ·, ·]
−2 −1 ⋆ ⋆ ⋆ ⋆ ⋆

−1 0 1 ⋆ ⋆ ⋆ ⋆

0 −1 −1 −1 ⋆ ⋆ ⋆

1 3 # 5
2

7
6

⋆ ⋆

2 0 −3 # # # ⋆

3 1 1 2 11
6

23
24

#

Table 3.4: Divided difference table for Example 3.10

Example 3.11. Compute the divided-difference coefficients of the interpolating polynomial

P (x) for the given data and then write P (x) in the standard monomial basis.

x = (−1, 0, 1, 2)

y = (1, 0,−1, 4)

Example 3.12. Use the Lagrange form and the divided-difference form of the interpolating

polynomial for the data {(xj , f(xj))}nj=0 to show that

f [x0, x1, . . . , xn] =
n∑

k=0

f(xk)∏
j 6=k(xk − xj)

=
n∑

k=0

f(xk)

w′
n(xk)

.

where wn(x) =
∏n

j=0(x− xj).

Solution. The divided-difference form of the polynomial is

P (x) = a0 +

n∑

j=1

f [x0, x1, . . . , xj](x− x0)(x− x1) · · · (x− xj−1)

The number f [x0, x1, . . . , xn] is the coefficient of the monomial xn in P (x). On the other

hand, the Lagrange form of the polynomial is

P (x) = f(x0)L0(x) + f(x1)L1(x) + · · ·+ f(xn)Ln(x)

where Lk(x) =
∏

j 6=k
(x−xj)

xk−xj
. Each of f(xk)Lk(x) is an nth order polynomial, whose coefficient

is
f(xk)∏

j 6=k(xk − xj)
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Therefore, the coefficient of P (x) in the Lagrange form is

n∑

k=0

f(xk)∏
j 6=k(xk − xj)

Hence,

f [x0, x1, . . . , xn] =

n∑

k=0

f(xk)∏
j 6=k(xk − xj)

and this proves the firs equality. Now if wn(x) =
∏n

j=0(x− xj) then by the product rule of

differentiation we have

w′
n(x) =

n∑

j=0

∏

j 6=k

(x− xj)

and on evaluating at xk we obtain

w′
n(xk) =

∏

j 6=k

(xk − xj).

and thus

f [x0, x1, . . . , xn] =

n∑

k=0

f(xk)

w′
n(xk)

.

3.4 Hermite Polynomials

Let x0, x1, . . . , xn ∈ [a, b] be a given set of nodes and let f : [a, b] → R be a given function.

Thus far, we have considered interpolation when only f(x0), f(x1), . . . , f(xn) are known but

we may also know the derivatives of f at the nodes. That is, given non-negative integers

m0, m1, . . . , mn, we may know the values

f(x0), f
(1)(x0), . . . , f

(m0)(x0)

f(x1), f
(1)(x1), . . . , f

(m1)(x1)

· · ·
f(xn), f

(1)(xn), . . . , f
(mn)(xn)

with m0, m1, . . . , mn not all necessarily the same. We may therefore be interested in com-

puting the polynomial P that agrees with f and its derivatives at the given nodes.

Definition 3.10

Let x0, x1, . . . , xn ∈ [a, b] be distinct nodes, let m0, m1, . . . , mn be non-negative integers
and let m = max{m0, m1, . . . , mn}. The osculating polynomial of f ∈ Cm([a, b]) at
the given nodes x0, x1, . . . , xn and orders m0, m1, . . . , mn, is the polynomial P (x) of least
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degree such that
P (k)(xi) = f (k)(xi)

for all k = 0, 1, . . . , mi and all i = 0, 1, . . . , n

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polynomi-

als. When n = 0, i.e., only one node x0 is given, then P is the Taylor polynomial of f of

order m0 centered at x0. And when mi = 0 for all i then P is the Lagrange polynomial at

the nodes x0, x1, . . . , xn.

When mi ≥ 1 then an osculating polynomial will have the same shape as f at the node

xi. For instance, if mi ≥ 1 then both f and P have the same tangent line at xi, and if

mi ≥ 2 then f and P curve in the same direction. The word osculate originates from the

Latin word osculum that means “kiss”.

Given the nodes x0, . . . , xn and the numbers m0, m1, . . . , mn, the number of conditions

on f to compute the osculating polynomial is (n + 1) +
∑n

i=0mi. Hence, the order of the

osculating polynomial is at most M = n+
∑n

i=0mi.

A special case of the osculating polynomials is when mi = 1 for all i, and these are

called the Hermite polynomials. Hence, in this case we are given nodes x0, x1, . . . , xn

and the data f(x0), f
′(x0), f(x1), f

′(x1), . . . , f(xn), f
′(xn). Thus, the order of the osculating

polynomial is at most 2n + 1. The following gives an exact formula for the osculating

polynomial in this case.

Theorem 3.11

Let f ∈ C1([a, b]) and let x0, x1, . . . , xn ∈ [a, b]. The Hermite polynomial H(x) of f at
the nodes x0, x1, . . . , xn is the osculating polynomial of degree at most 2n+ 1 given by

H(x) =
n∑

k=0

f(xk)Hk(x) +
n∑

k=0

f ′(xk)Ĥk(x)

where

Hk(x) = [1− 2(x− xk)L
′
k(x)]L

2
k(x)

Ĥk(x) = (x− xk)L
2
k(x).

In addition, if f ∈ C2n+2([a, b]) then for x ∈ [a, b] we have

f(x)−H(x) =
(x− x0)

2(x− x1)
2 · · · (x− xn)

2

(2n+ 2)!
f (2n+2)(ξ(x))

for some ξ(x) ∈ (a, b).
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Proof. It is clear that Hk(xj) = Ĥk(xj) = 0 if j 6= k and Hk(xk) = 1 and Ĥk(xk) = 0. Hence,

H(xj) = f(xj) for all j = 0, 1, . . . , n. We compute

H ′
k(x) = [−2L′

k(x)− 2(x− xk)L
′′
k(x)]L

2
k(x) + 2[1− 2(x− xk)L

′
k(x)]Lk(x)L

′
k(x)

Ĥ ′
k(x) = L2

k(x) + 2(x− xk)Lk(x)L
′
k(x).

Now since Lk(xj) = 0 if j 6= k then H ′
k(xj) = Ĥ ′

k(xj) = 0. Now,

H ′
k(xk) = −2L′

k(xk) + 2Lk(xk)L
′
k(xk) = 0.

Hence, H ′
k(xj) = 0 for all j = 0, 1, . . . , n. Similarly,

Ĥ ′
k(xk) = 1.

Therefore,

H ′(xj) =

n∑

k=0

[f(xk)H
′
k(xj) + f ′(xk)Ĥ

′
k(xj)] = f ′(xj)

This proves the first claim. To prove the error formula, we use the same procedure as in the

Lagrange interpolation case using the function

g(t) = f(t)−H(t)− (t− x0)
2 · · · (t− xn)

2

(x− x0)2 · · · (x− xn)2
[f(x)−H(x)] .

The details are left to the reader.

There is a way to compute the Hermite polynomials H(x) using a divided-difference

table. Suppose that x0, x1, . . . , xn are distinct nodes, and f and f ′ are given at the nodes.

Define a new sequence of nodes z0, z1, . . . , z2n, z2n+1 by setting

z0 = z1 = x0

z2 = z3 = x1

...

z2n = z2n+1 = xn

In other words,

z2i = z2i+1 = xi

for i = 0, 1, . . . , n. Construct the divided-difference table with the data z0, z1, . . . , z2n, z2n+1

and f(z0), f(z1), . . . , f(z2n), f(z2n+1). Since z2i = z2i+1, the divided-differences f [z2i, z2i+1]

cannot be computed because we obtain

f [z2i, z2i+1] =
f [z2i+1]− f [z2i]

z2i+1 − z2i
=

0

0
.
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It is reasonable to use the estimate

f [z2i, z2i+1] ≈ f ′(z2i) = f ′(xi)

Hence, in the column of the divided-difference table containing the terms f [·, ·], we replace

f [z2i, z2i+1] with f ′(xi). The other terms of the divided-difference table are computed as

usual. The Hermite polynomial is then given by

H(z) = f [z0] +
2n+1∑

k=1

f [z0, z1, . . . , zk](z − z0)(z − z1) · · · (z − zk−1).

Example 3.13. Consider the data

x = (−1, 0, 1)

y = (−2, 3, 2)

y′ = (14,−1, 2)

where yi = f(xi) and y′i = f(xi), for i = 0, 1, 2. Find the Hermite polynomial H(z) for the

given data and then find H(−2).

Example 3.14. Write a Python function called HermiteInterp that takes as input arrays

x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn), y
′ = (y′0, y

′
1, . . . , y

′
n), and u = (u0, u1, . . . , uN), and

outputs v = (v0, v1, . . . , vN) where vi = H(ui) for i = 0, 1, . . . , N and where H is the Hermite

polynomial for the given data. The y and y′ arrays are assumed to contain the values of f

and f ′, respectively, at the given nodes.

3.5 Piecewise Interpolation with Cubic Splines

In the past sections, we have considered interpolation of a set of data points contained in

the interval [a, b] using a single polynomial. We saw, however, that polynomials can deviate

significantly in between interpolating points. Although we were able to remedy this using

Chebyshev nodes, one needs to increase the order of the interpolating polynomial to get

better accuracy. In this section, we take a different approach and use multiple polynomials

for interpolation on an interval [a, b]. Specifically, for each subinterval [xj−1, xj ] of [a, b],

we use one polynomial to interpolate the data points (xj−1, yj−1) and (xj , yj), and use a

different polynomial for the next interval [xj , xj+1]. The resulting interpolating function is

a piecewise-polynomial and since it interpolates the data points it is continuous. The

simplest and easiest to compute piecewise-polynomial approximation is a piecewise-linear

approximation. The line connecting the points (xj−1, yj−1) and (xj , yj+1) is

ℓj(x) = yj−1 +
(yj − yj−1)

(xj − xj−1)
(x− xj−1)
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and thus the piecewise-linear approximation interpolating (x0, x1), . . . , (xn, yn) is

F (x) =





ℓ1(x), x0 ≤ x < x1

ℓ2(x), x1 ≤ x < x2

...
...

ℓn(x), xn−1 ≤ x ≤ xn

An example of piecewise-linear interpolation is shown in Figure 3.1. As the figure shows, in

general, a piecewise-linear interpolating function is not differentiable at the nodes, and thus

one needs to add derivative constraints at the inner nodes so that the derivatives at these

nodes are equal for interpolating polynomials on adjacent subintervals. If one uses quadratic

polynomials there are not enough coefficients to specify the derivatives at the end-points of

the interval, in addition to the interpolating conditions at the end-points. For this reason, we

need to use cubic polynomials on each subinterval and thereby construct a piecewise-cubic

polynomial better known as cubic splines. In the general construction of a cubic spline,

the derivatives of the interpolating function at the inner nodes do not necessarily have to

equal the derivatives of the function being approximated.

Definition 3.12

Let f : [a, b] → R be a given function and let a = x0 < x1 < · · · < xn = b be a given set
of nodes. A cubic spline interpolant S for f is a piecewise function that satisfies the
following:
(a) S(x) is a cubic polynomial, denoted Sj(x), on the interval [xj−1, xj] for j = 1, . . . , n
(b) Sj(xj−1) = f(xj−1) and Sj(xj) = f(xj) for j = 1, . . . , n
(c) S ′

j(xj) = S ′
j+1(xj) for j = 1, . . . , n− 1

(d) S ′′
j (xj) = S ′′

j+1(xj) for j = 1, . . . , n− 1
(e) At the boundary nodes, one of the conditions is satisfied:

(i) S ′′(x0) = S ′′(xn) = 0 (natural or free boundary condition)
(ii) S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn) (clamped boundary condition)

Remark 3.1. The word natural is used in part e(i) because the shape of the approximating

function at the end-points is the shape of a line after it passes through the end-points.

The total number of coefficients in the polynomials S1(x), S2(x), . . . , Sn(x) is 4n since

each polynomial contains 4 coefficients. We seek the following form for each cubic polynomial

Sj(x):

Sj(x) = aj + bj(x− xj−1) + cj(x− xj−1)
2 + dj(x− xj−1)

3

and thus the 4n unknowns are {aj}nj=1, {bj}nj=1, {cj}nj=1, {dj}nj=1. Now, condition (b) gener-

ates 2n equations. Each of condition (c) and (d) generates n − 1 equations. The running
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total is therefore 4n−2. Condition (e) generates 2 more equations for a grand total of exactly

4n equations. The resulting set of equations in the 4n unknowns is therefore a square linear

system.

Example 3.15. Construct a natural cubic spline through the points (1, 2), (2, 3), and (3, 5).

Solution. There are two intervals, namely, [x0, x1] = [1, 2] and [x1, x2] = [2, 3]. Let S1(x)

and S2(x) denote the approximating cubic polynomials on each interval, respectively. Thus,

S(x) =




S1(x), 1 ≤ x < 2

S2(x), 2 ≤ x ≤ 3

where

S1(x) = a1 + b1(x− 1) + c1(x− 1)2 + d1(x− 1)3

S2(x) = a2 + b2(x− 2) + c2(x− 2)2 + d2(x− 2)3.

There are 8 coefficients so we must impose 8 conditions for a unique solution. The interpo-

lating conditions are:

2 = f(1) = S1(1) = a1

3 = f(2) = S1(2) = a1 + b1 + c1 + d1

3 = f(2) = S2(2) = a2

5 = f(3) = S2(3) = a2 + b2 + c2 + d2

From the conditions S ′
1(2) = S ′

2(2) and S ′′
1 (2) = S ′′

2 (2) we obtain

b1 + 2c1 + 3d1 = b2, 2c1 + 6d1 = 2c2

The natural boundary conditions S ′′
1 (1) = 0 and S ′′

2 (3) = 0 give

2c1 = 0, 2c2 + 6d2 = 0

This is a linear system consisting of 8 equations in the 8 unknown coefficients. Solving the

linear system yields

S(x) =




2 + 3

4
(x− 1) + 1

4
(x− 1)3, 1 ≤ x < 2

3 + 3
2
(x− 2) + 3

4
(x− 2)2 − 1

4
(x− 2)3, 2 ≤ x ≤ 3.
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We now describe a general procedure for solving for the unknown coefficients in the

polynomials S1(x), S2(x), . . . , Sn(x). First of all, evaluating Sj at xj−1 we obtain

Sj(xj−1) = aj

and then from condition (b) we must have

aj = f(xj−1)

for j = 1, 2, . . . , n. Hence, the a coefficients (a1, a2, . . . , an) are simply the values of the

function at the first n nodes, namely (f(x0), f(x1), . . . , f(xn−1)). For notational consistency,

we define an+1 = f(xn). Recall that condition (b) produces 2n equations and we have already

solved for n of the coefficients (the a’s); we can therefore reduce the 2n equations from (b)

into n equations. Now Sj(xj) = f(xj) and also Sj+1(xj) = f(xj) and thus Sj(xj) = Sj+1(xj),

which is equivalent to

aj+1 = aj + bj(xj − xj−1) + cj(xj − xj−1)
2 + dj(xj − xj−1)

3

for j = 1, 2, . . . , n−1. Since the quantity xj −xj−1 is used repeatedly, we set hj = xj −xj−1,

and thus

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (3.7)

for j = 1, 2, . . . , n− 1. Now, since f(xn) is known and f(xn) = Sn(xn) = an + bnhn + cnh
2
n +

dnh
3
n and we defined an+1 = f(xn), then (3.7) actually holds for all j = 1, 2, . . . , n. Hence,

(3.7) are the n equations produced by condition (b).

Now, similarly from the first order conditions supplied by (c) we have

bj+1 = bj + 2cjhj + 3djh
2
j (3.8)

for j = 1, 2, . . . , n− 1, and from the second order conditions supplied in (d) we have

cj+1 = cj + 3djhj

for j = 1, 2, . . . , n− 1. We can solve the last equation for dj:

dj =
cj+1 − cj

3hj

(3.9)

for j = 1, 2, . . . , n − 1. Now, from the natural condition 0 = S ′′
n(xn) = 2cn + 6dnhn, and

therefore if we set cn+1 = 0 then

dn =
cn+1 − cn

3hn
.
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Hence, (3.9) holds for j = 1, 2, . . . , n. Thus, d1, d2, . . . , dn are all in terms of c1, c2, . . . , cn.

Now, substituting (3.9) into (3.7) and (3.8) we obtain

aj+1 = aj + bjhj +
h2
j

3
(2cj + cj+1) (3.10)

for all j = 1, 2, . . . , n, and

bj+1 = bj + hj(cj + cj+1)

for j = 1, 2, . . . , n− 1, or equivalently

bj = bj−1 + hj−1(cj−1 + cj) (3.11)

for j = 2, . . . , n. Now, solving for bj from (3.10) we obtain

bj =
1

hj
(aj+1 − aj)−

hj

3
(2cj + cj+1) (3.12)

for j = 1, 2, . . . , n. Therefore, using (3.11) and (3.12) we have

1

hj
(aj+1 − aj)−

hj

3
(2cj + cj+1) =

1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj) + hj−1(cj−1 + cj)

for j = 2, 3, . . . , n, which can be simplified to

hj−1cj−1 + 2(hj + hj−1)cj + hjcj+1 =
3

hj

(aj+1 − aj)−
3

hj−1

(aj − aj−1) (3.13)

for j = 2, 3, . . . , n. From (3.13) we obtain n− 1 equations for the n unknowns c1, c2, . . . , cn.

However, recall that the natural condition at x0 is 0 = S ′′
1 (x0) = 2c1 and therefore we have

that c1 = 0. Hence the n−1 equations (3.13) uniquely determine the coefficients c2, c3, . . . , cn

provided a solution exists. We note also that we defined cn+1 = 0 for notational consistency.

Once we solve the linear system (3.13) for the unknowns c1, c2, . . . , cn we can obtain the b’s

and the d’s using (3.12) and (3.9), respectively.

Example 3.16. Suppose that n = 5. Then the n − 1 equations (3.13) are (recall that

j = 2, 3, . . . , n)

h1c1 + 2(h2 + h1)c2 + h2c3 =
3

h2
(a3 − a2)−

3

h1
(a2 − a1)

h2c2 + 2(h3 + h2)c3 + h3c4 =
3

h3
(a4 − a3)−

3

h2
(a3 − a2)

h3c3 + 2(h4 + h3)c4 + h4c5 =
3

h4
(a5 − a4)−

3

h3
(a4 − a3)

h4c4 + 2(h5 + h4)c5 + h5c6 =
3

h5
(a6 − a5)−

3

h4
(a5 − a4)

Recall that we also have that c1 = 0 and c6 = 0.
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The linear system (3.13) is an example of a tridiagonal linear system whose coefficient

matrix is strictly diagonally dominant. A matrix A with entries ai,j is called strictly

diagonally dominant if

|ai,i| >
n∑

j=1
j 6=i

|ai,j|

One can show that strictly diagonally dominant matrices are non-singular and thus a unique

solution for c2, c3, . . . , cn exist. Once the c1, c2, . . . , cn are known, we can compute d1, d2, . . . , dn

from (3.9) and b1, b2, . . . , bn from (3.12). In summary, we have the following.

Theorem 3.13

Let f : [a, b] → R be a given function and let a = x0 < x1 < · · · < xn = b be distinct
nodes. Then f has a unique natural cubic spline interpolant S on [a, b].

The linear system (3.13) for the coefficients c = (c1, c2, . . . , cn+1) written in vector form

Ac = w has coefficient matrix

A =




1 0 0 0 · · · · · · 0

h1 2(h1 + h2) h2 0 · · · · · · 0

0 h2 2(h2 + h3) h3 0 · · · 0

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 hn−2 2(hn−2 + hn−1) hn−1 0

0 · · · · · · 0 hn−1 2(hn−1 + hn) hn

0 0 · · · · · · 0 0 1




and

w =

(
0,

3

h2

(a3 − a2)−
3

h1

(a2 − a1), · · · ,
3

hn

(an+1 − an)−
3

hn−1

(an − an−1), 0

)
. (3.14)

In Algorithm 3.4, we compute the 4n coefficients in a natural cubic spline given the data

(x0, y0), (x1, y1), . . . , (xn, yn).

We end this section with an example.

Example 3.17. In this example we compare cubic spline interpolation with Lagrange poly-

nomial interpolation for the Runge function

f(x) =
1

1 + 25x2
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Algorithm 3.4 Natural Cubic Spline Coefficients

input: x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn)

output: The coefficients a = (a1, . . . , an, an+1), b = (b1, . . . , bn),

c = (c1, . . . , cn, cn+1), d = (d1, . . . , dn) used to construct the cubic spline

interpolating the input data with natural boundary conditions

1: set a = (y0, y1, . . . , yn)

2: create h = (h1, h2, . . . , hn)

3: create coefficient matrix A of size (n+ 1)× (n+ 1)

4: create vector w using (3.14)

5: solve the linear system Ac = w for c = (c1, c2, . . . , cn+1)

6: create d = (d1, d2, . . . , dn) using (3.9)

7: create b = (b1, b2, . . . , bn) using (3.12)

8: output a[0 : n], b, c[0 : n], d

on the interval [−1, 1, ] using both Chebyshev nodes and equally spaced nodes. In Figure 3.9,

we use Chebyshev nodes to compare cubic spline interpolation with Lagrange polynomial

interpolation. In Figure 3.10, we use equally spaced nodes to compare cubic spline inter-

polation with Lagrange interpolation. Notice that in both cases, the Lagrange polynomial

approximation experiences relatively large deviations within the nodes.
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Figure 3.9: Cubic spline vs Lagrange interpolation using Chebyshev nodes: P (x) Lagrange
and S(x) spline
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Figure 3.10: Cubic spline vs Lagrange interpolation using equally spaced nodes: P (x) La-
grange and S(x) spline
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4

Numerical Differentiation and Integration

4.1 Numerical Differentiation

Suppose that f : [a, b] → R is differentiable on [a, b]. In this section, we consider the problem

of approximating f ′(x) for a given point x ∈ [a, b] using only the values of f near x. Recall

that by definition

f ′(x) = lim
h→∞

f(x+ h)− f(x)

h
,

and therefore a reasonable way to estimate f ′(x) is to use

f(x+ h)− f(x)

h
(4.1)

for small h. We will see that (4.1) can be obtained by using a linear Lagrange polynomial

P (x). We will generalize our derivation of (4.1) to higher-order Lagrange polynomials and

obtain more accurate estimates of f ′(x) using multiple points near x.

Let x0 ∈ [a, b] and suppose we want to estimate f ′(x0) using the value of f and x0 and

at a nearby point x1 = x0 + h be in [a, b]. The number h is allowed to be negative in which

case x1 is to the left of x0. Then from our previous work on interpolation (see Theorem 3.4),

we have

f(x) = f(x0)L0(x) + f(x1)L1(x) +
w(x)

2!
f (2)(ξ(x))

where

w(x) = (x− x0)(x− x1)

L0(x) = (x− x1)/(x0 − x1)

L1(x) = (x− x0)/(x1 − x0),

and ξ(x) is in between x0 and x1. Differentiating with respect to x yields

f ′(x) = f(x0)L
′
0(x) + f(x1)L

′
1(x) +

(2x− x0 − x1)

2
f (2)(ξ(x)) +

w(x)

2

d

dx

(
f (2)(ξ(x))

)
.
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For arbitrary x ∈ [a, b], the quantity d
dx

(
f (2)(ξ(x))

)
is unknown. However, since w(x0) = 0

we have

f ′(x0) = f(x0)L
′
0(x0) + f(x1)L

′
1(x0)−

h

2
f (2)(ξ(x0))

= f(x0)
1

−h
+ f(x1)

1

h
− h

2
f (2)(ξ(x0))

=
1

h
(f(x0 + h)− f(x0))−

h

2
f (2)(ξ(x0)).

Hence, for small h, we can use 1
h
(f(x0 + h) − f(x0)) to estimate f ′(x0) with error term

bounded by M
2
h, where M > 0 satisfies |f ′(x)| ≤ M for all x ∈ [x0, x1]. The estimate (4.1)

is known as a forward-difference if h > 0 and a backward-difference if h < 0.

The above derivation can be generalized using an nth order Lagrange polynomial with

nodes x0, x1, . . . , xn. Suppose then that f ∈ Cn+1([a, b]) and x0, x1, . . . , xn ∈ [a, b]. Then

f(x) = Pn(x) +
1

(n+ 1)!
w(x)f (n+1)(ξ(x))

where

Pn(x) =
n∑

k=0

f(xk)Lk(x) (interpolating polynomial)

w(x) = (x− x0)(x− x1) · · · (x− xn),

Lk(x) =
n∏

i=1
i 6=k

(x− xi)

(xk − xi)
, k = 0, 1, . . . , n

and ξ(x) is in the interval [a, b]. Differentiating with respect to x yields

f ′(x) = P ′
n(x) +

1

(n + 1)!
w′(x)f (n+1)(ξ(x)) +

1

(n+ 1)!
w(x)

d

dx
f (n+1)(ξ(x)).

The term d
dx
f (n+1)(ξ(x)) is unknown and may be difficult to estimate. However, when we

evaluate at one of the nodes xj the term w(x) vanishes, that is, w(xj) = 0, and thus the

unknown term d
dx
f (n+1)(ξ(x)) is eliminated. Therefore,

f ′(xj) = P ′
n(xj) +

1

(n+ 1)!
w′(xj)f

(n+1)(ξ(xj))

For convenience we introduce the following notation for the error term:

en(xj) =
1

(n+ 1)!
w′(xj)f

(n+1)(ξ(xj))
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and thus

f ′(xj) = P ′
n(xj) + en(xj).

If w′(xj) is small and f (n+1)(ξ(xj)) is not too big then the error term en(xj) will be negligible

and thus P ′
n(xj) =

∑n
k=0 f(xk)L

′
k(xj) can be taken as an estimate for f ′(xj). We therefore

obtain the following approximation

f ′(xj) =
n∑

k=0

f(xk)L
′
k(xj) + en(xj) (4.2)

which is called a (n+ 1)-point formula.

The most commonly used point formulas are 3- and 5-point formulas. For the 3-point

formula we have

f ′(xj) = f(x0)L
′
0(xj) + f(x1)L

′
1(xj) + f(x2)L

′
2(xj) + e2(xj)

for j = 0, 1, 2. One can easily show that

L′
0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)

L′
1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)

L′
2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)

Therefore,

f ′(xj) = f(x0)

(
2xj − x1 − x2

(x0 − x1)(x0 − x2)

)
+ f(x1)

(
2xj − x0 − x2

(x1 − x0)(x1 − x2)

)

+ f(x2)

(
2xj − x0 − x1

(x2 − x0)(x2 − x1)

)
+ e2(xj)

(4.3)

The 3-point formula (4.3) takes on a very simple form for equally spaced nodes x0, x1, x2

where x1 = x0 + h and x2 = x0 + 2h. Here h is called the step-size and is allowed to be

negative. If h > 0 then x1 and x2 are to the right of x0, and if h < 0 then x1 and x2 are to

the left of x0. In any case, substituting x1 and x2 in the general 3-point formula (4.3) and

evaluating at xj = x0 we obtain

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ0) (4.4)

Hence, f ′(x0) can be estimated using the values f(x0), f(x0 + h), and f(x0 + 2h). Hence, if

h > 0 then only information from f at x0 and in a forward direction is needed, and if h < 0
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then only information from f at x0 and in a backward direction is needed. Using (4.3) again

but with xj = x1 yield

f ′(x1) =
1

2h
(f(x0 + 2h)− f(x0))−

h2

6
f (3)(ξ1) (4.5)

which can be written as

f ′(x1) =
1

2h
(f(x1 + h)− f(x1 − h))− h2

6
f (3)(ξ1).

In this case, f ′(x1) can be estimated using values of f after f(x1), namely f(x1 + h), and

using values of f before f(x1), namely f(x1 − h). Lastly, using (4.3) with xj = x2 we have

f ′(x2) =
1

2h
[f(x0)− 4f(x0 + h) + 3f(x0 + 2h)] +

h2

3
f (3)(ξ2) (4.6)

which can be written as

f ′(x2) =
1

2h
[f(x2 − 2h)− 4f(x2 − h) + 3f(x2)] +

h2

3
f (3)(ξ2)

In this case, f ′(x2) can be estimated using values before f(x2), namely f(x2 − 2h) and

f(x2 − h) provided h > 0. Notice that the formula for f ′(x2) can be obtained from f ′(x0)

by replacing h with −h in f ′(x0).

To eliminate any possible confusion as to whether h is taken to be positive or negative,

we summarize the previous derivations assuming that h > 0. Then, to estimate f ′ at the

points x0 < x1 < x2, with x1 = x0 + h and x2 = x0 + 2h, we we have

f ′(x0) ≈
1

2h

(
− 3f(x0) + 4f(x1)− f(x2)

)
(F)

f ′(x1) ≈
1

2h

(
f(x2)− f(x0)

)
(M)

f ′(x2) ≈
1

2h

(
f(x0)− 4f(x1) + 3f(x2)

)
(B)

The estimate (F) is a forward 3-point estimate, (M) is a mid-point 3-point estimate,

and (B) is a backward 3-point estimate. Notice that the error with the mid-point estimate

is approximately half of the error of the two end-point formulas (F) and (B). This seems

plausible since the mid-point estimate uses the values of f on the left and right from where

f ′ is being estimated, whereas the end-point formulas uses the values of f only on one side

(forward or backward) from where f ′ is being estimated.

Using a similar analysis, we can derive the 5-point midpoint formula

f ′(x0) =
1

12h
[f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)] +

h4

30
f (5)(ξ)
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where ξ ∈ (x0 − 2h, x0 + 2h), and the 5-point endpoint formula

f ′(x0) =
1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h) + 16f(x0 + 3h)− 3f(x0 + 4h)]+

h4

5
f (5)(ξ)

where ξ ∈ (x0, x0 + 4h). We now consider two examples.

Example 4.1. Consider the data

x f(x)
1.0 −1.0
1.1 −2.0
1.2 1.0
1.3 1.0
1.4 3.0

Use the given values to estimate f ′(x) for each x ∈ {1.0, 1.1, 1.2, 1.3, 1.4} using all applicable

3-point formulas.

Solution. The step-size is h = 0.1. We consider each x separately:

1. x = 1.0: In this case, only the end-point formulas can be applied. The 3-point formula

gives

f ′(1.0) ≈ 1

2h
(−3f(1) + 4f(1.1)− f(1.2)) = −30.0

2. x = 1.1: We can use 3-point end-point (forward) and 3-point midpoint. For end-point

f ′(1.1) ≈ 1

2h
(−3f(1.1) + 4f(1.2)− f(1.3)) = 4.5

and for mid-point

f ′(1.1) ≈ 1

2h
(f(1.2)− f(1.0)) = 10.0

3. x = 1.2: We can use all three 3-point formulas (foward/backward end-point, and

midpoint). For forward end-point:

f ′(1.2) ≈ 1

2h
(−3f(1.2) + 4f(1.3)− f(1.4)) = −10.0

and for backward end-point:

f ′(1.2) ≈ 1

2h
(f(1)− 4f(1.1) + 3f(1.2)) = 50

With midpoint:

f ′(1.2) ≈ 1

2h
(f(1.3)− f(1.1)) = 15
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4. x = 1.3: We can use mid-point and backward end-point formula. For mid-point:

f ′(1.3) ≈ 1

2h
(f(1.4)− f(1.2)) = 10.0

and with the backward end-point formula:

f ′(1.3) ≈ 1

2h
(f(1.1)− 4f(1.2) + 3f(1.3)) = −15.0

5. x = 1.4: Only the backward end-point 3-point. For the 3-point formula:

f ′(1.4) ≈ 1

2h
(f(1.2)− 4f(1.3) + 3f(1.4)) = 30

Example 4.2. Consider again the data

x f(x)
1.0 −1.0
1.1 −2.0
1.2 1.0
1.3 1.0
1.4 3.0

Use the given values to estimate f ′(x) for each x ∈ {1.0, 1.1, 1.2, 1.3, 1.4} using all applicable

5-point formulas.

Solution. Again we have h = 0.1. In this case, we can only compute f ′(x) using 5-point

formulas for x = 1.0, x = 1.2, and x = 1.4. We consider each x separately:

1. x = 1.0: The 5-point forward formula gives

f ′(1.0) ≈ 1

12h
(−25f(1) + 48f(1.1)− 36f(1.2) + 16f(1.3)− 3f(1.4)) = · · ·

2. x = 1.2: The 5-point mid-point formula gives

f ′(1.2) ≈ 1

12h
(f(1.0)− 8f(1.1) + 8f(1.3)− f(1.4)) = · · ·

3. x = 1.4: The 5-point backward formula:

f ′(1.4) ≈ − 1

12h
(−3f(1) + 16f(1.1)− 36f(1.2) + 48f(1.3)− 25f(1.4)) = · · ·
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Figure 4.1: Figure for Example 4.3; Ŝ(x) interpolates through the estimates of f ′(xj)

Example 4.3. Suppose that the function f(x) = x cos(x)− x2 sin(x) is sampled at equally

spaced points −π = x0 < x1 < · · · < xn−1 < xn = π, where n = 16. Using the 3-point

formulas to estimate f ′(xj) for j = 0, 1, . . . , n we obtain the values ŷ′ = (ŷ′0, ŷ
′
1, . . . , ŷ

′
n). We

then use a natural cubic spline Ŝ(x) to interpolate the data {(xj , ŷ
′
j}nj=0. The graph of f ′(x)

and Ŝ(x) are shown in Figure 4.1.

Example 4.4. Write a Python function called ThreePointDiff that takes as input a step-

size h and an array y = (y0, y1, . . . , yn) and returns the numerical derivative of the y-values

using the 3-point formulas. Use the mid-point estimates whenever they are applicable.

Algorithm 4.1 shows the pseudocode for ThreePointDiff.

Algorithm 4.1 ThreePointDiff

input: y = (y0, y1, . . . , yn), step-size h > 0

output: ŷ′ = (ŷ′0, ŷ
′
1, . . . , ŷ

′
n) where ŷ′j is a 3-point estimate of f ′(xj)

1: set ŷ′ = zeros(n+ 1)

2: compute ŷ′0 # using forward 3-point formula

3: compute ŷ′n # using backward 3-point formula

4: for k = 1, 2, . . . , n− 1 do

5: compute ŷ′k # using mid-point 3-point formula

6: output ŷ′
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4.2 Numerical Integration

Before we begin with numerical integration, we introduce the Weighted Mean Value Theorem

(WMVT) for integrals that will be used in this section.

Theorem 4.1: Weighted Mean Value Theorem for Integrals

Suppose that f and g are continuous on [a, b] and g does not change sign on [a, b]. Then
there exists a number c ∈ (a, b) such that

∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

We note that when g(x) = 1 for all x ∈ [a, b] then the WMVT reduces to the standard Mean

Value theorem for Integrals: ∫ b

a

f(x) dx = f(c)(b− a).

In this section, we consider the problem of numerically computing definite integrals

∫ b

a

f(x) dx.

The process of computing exact areas is termed quadrature, and the process of using

numerical methods to compute definite integrals is called numerical quadrature. In its

simplest form, the approach is to partition the interval [a, b] using nodes a = x0 < x1 <

· · · < xn = b, compute the nth order Lagrange interpolating polynomial

P (x) =

n∑

i=0

f(xi)Li(x)

and then use

∫ b

a

f(x) dx ≈
∫ b

a

P (x) dx =

∫ b

a

n∑

i=0

f(xi)Li(x) dx

=

n∑

i=0

f(xi)

∫ b

a

Li(x) dx

=
n∑

i=0

f(xi)si

where

si =

∫ b

a

Li(x) dx
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for i = 0, 1, . . . , n. Hence, the estimates we will obtain to
∫ b

a
f(x) dx will be of the form

∫ b

a

f(x) dx ≈
n∑

i=0

f(xi)si.

As we have seen, however, using a high-order interpolating polynomial over an entire interval

[a, b] can be problematic due to the oscillatory behavior of high-order polynomials. Hence,

we may want to take a piecewise approach to numerical integration and use many low-order

polynomials instead of one high-order polynomial, similar to what we did with cubic splines

and numerical differentiation. In other words, we will partition [a, b] into smaller subintervals

[a1, b1], [a2, b2], . . . , [ar, br], and for each subinterval [aj , bj] use an nth order Lagrange poly-

nomial to estimate
∫ bj
aj

f(x) dx, where n is small, and then add the estimates to approximate
∫ b

a
f(x) dx.

We now described two methods to estimate
∫ b

a
f(x) dx. The simplest and non-trivial

estimate of
∫ b

a
f(x) dx is obtained by using a linear Lagrange polynomial with nodes x0 = a

and x1 = b. The linear Lagrange polynomial is

P (x) = f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0
.

Then f(x) = P (x) + 1
2
f (2)(ξ(x))(x− x0)(x− x1) (where ξ(x) is in between x0 and x1), and

therefore
∫ x1

x0

f(x) dx =

∫ x1

x0

P (x) dx+
1

2

∫ x1

x0

f (2)(ξ(x))(x− x0)(x− x1) dx

=

[
f(x0)

x0 − x1
(x− x1)

2 +
f(x1)

x1 − x0
(x− x0)

2

]x1

x0

+
1

2

∫ x1

x0

f (2)(ξ(x))(x− x0)(x− x1) dx

=
(x1 − x0)

2
[f(x0) + f(x1)] +

1

2

∫ x1

x0

f (2)(ξ(x))(x− x0)(x− x1) dx

Since g(x) = (x− x0)(x− x1) does not change sign in [x0, x1], the WMVT applies and after

some simplification we obtain

∫ x1

x0

f(x) dx =
(x1 − x0)

2
[f(x0) + f(x1)]− f (2)(c)

(x1 − x0)
3

12

where c is a number in (x0, x1). Setting h = x1 − x0 we obtain

∫ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f (2)(c) (4.7)

and this is commonly called the Trapezoidal rule since when f is non-negative on [a, b]

the number h
2
(f(x0) + f(x1)) is the area of a trapezoid with heights f(x0) and f(x1) and of
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base h. Equivalently, h
2
(f(x0) + f(x1)) is the average of the left-end and right-end Riemann

sum approximations.

The next natural estimate of
∫ b

a
f(x) dx is to use a quadratic Lagrange polynomial with

nodes a = x0 < x1 < x2 = b. However, the estimate of the error will be of order O(h4) and

it turns out that if we use a cubic Taylor polynomial based at x1 then the error estimate is

of order O(h5), where h = x1 − x0 = x2 − x1. Hence, using a cubic Taylor polynomial based

at x1 we obtain

f(x) =

3∑

k=0

1

k!
f (k)(x1)(x− x1)

k +
1

4!
f (4)(ξ)(x− x1)

4

where ξ is in between x and x1, and therefore
∫ b

a

f(x) dx =

∫ b

a

3∑

k=0

1

k!
f (k)(x1)(x− x1)

k dx+
1

4!

∫ b

a

f (4)(ξ(x))(x− x1)
4 dx.

Applying the WMVT to the second integral we obtain
∫ b

a

f(x) dx =

∫ b

a

3∑

k=0

1

k!
f (k)(x1)(x− x1)

k dx+
1

60
f (4)(ξ)h5 (4.8)

Now, recalling that a = x0 and b = x2, we obtain
∫ b

a

3∑

k=0

1

k!
f (k)(x1)(x− x1)

k dx =

3∑

k=0

f (k)(x1)

(k + 1)!
(x− x1)

k+1
∣∣∣
x2

x0

= f(x1)2h+
1

2!
f (1)(x1)(h

2 − (−h)2) +
1

3!
f (2)(x1)(h

3 − (−h)3)

+
1

4!
f (3)(x1)(h

4 − (−h)4)

= f(x1)2h+ f (2)(x1)
h3

3

Using techniques from numerical differentiation, it can be shown that

f (2)(x1) =
1

h2
[f(x0)− 2f(x1) + f(x2)]−

h2

12
f (4)(ξ1)

where ξ1 ∈ (x0, x2). Therefore,
∫ b

a

3∑

k=0

1

k!
f (k)(x1)(x− x1)

k dx = f(x1)2h+ f (2)(x1)
h3

3

= 2hf(x1) +
h3

3

[
1

h2
(f(x0)− 2f(x1) + f(x2))−

h2

12
f (4)(ξ1)

]

=
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

36
f (4)(ξ1)
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Combining the last equation with (4.8) we finally obtain

∫ b

a

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (4)(ξ) (4.9)

where ξ lies in (a, b). The above estimate is known as Simpson’s rule.

Both the trapezoidal and Simpson’s rule can be used in a piecewise approach to numerical

integration. We demonstrate this via an example using Simpson’s rule.

Example 4.5. Approximate
∫ 4

0
ex dx using Simpson’s rule in three different ways:

(a) Apply Simpson’s rule on the interval [0, 4].

(b) Partition [0, 4] into r = 2 subintervals [0, 2] and [2, 4], apply Simpson’s rule on each

subinterval and add the two results.

(c) Partition [0, 4] into r = 4 subintervals [0, 1], [1, 2], [2, 3], [3, 4], apply Simpson’s rule on

each subinterval and add the four results.

Compare all three with the exact value
∫ 4

0
ex dx = e4 − 1 = 53.598150033144236 . . .

Solution. (a) In this case h = 2 and we obtain the estimate

∫ 4

0

ex dx ≈ h

3

(
e0 + 4e2 + e4

)
=

2

3
(1 + 4e2 + e4) = 56.76958

The magnitude of the error is 3.17143.

(b) In this case h = 1 and we obtain the estimate

∫ 4

0

ex dx =

∫ 2

0

ex dx+

∫ 4

2

ex dx

≈ h

3

(
e0 + 4e1 + e2

)
+

h

3
(e2 + 4e3 + e4)

= 53.86385

The magnitude of the error is 0.26570.

(c) In this case h = 1
2
and we obtain the estimate

∫ 4

0

ex dx =

∫ 1

0

ex dx+

∫ 2

1

ex dx++

∫ 3

2

ex dx+

∫ 4

3

ex dx

≈ h

3
(e0 + 4e0.5 + e1) +

h

3
(e1 + 4e1.5 + e2)

+
h

3
(e2 + 4e2.5 + e3) +

h

3
(e3 + 4e3.5 + e4)

= 53.61622
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The magnitude of the error is 0.01807.

The previous example illustrates the general approach to piecewise numerical integra-

tion. To approximate
∫ b

a
f(x) dx, we partition [a, b] into r non-overlapping and equal length

subintervals [a1, b1], [a2, b2], . . . , [ar, br], and estimate
∫ bj
aj

f(x) dx using either the Trapezoidal

or Simpson’s rule (or any other estimate). If, for instance, we used Simpson’s rule, for each

sub-interval [aj , bj] we use three equally-spaced nodes x2j−2 < x2j−1 < x2j , where x2j−2 = aj ,

x2j = bj , and x2j−1 is the midpoint between aj and bj , and use the estimate
∫ bj

aj

f(x) dx ≈ h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j)).

Below is a diagram illustrating the partitioning of [a, b] into subintervals [aj , bj ] and the

resulting nodes x0, x1, x2, . . . , x2r.

b b b

x0 x1 x2

[ ]

a1 b1

· · · · · ·
b b b

x2j−2 x2j−1 x2j

[ ]

aj bj

b b b

x2r−2 x2r−1 x2r

[ ]

ar br

We then add up all the estimates on each subinterval and obtain the following estimate for∫ b

a
f(x) dx: ∫ b

a

f(x) dx ≈
r∑

j=1

h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j)).

The estimate (4.10) is known as the Composite Simpson’s rule on [a, b] with r subin-

tervals. The process of partitioning [a, b] into the r subintervals [aj , bj ] produces the nodes

x0, x1, . . . , xn with spacing h = (b− a)/n, where we have set n = 2r.

In practice, given [a, b] one introduces equally-spaced nodes a = x0 < x1 < · · · < xn = b

where n is even and h = b−a
n

is the step-size of the nodes. The values yj = f(xj) are

computed, for j = 0, 1, . . . , n, and on each subinterval [x2j−1, x2j ] we obtain the estimate
∫ x2j

x2j−2

f(x) dx ≈ h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j)).

and add these estimates
∫ b

a

f(x) dx ≈ h

3

n/2∑

j=1

(f(x2j−2) + 4f(x2j−1) + f(x2j)). (4.10)

Based on our experience with working with Lagrange polynomials, we would expect that

this piecewise approach would yield better approximations than using a single Lagrange

polynomial with n + 1 equally spaced nodes.
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Example 4.6. Consider the function

f(x) = 3 cos(2x)− sin(0.5x) + 3 sin(3.3x) + 0.5 sin(10x)

on the interval [a, b] = [−2, 4]. Let n = 16 and let h = (b − a)/n = 0.375. We obtain the

nodes x0, x1, . . . , x16 with xj = a + jh, j = 0, 1, . . . , n. The first three nodes x0, x1, x2 are

used to compute the estimate
∫ x2

x0

f(x) dx ≈ h

3
(f(x0) + 4f(x1) + f(x2)) = −1.2188.

We then use x2, x3, x4 to compute the estimate
∫ x4

x2

f(x) dx ≈ h

3
(f(x2) + 4f(x3) + f(x4)) = −0.6562.

We continue in this way until we finally compute
∫ x16

x14

f(x) dx ≈ h

3
(f(x14) + 4f(x15) + f(x16)) = 2.7188.

Then ∫ 4

−2

f(x) dx ≈
n/2∑

j=1

h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j)) = −1.5688.

Repeating this process with increasing values of n produces the table of values

n S
16 −1.568761
32 −1.372813
64 −1.378821
128 −1.379072
256 −1.379087
512 −1.379088

The actual value is
∫ 4

−2
f(x) dx = −1.379087621 . . ..

We now do some further analysis of using the Composite Simpson’s rule. From (4.9), on

each interval [x2j−2, x2j ] we have
∫ x2j

x2j−2

f(x)dx =
h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j))−

h5

90
f (4)(ξj)

where ξj ∈ (x2j−2, x2j−1). Therefore,

∫ b

a

f(x) dx =

n/2∑

j=1

∫ x2j

x2j−2

f(x)dx

=

n/2∑

j=1

[
h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j))−

h5

90
f (4)(ξj)

]
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Now, the even values f(x2j) for j = 1, 2, . . . , n − 1 appear twice in the above sum, and

therefore the Composite Simpson’s rule can be written as

∫ b

a

f(x) dx =
h

3


f(x0) + 2

(n/2)−1∑

j=1

f(x2j) + 4

n/2∑

j=1

f(x2j−1) + f(xn)


− h5

90

n/2∑

j=1

f (4)(ξj) (4.11)

Further analysis of the error terms produces the following result.

Theorem 4.2: Composite Simpson’s Rule

Suppose that f ∈ C4[a, b] and let n be even. Let h = b−a
n

and let xj = a + jh for
j = 0, 1, . . . , n. There exists ξ ∈ (a, b) such that

∫ b

a

f(x) dx =
h

3


f(x0) + 2

(n/2)−1∑

j=1

f(x2j) + 4

n/2∑

j=1

f(x2j−1) + f(xn)


− (b− a)

180
h4f (4)(ξ).

For notational convenience, we denote

S(f, a, b, n) =
h

3


f(x0) + 2

(n/2)−1∑

j=1

f(x2j) + 4

n/2∑

j=1

f(x2j−1) + f(xn)


 (4.12)

and call it the Simpson approximation of
∫ b

a
f(x) dx. Thus, with this notation, from the

Composite Simpson’s Rule Theorem we obtain

∣∣∣∣
∫ b

a

f(x) dx− S(f, a, b, n)

∣∣∣∣ =
(b− a)

180
h4 max

x∈[a,b]
|f (4)(x)|.

Using (4.12), it is straightforward to write the pseudocode for the Composite Simpson rule,

see Algorithm 4.2.

Example 4.7. Let f(x) = sin(x). Determine the value of n that will guarantee that∣∣∫ π

0
sin(x) dx− S(f, 0, π, n)

∣∣ < ε where ε = 1× 10−12.

Solution. According to the Composite Simpson’s Rule theorem (and using the fact that

f (4)(x) = sin(x)) we have

∣∣∣∣
∫ π

0

sin(x) dx− S(f, 0, π, n)

∣∣∣∣ =
π

180
h4| sin(ξ)|

where ξ ∈ (0, π). Since | sin(x)| ≤ 1 for all x we can write

∣∣∣∣
∫ π

0

sin(x) dx− S(f, 0, π, n)

∣∣∣∣ =
π

180
h4| sin(ξ)| ≤ π

180
h4
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Algorithm 4.2 Composite Simpson Rule

input: h > 0, data points y0, y1, y2, . . . , yn, where n is even

output: Estimate
∑n/2

j=1 Sj where Sj =
h
3
(y2j−2 + 4y2j−1 + y2j)

1: set Seven = 0

2: set Sodd = 0

3: for j = 1, 2, . . . , (n
2
− 1) do

4: set Seven = Seven + y2j

5: for j = 1, 2, . . . , n
2
do

6: set Sodd = Sodd + y2j−1

7: set S = h
3
(y0 + 2Seven + 4Sodd + yn)

8: output S

If we set π
180

h4 < ε and use h = π
n
we obtain that

h <

(
180ε

π

)1/4

which is equivalent to
π

(
180ε
π

)1/4 < n

With the given ε = 1× 10−12 we obtain

n > 1141.876.

We must therefore choose n = 1142 and with this choice one computes that

S(f, 0, π, n) = 2.0000000000006364 = 2 + 6.364× 10−13

The actual value of the integral is
∫ π

0
sin(x) dx = 2 and we are within ε as predicted.
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5

Direct Methods for Linear Systems

5.1 Gaussian Elimination with Partial Pivoting

To solve the linear system Ax = b for the unknown vector x, we form the augmented matrix

Ã =
(
A b

)
and perform elementary row operations, also known as Gaussian elimination.

5.2 LU Decomposition

We begin, as usual, with definitions.

Definition 5.1: Triangular Matrices

The matrix M = (mi,j) is lower-triangular if all entries above the main diagonal of M
are zero, that is, mi,j = 0 whenever j > i. We say that M is upper-triangular if all
entries below the main diagonal of M are zero, that is, mi,j = 0 whenever i > j. If M is
either upper- or lower-triangular then we say that M is triangular. If M is both upper-
and lower-triangular then M is called a diagonal matrix.

Example 5.1. Prove that if M is a triangular matrix then det(M) =
∏n

i=1mi,i.

Example 5.2. If M is lower-triangular then what can we say about MT ?

We now introduce the main notion of this section.

Definition 5.2: LU -Decomposition

The matrix A has a LU-decomposition or LU-factorization if there exists a lower-
triangular matrix L and an upper-triangular matrix U such that A = LU.

The Gaussian elimination algorithm used to solve the linear system Ax = b may seem

like a very elementary process used for a specific problem (solving a linear system) but in this

section we will see that the algorithm is more sophisticated than at first glance and useful to
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Algorithm 5.1 Gaussian Elimination with Partial Pivoting

input: A an n× n matrix, b a n× 1 vector

output: Solution x to the linear system Ax = b, or error message that

no unique solution exists

1: set ε = 1× 10−14 (or a suitably small tolerance)

2: set Ã =
(
A b

)

3: for i = 1, 2, . . . , n do (main loop performing row reduction)

4: find k ∈ {i, i+ 1, . . . , n} such that |ãk,i| = max{|ãi,i|, |ãi+1,i|, . . . , |an,i|}
5: if |ak,i| < ε

6: print( “No unique solution exists!” )

7: return 0

8: if k 6= i

9: swap row Ri and row Rk in Ã

10: for j = i+ 1, i+ 2, . . . , n do

11:

(
Rj −

ãj,i
ãi,i

Ri

)
−→ Rj

12: set y equal to the last column of Ã

13: set x = (0, 0, . . . , 0)

14: set xn =
yn
ãn,n

15: for i = n− 1, n− 2, . . . , 2, 1 do

16: set xi =
1

ãi,i
(yi − ãi,i+1xi+1 − ãi,i+2xi+2 − · · · − ãi,nxn)

17: return x

solve other linear-algebraic problems regarding A. Specifically, Gaussian elimination in fact

produces a LU -decomposition and such a factorization has several applications other than

solving linear systems.
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Example 5.3. Below we present two matrices that have a LU -decomposition:

A =



2 0 1
0 −1 0
2 1 2


 =



1 0 0
0 1 0
1 −1 1





2 0 1
0 −1 0
0 0 1




A =



0 0 0
0 0 1
0 1 0


 =



0 0 0
1 0 0
0 1 1





0 0 1
0 1 0
0 0 0




Notice that the first matrix is non-singular while the latter is singular.

Example 5.4. If a matrix has a LU -factorization, it may not necessarily be unique. For

example, A = ( 0 1
0 2 ) has the following LU -factorizations:

A =

(
0 1
0 2

)
=

(
1 0
1 1

)(
0 1
0 1

)

A =

(
0 1
0 2

)
=

(
1 0
−1 1

)(
0 1
0 3

)

Example 5.5. Not every matrix has a LU -factorization. For example, consider A = ( 0 1
1 0 ).

Then if

A =

(
0 1
1 0

)
= LU =

(
ℓ1,1 0
ℓ1,2 ℓ2,2

)(
u1,1 u1,2

0 u2,2

)

then we must have ℓ1,1u1,1 = 0 and therefore det(LU) = det(L) det(u) = ℓ1,1ℓ2,2u1,1u2,2 = 0.

However, det(A) = −1.

Let us now show how Gaussian elimination can be used to determine a LU -decomposition

of a given matrix. Since Gaussian elimination is an iterative process that changes the coef-

ficient matrix A and the vector b, we introduce some notation to denote these objects after

each step of the elimination process. Hence, let A(1) = A, let b(1) = b, and let a
(1)
i,j denote

the (i, j) entry of A(1). Using this notation the linear system is therefore A(1)x = b(1). If

a
(1)
1,1 6= 0 then we perform the elementary row operation

Rj −
a
(1)
j,1

a
(1)
1,1

R1 −→ Rj

to each row j = 2, 3, . . . , n. To make the notation less cumbersome, let

mj,1 =
a
(1)
j,1

a
(1)
1,1
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for j = 2, 3, . . . , n, and thus the elementary row operations can be written more compactly

as

Rj −mj,1R1 −→ Rj. (5.1)

Denote the new coefficient matrix by A(2) and the new b-vector by b(2). Hence, the aug-

mented matrix after the first step of the elimination process is

(
A(2) | b(2)

)
=




a
(2)
1,1 a

(2)
1,2 a

(2)
1,3 · · · a

(2)
1,n | b

(2)
1

0 a
(2)
2,2 a

(2)
2,3 · · · a

(2)
2,n | b

(2)
2

0 a
(2)
3,2 a

(2)
3,3 · · · a

(2)
3,n | b

(2)
3

...
...

...
. . .

... | ...

0 a
(2)
n,2 a

(2)
n,3 · · · a

(2)
n,n | b

(2)
n




and the equivalent linear system is A(2)x = b(2). It turns out that the elementary row

operation (5.1) can be accomplished by multiplying both sides of the equation A(1)x = b(1)

on the left by the matrix

M(1) =




1 0 0 · · · 0
−m2,1 1 0 · · · 0

−m3,1 0 1 · · · ...
...

...
...

. . . 0
−mn,1 0 0 · · · 1




In other words, A(2) = M(1)A(1) and b(2) = M(1)b(1) (try this on a 3 × 3 example). Hence,

the original equation Ax = b is multiplied on the left by M(1):

M(1)Ax = M(1)b.

The next step in Gaussian eliminiation proceeds if a
(2)
2,2 6= 0 and then performing the elemen-

tary row operations

Rj −mj,2R2 −→ Rj

for j = 3, . . . , n and where

mj,2 =
a
(2)
j,2

a
(2)
2,2

.

Denote the new coefficient matrix by A(3) and the new b-vector by b(3). Hence, the aug-
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mented matrix after the second step of the elimination process is

(
A(3) | b(3)

)
=




a
(3)
1,1 a

(3)
1,2 a

(3)
1,3 · · · a

(3)
1,n | b

(3)
1

0 a
(3)
2,2 a

(3)
2,3 · · · a

(3)
2,n | b

(3)
2

0 0 a
(3)
3,3 · · · a

(3)
3,n | b

(3)
3

...
...

...
. . .

... | ...

0 0 a
(3)
n,3 · · · a

(3)
n,n | b

(3)
n




and the equivalent linear system is A(3)x = b(3). This series of elementary row operations is

equivalent to multiplying A(2)x = b(2) on the left by the matrix

M(2) =




1 0 0 · · · 0
0 1 0 · · · 0

0 −m3,2 1 · · · ...
...

...
...

. . . 0
0 −mn,2 0 · · · 1




.

Hence,

A(3) = M(2)M(1)A

and

b(3) = M(2)M(1)b

In general, the kth step in Gaussian elimination takes the linear system A(k)x = b(k) and,

provided a
(k)
k,k 6= 0, we multiply on the left by the matrix

M(k) =




1
1

. . .

1

−mk+1,k
. . .

...
. . .

−mn,k 1




to obtain

A(k+1) = M(k)A(k) = M(k)M(k−1) · · ·M(1)A

and

b(k+1) = M(k)b(k) = M(k)M(k−1) · · ·M(1)b
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The Gaussian elimination process terminates with the coefficient matrix

A(n) =




a
(n)
1,1 a

(n)
1,2 · · · a

(n)
1,n

0 a
(n)
2,2 · · · a

(n)
2,n

...
. . .

. . .
...

0 · · · 0 a
(n)
n,n




(5.2)

which is obtained as the product

A(n) = M(n−1)M(n−2) · · ·M(1)A.

Notice that A(n) is an upper-triangular matrix ; every entry under the main diagonal is zero.

To obtain the LU -factorization ofA, we first note that for each k the matrixM(k) is invertible

and its inverse is

[M(k)]−1 = L(k) =




1
1

. . .

1

mk+1,k
. . .

...
. . .

mn,k 1




(verify this on a 3× 3 case). Thus L(k)M(k) = I for each k = 1, 2, . . . , n− 1. Therefore,

L(1)L(2) · · ·L(n−1)L(n−1)M(n−1)M(n−2) · · ·M(2)M(1)A = A

Let

L = L(1)L(2) · · ·L(n−1)L(n−1)

and let

U = A(n) = M(n−1)M(n−2) · · ·M(2)M(1)A.

and therefore

A = LU.

We have already seen that U = A(n) is upper-triangular and one can verify that

L =




1 0 0 · · · 0

m2,1 1 0 · · · 0

m3,1 m3,2 1 · · · 0

...
...

. . .
. . .

...

mn,1 mn,2 · · · mn,n−1 1




(5.3)
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and thus L is lower-triangular ; all entries above the main diagonal are zero. To summarize:

Theorem 5.3: Gauss Elimination

Let A be a n × n matrix. If Gaussian elimination can be performed without row
interchanges on a linear system with A as the coefficient matrix then A has a LU -
decomposition.

In summary, to obtain a LU -decomposition of A, we simply perform Gaussian elimination

as usual which produces U = A(n) and we also keep track of the numbers

mj,i =
a
(i)
j,i

a
(i)
i,i

in order to construct L. We emphasize that a matrix A admits a LU -decomposition if

Gaussian elimination can be performed without any row interchanges; this seems like a very

strong restriction but many matrices that arise in applications admit such a decomposition,

and besides, we will soon see how to deal with the case when row interchanges are necessary.

Example 5.6. Find a LU -decomposition of the matrix

A =




1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1


 .

The LU -decomposition of a matrix can be used to solve a linear system as follows.

Suppose that A = LU and we want to solve Ax = b, or equivalently LUx = b. Introduce

the vector y = Ux, so that Ly = b. Since L is lower-triangular, we can easily solve for y

using forward substitution by setting

y1 = b1

and then for i = 2, . . . , n we have

yi = bi −
i−1∑

j=1

mi,jyj.

Now that y is known, we solve for x from the equation Ux = y. Since U is upper-triangular,

we perform back-substitution by first solving for

xn =
yn
un,n
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and then for i = n− 1, . . . , 2, 1 we have

xi =
1

ui,i

(
yi −

n∑

j=i+1

ui,jxj

)
.

If the coefficient matrix A will be used to solve many linear systems, then we can first

compute the LU -decomposition of A and then use the above procedure to solve the various

linear systems.

As we have seen, a matrix A has a LU -decomposition if Gaussian elimination can be per-

formed without any row interchanges, which holds whenever a
(i)
i,i 6= 0 for all i = 1, 2, . . . , n−1.

We now want to give conditions on A that imply that a
(i)
i,i 6= 0. To that end, we introduce

the following.

Definition 5.4: Leading Principal Submatrices

Let A be a n×n matrix and let k ∈ {1, 2, . . . , n} be arbitrary. The k×k matrix obtained
from A by keeping only the first k rows and first k columns is a called a leading principal

submatrix of A and we denote this matrix by Ak. We call Ak the kth leading principal
submatrix of A.

Example 5.7. The leading principal submatrices of

A =




1 0 −1 0
3 2 0 −1

−2 1 0 1
−1 1 2 7




are

A1 =
(
1
)
, A2 =

(
1 0
3 2

)
, A3 =




1 0 −1
3 2 0

−2 1 0



 , A4 = A

Theorem 5.5: LU Existence and Uniqueness

Let A be a non-singular n × n matrix. If Ak is non-singular for all k = 1, 2, . . . , n
then A has a unique LU -decomposition A = LU in which L is unit lower-triangular.
Conversely, if A has a LU -decomposition then Ak is non-singular for all k = 1, 2, . . . , n.

Proof. If n = 1 and A = (a) then a 6= 0 because A is non-singular. Then A = (1)( 1
a
) and

this LU -decomposition in which L is unit lower-triangular is unique. By induction, suppose

that the claim is true for some n ≥ 1 and let A be a (n+ 1)× (n+ 1) matrix such that Ak

is non-singular for each k = 1, 2, . . . , n. Block partition A as follows

A =

(
A11 A12

A21 a

)
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where A11 is the nth leading principal submatrix of A, A12 is a n×1 column vector, A21 is a

1×n row vector, and a is a scalar. By hypothesis, A11 and its leading principal submatrices

are non-singular, and therefore by induction, A11 has a unique LU -decomposition A11 =

L11U11 in which L11 is unit lower-triangular. Since A11 is non-singular, its rows form a basis

of Rn and therefore there exists a unique vector b such that A21 = bTA11 = bTL11U11. To

construct a LU -decomposition of A set

A =

(
A11 A12

A21 a

)
=

(
L11 0

L21 ℓ

)(
U11 U12

0 u

)

where ℓ = 1. Expanding the right-hand side and equating both sides of the equation yields

U12 = L−1
11 A12, L21 = bTL11, and u = a− L21U12, and uniqueness follows by uniqueness of

L11 and b.

To prove the converse, suppose that A has a LU -decomposition, say A = LU. Then

det(A) = det(L) det(U), and since A is non-singular, we have det(L) 6= 0 and det(U) 6= 0.

Therefore, since L and U are triangular, the leading principal submatrices of L and U are

also non-singular, i.e., det(Lk) 6= 0 and det(Uk) 6= 0 for all k = 1, 2, . . . , n. Since L is lower-

triangular and U is upper-triangular, we have Ak = LkUk for all k = 1, 2, . . . , n, that is, the

kth leading principal submatrix of A is the product of the kth leading principal submatrices

of L andU. Therefore, det(Ak) = det(Lk) det(Uk) 6= 0. This proves that Ak is non-singular.

5.3 LU-Decomposition with Row Interchanges

There are several classes of matrices that admit a LU -decomposition and we will consider

some of them in the next section. Right now, however, we confront the case when row

interchanges are necessary. This occurs when we reach a pivot a
(i)
i,i that is zero, or if we are

implementing partial pivoting (and we are), is very nearly equal to zero. At this step in

Gaussian elimination, we find k ∈ {i, i+ 1, . . . , n} such that

|a(i)k,i| = max{|a(i)i,i |, |a
(i)
i+1,i|, . . . , |a

(i)
n,i|}

and we then swap row Ri and row Rk and proceed with the elementary row operations as

usual. As the algorithm proceeds and we encounter pivots nearly equal to zero, we perform

the necessary row interchanges. If the matrix A is non-singular (i.e., it has an inverse), the

Gaussian elimination algorithm would complete successfully and we would obtain a solution

to the given linear system. We would also obtain a LU -decomposition but not of the original

matrix A but of a matrix obtained from A by performing the row interchanges. Hence, if we

knew the row interchanges in advance before beginning Gaussian elimination, we could first
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perform these row interchanges on A and then proceed with Gaussian elimination without

the need of performing row interchanges. The process of performing row interchanges on a

matrix A is equivalent to multiplying A on the right by a permutation matrix P. Let us

review this concept now.

Recall that a permutation on the set {1, 2, . . . , n} is a bijective function

σ : {1, 2, . . . , n} → {1, 2, . . . , n}

that is, σ is an invertible function. A permutation σ can be thought of as a rearrangement

of the list (1, 2, . . . , n). For example, if n = 7 and σ is the permutation σ(1) = 3, σ(2) =

4, σ(3) = 1, σ(4) = 2, σ(5) = 5, σ(6) = 7, and σ(7) = 6, then σ can be represented as

σ = (3, 4, 1, 2, 5, 7, 6).

The set of all permutations on the set {1, 2, . . . , n} will be denoted by Sn and is called the

symmetric group or the permutation group on n symbols. The number of ways to rearrange

the ordered list (1, 2, . . . , n) is n!, and therefore |Sn| = n!. The group Sn is one of the most

important groups in all of mathematics (Permutation group).

For the permutation σ ∈ Sn define the n× n matrix P as follows. Let e1, . . . , en denote

the standard basis vectors in Rn thought of as column vectors. Define the matrix P as

P =




eTσ(1)
eTσ(2)
eTσ(3)
...

eTσ(n)




.

where eT denotes the transpose of e (recall that e is a column vector and thus eT is a row

vector). For example, for the permutation σ = (3, 6, 5, 2, 1, 4) the matrix P is

P =




eTσ(1)
eTσ(2)
eTσ(3)
eTσ(4)
eTσ(5)
eTσ(6)




=




eT3
eT6
eT5
eT2
eT1
eT4




=




0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0




. (5.4)

The matrix P is called the permutation matrix associated to σ. The columns of any

permutation matrix P form an orthonormal basis of Rn since the columns of P are just

the standard basis vectors of Rn (in a rearranged order). Hence, permutation matrices are

orthogonal matrices, in other words PTP = PPT = I. Hence, P−1 = PT , and this implies

that det(P) = ±1 for any permutation matrix P.
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5.3. LU-DECOMPOSITION WITH ROW INTERCHANGES

For any matrix A and a permutation matrix P associated to σ, multiplying A on the left

by P amounts to permuting the rows of A as specified by the permutation σ. For example,

if σ = (3, 1, 4, 2) and

A =




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4




then

PA =




a3,1 a3,2 a3,3 a3,4
a1,1 a1,2 a1,3 a1,4
a4,1 a4,2 a4,3 a4,4
a2,1 a2,2 a2,3 a2,4




Let us now return to the case where Gaussian elimination requires row interchanges on a

matrix A. The row interchanges can be fully described by a permutation σ and performing

these row interchanges on A amounts to the operation PA where P is the permutation

matrix associated to σ. The matrix PA now has a LU -decomposition and therefore

PA = LU.

We emphasize that LU is the LU -decomposition of PA and not of A. In any case, since P

is invertible and in fact P−1 = PT , we obtain the following decomposition of A:

A = PTLU = (PTL)U.

The matrix U is still upper-triangular since it is obtained using Gaussian elimination but

PTL is not lower-triangular unless P = I (clearly, this occurs when no row interchanges were

needed on the original A). We will call A = PTLU a PLU -decomposition of A.

In practice, the permutation matrix P is not constructed but only the associated permu-

tation σ. To see how to compute σ, we begin with the identity permutation

σ(0) = (1, 2, . . . , n).

Gaussian elimination begins with the pivot a
(1)
1,1. If we need to interchange row Rk with row

R1 then define a new permutation σ(1) by interchanging entries k and 1 in σ(0) and leaving

all other entries fixed. If no row interchange is needed then σ(1) = σ(0). Iteratively, suppose

that we have computed σ(i−1) and we are at pivot a
(i)
i,i . If we need to interchange row Rk

with row Ri, then define a new permutation σ(i) by interchanging entries k and i in σ(i−1)

and leaving all other entries fixed. If Gaussian elimination proceeds to the last pivot a
(n)
n,n

and a
(n)
n,n is not zero then no row interchange is necessary and Gaussian elimination ends,

and thus the sought out permutation is σ = σ(n−1).
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Example 5.8. Suppose that Gaussian elimination is performed with partial pivoting on a

linear system of size n = 8. Suppose that Gaussian elimination begins by interchanging

row R4 with R1. Then σ(1) = (4, 2, 3, 1, 5, 6, 7, 8). Suppose next that no row interchange is

necessary with pivots a
(2)
2,2 and a

(3)
3,3. Then σ(2) = σ(1) and σ(3) = σ(2). Suppose that it is

necessary to interchange row R4 and R6. Then σ(4) = (4, 2, 3, 6, 5, 1, 7, 8). Next, suppose

that no row interchange is needed with pivot a
(5)
5,5 and thus σ(5) = σ(4). Next, suppose that

the row interchange R6 and R7 is needed. Then σ(6) = (4, 2, 3, 6, 5, 7, 1, 8). Finally, suppose

that Gaussian elimination proceeds without any further row interchanges. Then σ = σ(6).

We now present the pseudocode for LU -decomposition treating the general case of row

interchanges and returning σ,L, and U.

Algorithm 5.2 LU -Decomposition with row interchanges

input: A an n× n matrix

output: (σ,L,U) where A = PTLU is the LU -decomposition with permutation

matrix P associated to σ

1: set ε = 1× 10−14 (or a suitably small tolerance)

2: set σ = (1, 2, . . . , n) (not using zero-based indexing)

3: set Ã = A (a copy of A that will change)

4: set L = In×n (n× n identity matrix)

5: for i = 1, 2, . . . , n do (main loop performing row reduction)

6: find k ∈ {i, i+ 1, . . . , n} such that |ãk,i| = max{|ãi,i|, |ãi+1,i|, . . . , |ãn,i|}
7: if |ãk,i| < ε

8: print( “LU -decomposition does not exist!” )

9: return 0

10: if k 6= i

11: swap row i and row k in Ã

12: swap σ(i) and σ(k)

13: swap row i and row k of L for columns from 1 to i− 1

14: for j = i+ 1, i+ 2, . . . , n do

15: set Lj,i = ãj,i/ãi,i

16: (Rj − Lj,iRi) −→ Rj

17: return (σ,L, Ã)
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5.4 Diagonally Dominant and Positive Definite Matri-

ces

We begin with the definition of diagonally dominant matrices.

Definition 5.6: Diagonally Dominant

The n× n matrix A is said to be diagonally dominant if for each i ∈ {1, 2, . . . , n}

|ai,i| ≥
n∑

j=1
j 6=i

|ai,j|.

The matrix A is strictly diagonally dominant if for each i ∈ {1, 2, . . . , n}

|ai,i| >
n∑

j=1
j 6=i

|ai,j|.

Clearly, a strictly diagonally dominant matrix is diagonally dominant.

Example 5.9. Match the matrix on the left with the property on the right.



−3 2 −1
0 2 1
−1 4 7


 not diagonally dominant



−4 −2 −1
0 2 1
−1 4 6


 diagonally dominant but not strictly




3 2 −1
0 2 1
−1 4 2


 strictly diagonally dominant

Example 5.10. The coefficient matrix of the linear system used to solve for the coefficients
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in a natural cubic spline is strictly diagonally dominant:

A =




1 0 0 0 · · · · · · 0

h1 2(h1 + h2) h2 0 · · · · · · 0

0 h2 2(h2 + h3) h3 0 · · · 0

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 hn−2 2(hn−2 + hn−1) hn−1 0

0 · · · · · · 0 hn−1 2(hn−1 + hn) hn

0 0 · · · · · · 0 0 1




Example 5.11. Laplacian and signless Laplacian matrices of graphs are diagonally dominant

matrices but are not strictly diagonally dominant.

Strictly diagonally dominant matrices have nice properties, for example:

Theorem 5.7

Let A be a strictly diagonally dominant matrix. Then A is invertible and A has a
LU -decomposition.

Before we prove Theorem 5.7, it is useful to introduce the following now.

Theorem 5.8: Gershgorin Circle Theorem

Let A = (ai,j) be a n× n matrix, let

rk =

n∑

j=1
j 6=k

|ak,j|,

and let Dk be the closed disc

Dk = {z ∈ C : |z − ak,k| ≤ rk}

in the complex plane. Then the eigenvalues of A are contained in the union D1 ∪D2 ∪
· · · ∪Dn.

Proof. Let x = (x1, x2, . . . , xn) be an eigenvector of A with corresponding eigenvalue λ. Let

k be such that |xk| = max{|x1|, |x2|, . . . , |xn|} and note that |xk| 6= 0 because x is not the
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zero vector. The kth entry of both sides of the equation Ax = λx is

λxk =
n∑

j=1

ak,jxj

and therefore

(λ− ak,k)xk =

n∑

j=1
j 6=k

ak,jxj .

By the triangle inequality we have

|λ− ak,k||xk| ≤
n∑

j=1
j 6=k

|ak,j||xj |

≤ |xk|
n∑

j=1
j 6=k

|ak,j|

and dividing by |xk| on both sides we obtain

|λ− ak,k| ≤
n∑

j=1
j 6=k

|ak,j|.

This proves that λ ∈ Dk and the proof is complete.

Now we prove Theorem 5.7.

Proof of Theorem 5.7. By the Gershgorin Circle theorem, if λ is an eigenvalue of A then

λ is contained in some Gershgorin disc, say it is Dk = {z ∈ C : |z − ak,k| ≤ rk} for

some k ∈ {1, 2, . . . , n}. Since |ak,k| >
∑n

j=1
j 6=k

|ak,j| then Dk does not intersect the origin and

therefore λ 6= 0. It is a basic fact from linear algebra that a matrix is invertible if and only

if it does not contain zero as an eigenvalue. This proves the first statement.

Let k ∈ {1, 2, . . . , n} and consider the leading principal submatrix Ak. It is clear that

Ak is strictly diagonally dominant and therefore Ak is non-singular, i.e., det(Ak) 6= 0. By

Theorem 5.5, we conclude that A has a LU -decomposition.

We now introduce another important class of matrices.

Definition 5.9: Positive Definiteness

Let A be a symmetric matrix. We say that A is positive definite if xTAx > 0 for
all non-zero vectors x. We say that A is positive semi-definite if xTAx ≥ 0 for all
non-zero vectors x.
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We emphasize that we have defined positive definiteness for symmetric matrices, although

symmetry is not required for xTAx > 0 for x 6= 0, for example A =
(

1 1
3

1
4

1

)
. However,

symmetric matrices will be the class of matrices that will be interest to us.

Example 5.12. Consider the matrix

A =




2 −1 0
−1 2 −1
0 −1 2




Then if x = (x1, x2, x3) we have

xTAx =
(
x1 x2 x3

)



2x1 − x2

−x1 + 2x2 − x3

−x2 + 2x3




= 2x2
1 − x1x2 − x1x2 + 2x2

2 − x2x3 − x2x3 + 2x2
3

= x2
1 + (x2

1 − 2x1x2 + x2
2) + (x2

2 − 2x2x3 + x2
3) + x2

3

= x2
1 + (x1 − x2)

2 + (x2 − x3)
2 + x2

3

It is clear that xTAx > 0 for all x 6= 0 and therefore A is positive definite.

Below we prove two useful properties of positive definite matrices.

Theorem 5.10

Suppose that A = (ai,j) is a positive definite n × n matrix. Then A is invertible and
ai,i > 0 for all i = 1, 2, . . . , n.

Proof. Suppose that Ax = 0. Then xTAx = 0. Since A is positive definite then x = 0.

This proves that A has a trivial kernel and is therefore invertible. Let ei denote the ith

standard basis vector of Rn. One computes that eTi Aei = ai,i and since A is positive definite

then ai,i > 0.

Lemma 5.11

Let A be a symmetric matrix. Then A is positive definite if and only if every leading
principal submatrix of A is positive definite.

Proof. Suppose that A is a n × n positive definite matrix and let Ak be the kth leading

principal submatrix of A. Let x̃ ∈ Rk be a non-zero vector and let x = (x̃, 0, . . . , 0) ∈ Rn be

an extension of x̃. Then

x̃TAkx̃ = xTAx > 0.

This proves that Ak is positive definite. The other direction is trivial.
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We now have the following characterization of positive definite matrices.

Theorem 5.12: Positive Definiteness and Eigenvalues

Let A be a symmetric matrix. Then A is positive definite if and only if A has positive
eigenvalues.

Proof. Suppose that A is positive definite. If x is an eigenvector of A with eigenvalue λ

then xTAx = xT (λx) = λxTx = λ‖x‖2. Positive definiteness of A implies that λ‖x‖2 > 0

and since ‖x‖2 > 0 we must have λ > 0.

To prove the converse, we note that since A is symmetric, there exists an orthonormal

basis x1,x2, . . . ,xn of Rn consisting of eigenvectors of A. Let λi be the eigenvalue corre-

sponding to xi. Then our assumption is that λi > 0. For any vector x ∈ Rn there exists

constants c1, c2, . . . , cn such that x = c1x1 + c2x2 + · · ·+ cnxn. Then one can show that

xTAx = λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n.

If x 6= 0 then at least one ci is non-zero and then xTAx > 0.

We now come to the main result for positive definite matrices and their LU -decompositions.

Theorem 5.13: Positive Definiteness and LU -Decomposition

Let A be a symmetric matrix. Then A is positive definite if and only if A has a LU -
decomposition with all pivots positive. In this case, Gaussian elimination is stable with
respect to round-off error.

Proof. We prove only the forward direction. Suppose that A is positive definite. Then

by Lemma 5.11, all the leading principal submatrices Ak of A are positive definite. This

implies that all leading principal submatrices Ak are non-singular and therefore A has a

LU -decomposition, say A = LU. Now, det(Ak) = u1,1u2,2 · · ·uk,k. Since Ak is positive

definite then det(Ak) > 0. Hence u1,1 > 0. By induction this implies that uk,k > 0 for all

k = 1, 2, . . . , n. Hence, all pivots are positive.

According to Theorem 5.13, if A is a symmetric positive definite matrix then A has a

LU -decomposition, say A = LU where

L =




1 0 0 · · · 0

ℓ2,1 1 0 · · · 0

ℓ3,1 ℓ3,2 1 · · · 0

...
...

. . .
. . .

...

ℓn,1 ℓn,2 · · · ℓn,n−1 1




and U =




u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n

...
. . .

. . .
...

0 · · · 0 un,n
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and all pivots uk,k are positive. Therefore, we can write

U =




u1,1

u2,2

. . .

. . .

un,n







1
u1,2

u1,1

u1,3

u1,1
· · · u1,n

u1,1

1
u2,3

u2,2
· · · u2,n

u2,2

. . .
...

. . .
...

1




= DŨ

Hence, the LU -decomposition can be further decomposed as A = LDŨ. Since A is sym-

metric we have

LDŨ = A = AT = ŨTDLT = ŨT (DLT ).

Now ŨT is a unit lower triangular matrix and (DLT ) is upper triangular. By uniqueness of

the decomposition A = LU (Theorem 5.5) we must have ŨT = L. Hence,

A = LDLT

We have proved the following.

Corollary 5.14: LDL-Factorication

Let A be a symmetric and positive definite matrix. There exists a unique unit lower-
triangular matrix L and unique diagonal matrix D with positive diagonal entries such
that A = LDLT .

Suppose that A is a symmetric and positive definite matrix and let A = LDLT be the

decomposition from Corollary 5.14. Since all diagonal entries of D are positive we can write

D =
√
D
√
D

where
√
D is the diagonal matrix with diagonal entires

√
uk,k. Therefore,

A = L
√
D
√
DLT = (L

√
D)(

√
DLT ) = (L

√
D)(L

√
D)T

Because
√
D is diagonal and L is a unit lower-triangular matrix it follows that L̃ = L

√
D

is a lower-triangular matrix with positive entries along the diagonal. We have proved the

following.

Corollary 5.15: Cholesky Factorization

Let A be a symmetric and positive definite matrix. There exists a unique lower-
triangular matrix L̃ with positive entries along the diagonal such that A = L̃L̃T .
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6

Iterative Techniques for Solving Linear
Systems

In this section, we will study iterative techniques for solving a system of linear equations

Ax = b. The methods we will consider are similar to the fixed-point iteration techniques

for finding the solutions to a scalar equation such as f(x) = 0. Compared to Gaussian

elimination, iterative techniques are generally more efficient for large linear systems with a

sparse coefficient matrix. Before we study iterative techniques for linear systems, and to

motivate what is to come, we review the main ingredients in fixed-point iteration on R.

Fixed-point iteration on R is concerned with finding a fixed-point of a function g, i.e.,

a point p∗ ∈ R such that g(p∗) = p∗. We begin with an initial guess p0 and compute

pk = g(pk−1) for k ≥ 1. Under certain conditions on g, the sequence (pk) converges to p∗,

that is, given any ε > 0 there exists N ∈ N such that |pk−p∗| < ε for all k ≥ N . In practice,

we iterate until |pk − g(pk)| < ε for some given tolerance ε. In order to generalize the notion

of fixed-point iteration on Rn, we need to introduce (1) sequences in Rn, (2) a notion of

distance in Rn, and (3) convergence of sequences in Rn. To do all of this, all we need is to

equip Rn with a generalization of the absolute value on R.

6.1 Vector and Matrix Norms

We begin with the definition of a norm on Rn which generalizes the absolute value on R.

Norms are used to measure distance from the origin in Rn.
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Definition 6.1: Vector norm

A norm on Rn is a function ‖ · ‖ : Rn → R with the following properties:
(i) ‖x‖ ≥ 0
(ii) ‖x‖ = 0 if and only if x = 0
(iii) ‖αx‖ = |α|‖x‖ for every α ∈ R

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)

The first norm we will introduce and denoted by ‖·‖∞ is called the ℓ∞-norm, and defined

as

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.

One can verify that ‖ · ‖∞ is indeed a norm by verifying that properties (i)-(iv) are satisfied

for ‖ · ‖∞. For instance, to verify that ‖ · ‖∞ satisfies the triangle inequality:

‖x+ y‖∞ = max{|x1 + y1|, |x2 + y2|, . . . , |xn + yn|}
≤ max{|x1|+ |y1|, |x2|+ |y2|, . . . , |xn|+ |yn|}
≤ max{|x1|, |x2|, . . . , |xn|}+max{|y1|, |y2|, . . . , |yn|}
= ‖x‖∞ + ‖y‖∞

The next norm we introduce is related to the standard Euclidean inner product on

Rn defined as

〈x,y〉 =
n∑

i=1

xiyi = xTy.

The inner product 〈·, ·〉 satisfies the following properties:

(a) 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0

(b) 〈x,y〉 = 〈y,x〉 (symmetry)

(c) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)
(d) 〈αx,y〉 = α〈x,y〉 (homogeneity)

From the symmetry and the additivity properties of 〈·, ·〉 we have 〈x,y+z〉 = 〈x,y〉+ 〈x, z〉.
We say that two vectors x and y in Rn are orthogonal if 〈x,y〉 = 0.

Using the inner product 〈·, ·〉 we define the the Euclidean norm, or the ℓ2-norm, as

‖x‖2 =
√
〈x,x〉 =

(
x2
1 + x2

2 + · · ·+ x2
n

)1/2
.

We say that the norm ‖ · ‖2 is induced by the inner product 〈·, ·〉. It is straightforward

to verify that the defining properties (i)-(iii) of a norm do hold for ‖ · ‖2 but to prove the

triangle inequality we use the following.
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Theorem 6.2: Cauchy-Schwarz

For any vectors x,y ∈ Rn it holds that

〈x,y〉 ≤ ‖x‖2 · ‖y‖2

We now use the Cauchy-Schwarz inequality to prove that the ℓ2-norm satisfies the triangle

inequality:

‖x + y‖22 = 〈x+ y,x+ y〉

= 〈x,x〉+ 2〈x,y〉+ 〈y,y〉

≤ 〈x,x〉+ 2‖x‖2‖y‖2 + 〈y,y〉

= ‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22

= (‖x‖2 + ‖y‖2)2

and the proof is complete by taking the square root of both sides of ‖x+y‖22 ≤ (‖x‖2+‖y‖2)2.

Example 6.1. Let ‖ · ‖ denote the Euclidean norm on Rn. Prove that for any x,y ∈ Rn it

holds that

‖x+ y‖ · ‖x− y‖ ≤ ‖x‖2 + ‖y‖2

What can you say if x and y are orthogonal?

Solution. We first note that

‖x− y‖ =
√
〈x− y,x− y〉 =

√
〈x,x〉 − 2〈x,y〉+ 〈y,y〉

‖x+ y‖ =
√
〈x+ y,x+ y〉 =

√
〈x,x〉+ 2〈x,y〉+ 〈y,y〉

Let a = 〈x,x〉, b = 〈x,y〉, and c = 〈y,y〉. Hence,

‖x+ y‖ · ‖x− y‖ =
√
(a− 2b+ c)(a+ 2b+ c)

Now (a−2b+ c)(a+2b+ c) = (a+ c)2−4b2, and therefore (a−2b+ c)(a+2b+ c) ≤ (a+ b)2.

Therefore,

‖x+ y‖ · ‖x− y‖ =
√

(a+ b)2 − 4b2 ≤
√

(a+ b)2 = 〈x,x〉+ 〈y,y〉

which is equivalent to ‖x+ y‖ · ‖x− y‖ ≤ ‖x‖2 + ‖y‖2.
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ε
ε

B2(ε) B2(ε)

R2 R3

Figure 6.1: Euclidean balls in R2 (left) and R3 (right)

As we mentioned above, vector norms generalize the absolute value on R. For instance,

if ε > 0, then the set of numbers x ∈ R such that |x| < ε are the numbers whose distance

to 0 is less than ε, or equivalently the open interval (−ε, ε). Analogously, the set of vectors

x such that ‖x‖2 < ε are the vectors whose Euclidean distance to the origin is less than ε.

Geometrically, the set B2(ε) = {x ∈ Rn : ‖x‖2 < ε} is an open ball centered at the origin

of radius ε. The cases n = 2 and n = 3 are illustrated in Figure 6.1. In the case of the

ℓ∞-norm, the sets B∞(ε) = {x ∈ Rn : ‖x‖∞ < ε} are open cubes centered at the origin

with sides of length 2ε. The cases n = 2 and n = 3 are illustrated in Figure 6.2.

Example 6.2. Find ‖x‖2 and ‖x‖∞ if x = (−1, 0, 2,−3, 1).

Solution. We compute

‖x‖2 =
√
(−1)2 + 02 + 22 + (−3)2 + 12 =

√
15

and

‖x‖∞ = max{| − 1|, |0|, |2|, | − 3|, |1|} = 3

There is an important relationship between the ℓ2-norm and the ℓ∞-norm as described

below.

Theorem 6.3

For any x ∈ Rn,
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞
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B∞(ε) B∞(ε)
R2 R3

ε

ε

Figure 6.2: ℓ∞-balls in R2 (left) and R3 (right)

Proof. Let x = (x1, x2, . . . , xn) ∈ Rn and let j ∈ {1, 2, . . . , n} be such that |xj | = ‖x‖∞ =

max{|x1|, |x2|, . . . , |xn|}. Then

‖x‖2∞ = |xj |2 ≤
n∑

i=1

|xi|2 = ‖x‖22

and therefore ‖x‖∞ ≤ ‖x‖2. On the other hand,

‖x‖22 =
n∑

i=1

|xi|2 ≤
n∑

i=1

|xj |2 = n|xj |2 = n‖x‖2∞

and therefore ‖x‖2 ≤
√
n‖x‖∞.

Given a norm ‖ · ‖ on Rn, the distance between x and y is

‖x− y‖.

By the properties of a norm, if ‖x − y‖ = 0 then x − y = 0 or equivalently x = y.

Having defined a notion of distance between vectors in Rn, we can now define convergence

of sequences in R
n. An infinite sequence in R

n is an infinite list of vectors in R
n such as

(x1,x2,x3, . . . , ) where xk ∈ Rn (technically a sequence is a function from N to Rn but we

usually ignore this formality and think of a sequence as an infinite list). We will denote the

sequence (x1,x2,x3, . . . , ) by (xk).

Definition 6.4: Convergence of sequences

Let ‖ · ‖ be a norm on R
n. A sequence (x(k)) in R

n is said to converge to x∗ with respect
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to ‖ · ‖ if for any ε > 0 there exists N ∈ N such that

‖xk − x∗‖ < ε

for all k ≥ N . In this case we write lim
k→∞

xk = x∗.

Convergence of a sequence in Rn can be written in terms of convergence of a sequence in R.

Let (xk) be a sequence in R
n and let ak = ‖xk − x∗‖. Then (xk) converges to x∗ if and only

if lim
k→∞

ak = lim
k→∞

‖xk − x∗‖ = 0.

Theorem 6.3 has an important application with regards to convergence of a sequence

with respect to ‖ · ‖2 and ‖ · ‖∞.

Theorem 6.5

Let (xk) be a sequence in Rn and let x∗ ∈ Rn. Then (xk) converges to x∗ with respect
to ‖ · ‖2 if and only if (xk) converges to x∗ with respect to ‖ · ‖∞.

Proof. By Theorem 6.3,

‖xk − x∗‖∞ ≤ ‖xk − x∗‖2 ≤
√
n‖xk − x∗‖∞.

If lim
k→∞

‖xk −x∗‖2 = 0 then lim
k→∞

‖xk −x∗‖∞ = 0 and if lim
k→∞

‖xk − x∗‖∞ = 0 then lim
k→∞

‖xk −
x∗‖2 = 0.

Remark 6.1. Theorem 6.5 is a special case of a more general result. In fact, given any two

norms ‖ · ‖ and ‖ · ‖′, a sequence (xk) converges to x∗ with respect to ‖ · ‖ if and only if (xk)

converges to x∗ with respect to ‖ · ‖′. Another way of saying this is that all norms on Rn

are equivalent with respect to convergence.

We now establish a criteria for convergence of sequences in Rn.

Theorem 6.6

The sequence (xk) converges to x∗ with respect to ‖ · ‖∞ if and only if lim
k→∞

xk
i = x∗

i for

all i = 1, 2, . . . , n.

Proof. Suppose that lim
k→∞

‖xk − x∗‖∞ = 0. For any i = 1, 2, . . . , n we have

0 ≤ |xk
i − x∗

i | ≤ ‖xk − x∗‖∞
and therefore limk→∞ |xk

i − x∗
i | = 0. Conversely, suppose that limk→∞ |xk

i − x∗
i | = 0 for all

i = 1, 2, . . . , n. Then limk→∞
∑n

i=1 |xk
i − x∗

i | = 0. Now

0 ≤ ‖xk − x∗‖∞ = max{|xk
1 − x∗

1|, |xk
2 − x∗

2|, . . . , |xk
n − x∗

n|} ≤
n∑

i=1

|xk
i − x∗

i |

from which it follows that limk→∞ ‖xk − x∗‖∞ = 0.
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Combining Theorem 6.5 and Theorem 6.6, we obtain the following corollary.

Corollary 6.7

The sequence (xk) converges to x∗ with respect to ‖ · ‖2 if and only if lim
k→∞

xk
i = x∗

i for

all i = 1, 2, . . . , n.

A norm on R
n provides a distance measure between points in R

n. We may want to do

this on the space of n× n matrices Mn(R). For example, if A has a LU -decomposition and

a numerical algorithm is used to compute the factors L and U then it is natural to measure

the distance between A and LU since we should not expect A = LU exactly due to, for

instance, round-off error. The idea is then to define a norm ‖ · ‖ on Mn(R) just as we did in

Rn and compute ‖A− LU‖.

Definition 6.8

A matrix norm on Mn(R) is a function ‖ · ‖ : Mn(R) → R that satisfies the following:
(i) ‖A‖ ≥ 0
(ii) ‖A‖ = 0 if and only if A = 0
(iii) ‖αA‖ = |α|‖A‖ for all α ∈ R

(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖
(v) ‖AB‖ ≤ ‖A‖ · ‖B‖

Notice that properties (i)-(iv) are exactly the same as for vector norms on Rn. The new con-

dition is (v) and is there because Mn(R) has a natural multiplication property and therefore

it is frequently useful to relate the norm of AB with the norms of A and B. If ‖ · ‖ is a

matrix norm on Mn(R) then the distance between A and B with respect to this norm is

‖A−B‖.
There are various ways to construct a matrix norm. Given a matrix A, one such way is

to consider the relationship between ‖x‖ and ‖Ax‖ as x varies. The idea is that the ratio
‖Ax‖
‖x‖ , for x 6= 0, is a measure of the “size” of A.

Theorem 6.9: Natural Matrix Norms

Let ‖ · ‖ by any matrix norm on Rn. Then ‖ · ‖ : Mn(R) → R defined by

‖A‖ = max
‖x‖=1

‖Ax‖

is a matrix norm.

Proof. The only property of a matrix norm that is non-trivial is the multiplicative property.

When ‖AB‖ = 0 the result is trivial hence assume that ‖AB‖ 6= 0. Hence, there exists
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some x∗ with norm one such that Bx∗ 6= 0 and ‖AB‖ = max‖x‖=1 ‖ABx‖ = ‖ABx∗‖. Let
α = ‖Bx∗‖. Then

‖AB‖ = ‖ABx∗‖

= ‖ABx∗ 1
α
‖ · ‖Bx∗‖

≤ ‖A‖‖Bx∗‖

≤ ‖A‖‖B‖

Notice that the same symbol ‖ · ‖ is used for both the norm on Rn and the norm on

Mn(R). The matrix norm on Mn(R) defined in Theorem 6.9 is called the natural matrix

norm associated to the vector norm on Rn. From now on, we only consider natural matrix

norms, i.e., those induced by vector norms.

Corollary 6.10

Let ‖ · ‖ be a matrix norm. For any matrix A and any vector y,

‖Ay‖ ≤ ‖A‖ · ‖y‖

Proof. The case y = 0 is trivial and we thus assume y 6= 0. Let x = 1
‖y‖y and thus ‖x‖ = 1.

Therefore, by definition of ‖A‖ we have ‖Ax‖ ≤ ‖A‖. By the homogeneity property of

norms, ‖Ax‖ = 1
‖y‖‖Ay‖ and therefore

1

‖y‖‖Ay‖ ≤ ‖A‖.

By the previous corollary, an equivalent definition of a natural matrix norm is

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ .

In view of Theorem 6.9, we define the ℓ∞-norm and the ℓ2-norm of a matrix A as

‖A‖∞ = max
‖x‖=1

‖Ax‖∞

and

‖A‖2 = max
‖x‖=1

‖Ax‖2

respectively. The following theorem gives a direct method to compute ‖A‖∞.
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Theorem 6.11

If A ∈ Mn(R) then

‖A‖∞ = max
1≤i≤n

n∑

j=1

|ai,j|.

In words, the previous theorem states that ‖A‖∞ is the maximum absolute row sum of A.

Example 6.3. According to Theorem 6.11, for

A =




3 −2 −3 0
4 0 0 1
−4 3 −1 3
5 0 1 1




we have ‖A‖∞ = max
1≤i≤4

4∑

j=1

|ai,j| = max{8, 5, 11, 7} = 11.

6.2 Eigenvalues and Convergent Matrices

Let A be a n×n matrix. Recall that a number λ is called an eigenvalue of A if there exists

a non-zero vector x ∈ Rn such that

Ax = λx.

and in this case we say that x is an eigenvector of A associated to λ. The pair (λ,x) will

be called an eigenpair of A. If λ is an eigenvalue of A we denote by

Eλ = {x ∈ R
n : Ax = λx}

the set of all eigenvectors of x associated to λ (plus the zero vector) and call it the λ-

eigenspace. It is an easy exercise to show that Eλ is a subspace of Rn.

If (λ,x) is an eigenpair of A then the eigenvalue equation Ax = λx can be written as

(A − λI)x = 0. Since x is non-zero, this implies that (A − λI) is a singular matrix and

therefore det(A − λI) = 0. Hence, λ is an eigenvalue of A if and only if λ is a zero of the

function

p(x) = det(A− xI).

The function p(x) is a monic polynomial in x of order n and is called the characteristic

polynomial of A. Hence, A has at most n distinct eigenvalues. In general, the eigenvalues

of a matrix A are complex numbers even if A contains only real entries. Recall that for a

complex number z = x + iy ∈ C, the modulus of z is |z| =
√
x2 + y2. If z is a real number

its modulus is simply its absolute value.
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Definition 6.12: Spectral Radius

The spectral radius of the matrix A, denoted by ρ(A), is defined as the maximum
modulus of all the eigenvalues of A, that is,

ρ(A) = max{|λ| : λ is an eigenvalue of A}

There is a close relationship between the matrix norm of a matrix and its spectral radius.

Theorem 6.13: Eigenvalues and spectral radius

Let A be a n× n matrix. The following hold:
(i) ‖A‖2 =

√
ρ(ATA)

(ii) ρ(A) ≤ ‖A‖ for any matrix norm ‖ · ‖

Proof. By definition,

‖A‖22 = max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

(xA)TAx = max
‖x‖=1

xTATAx

The matrix B = ATA is symmetric and therefore there exists a basis of Rn consisting of

orthonormal eigenvectors of B, call such a basis x1,x2, . . . ,xn, with corresponding eigenval-

ues σ2
1, σ

2
2, . . . , σ

2
n. Since B is positive semi-definite, and symmetric, the eigenvalues σ2

i of

B are non-negative real numbers. Assume without loss that σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n, and thus

ρ(ATA) = σ2
1. Let x ∈ Rn be a unit vector and let x = c1x1 + c2x2 + · · ·+ cnxn, for some

c1, . . . , cn ∈ R. Since ‖x‖ = 1, and x1, . . . ,xn are orthonormal, then c21 + c22 + · · · + c2n = 1

and therefore

xT (ATA)x = c21σ
2
1 + c22σ

2
2 + · · ·+ c2nσ

2
n ≤ (c21 + c22 + · · ·+ c2n)σ

2
1 = σ2

1

This proves that ‖A‖2 ≤
√

σ2
1 = σ1. On the other hand, xT

1 (A
TA)x1 = σ2

1x
Tx = σ2

1 and

thus ‖A‖2 ≥ σ1. Hence, we conclude ‖A‖2 =
√

ρ(ATA) = σ1 as claimed.

To prove (ii), let x be a unit eigenvector of A with corresponding eigenvalue λ. Then

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖.

Therefore, |λ| ≤ ‖A‖ for any eigenvalue λ of A and thus ρ(A) = max |λ| ≤ ‖A‖.

Example 6.4. Show that if A is symmetric then ρ(A) = ‖A‖2.
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Solution. The eigenvalues ofA2 are the squares of the eigenvalues ofA and therefore ρ(A2) =

ρ(A)2. Then since AT = A,

‖A‖2 =
√

ρ(ATA)

=
√

ρ(A2)

=
√

ρ(A)2

= ρ(A).

and the proof is complete.

Lastly, we consider the notion of convergent matrices which will be used when we consider

iterative methods for linear systems.

Definition 6.14: Convergent Matrices

A n×n matrix A = (ai,j) is said to be convergent if lim
k→∞

(Ak)i,j = 0 for all 1 ≤ i, j ≤ n.

In this case we write that lim
k→∞

Ak = 0.

We now give several characterizations of convergent matrices.

Theorem 6.15

The following statements are equivalent:
(a) A is a convergent matrix
(b) ρ(A) < 1
(c) lim

k→∞
Akx = 0 for every vector x ∈ Rn

(d) lim
k→∞

‖Ak‖ = 0 for some natural norm ‖ · ‖
(e) lim

k→∞
‖Ak‖ = 0 for all natural norms ‖ · ‖

Proof. Suppose that lim
k→∞

Ak = 0. If (λ,x) is an eigenpair then from Ax = λx we have

Akx = λkx. Since Ak → 0 then limk→∞ λkx = 0 and this happens only if |λ| < 1. Hence,

ρ(A) < 1. To prove that ρ(A) < 1 implies that A is convergent, assume for simplicity

that A is diagonalizable. Then A = QDQ−1 where D = diag(λ1, λ2, . . . , λn) is a diagonal

matrix whose diagonal entries are the eigenvalues of A. Then Ak = QDkQ−1. Now Dk =

diag(λk
1, λ

k
2, . . . , λ

k
n) and since ρ(A) < 1 then D is convergent and thus A is convergent.
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6.3 Iterative Methods and Convergence

For many problems, solving a linear system Ax = b for the unknown vector x is best

handled using the LU -decomposition of A (or one of its variants) and using forward- and

back-substitution. In many cases that arise in practice, however, it is too costly to perform

LU -decomposition both computationally and with regards to memory storage. Moreover,

it may not be necessary to obtain a highly accurate solution to the linear system but only

a reasonably good approximation, and in some cases we might have a good initial guess to

the solution of the system and can use the initial estimate to speed up the computation of

a more accurate approximation.

Suppose that x∗ is a solution to the linear system Ax = b, that is, Ax∗ = b. Iterative

techniques convert the problem of finding x∗ to that of finding a fixed point of a carefully

constructed function G : Rn → R
n, i.e., G(x∗) = x∗ if and only if Ax∗ = b. Then, to find

x∗, we use fixed-point iteration

x(k+1) = G(x(k))

starting with an initial guess x0. The construction of G is made to guarantee that x(k)

converges to x∗. Before we discuss specific ways to construct G, we consider a general

approach and give conditions for convergence.

Suppose that we have the decomposition A = M−N where M is a non-singular matrix.

Then Ax = b is equivalent to the linear system

Mx = Nx+ b.

Since N = M−A then M−1N = I−M−1A, and therefore

x = x+M−1(b−Ax).

Then Ax∗ = b if and only if

x∗ = x∗ +M−1(b−Ax∗).

To find x∗ using fixed-point iteration, start with an initial guess x0 and compute for k ≥ 0

x(k+1) = x(k) +M−1(b−Ax(k)). (6.1)

or equivalently

x(k+1) = (I−M−1A)x(k) +M−1b. (6.2)

Hence, fixed-iteration is being performed with the function G(x) = x +M−1(b −Ax).

The vector r(k) = b −Ax(k) is called the residual and measures how close x(k) is to being

a solution to Ax = b. In particular, limk→∞ r(k) = 0 if and only if limk→∞ x(k) = x∗.
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We now analyze the convergence property of the fixed-point iteration (6.1). Let e(k) =

x∗ − x(k) denote the error. Then limk→∞ e(k) = 0 if and only if limk→∞ x(k) = x∗. We can

obtain an expression for the error from the equations

x∗ = x∗ +M−1(b−Ax∗) = M−1b+ (I−M−1A)x∗

x(k+1) = x(k) +M−1(b−Ax(k)) = M−1b+ (I−M−1A)x(k)

and subtracting, yielding

e(k+1) = (I−M−1A)e(k).

Introduce the matrix

T = I−M−1A

and thus e(k+1) = Te(k). Therefore,

e(k) = Tke(0).

Therefore, limk→ e(k) = 0 if and only if limk→∞Tke(0) = 0. Suppose that ‖ · ‖ is any matrix

norm. Then

‖e(k)‖ = ‖Tke(0)‖ ≤ ‖T‖k · ‖e(0)‖.

If ‖T‖ < 1 then clearly limk→∞ ‖T‖k = 0 and therefore e(k) converges to zero. It turns out

that the convergence of the error e(k) depends solely on the spectral radius of T.

Theorem 6.16: Convergence of Iteration

Suppose that the linear system Ax = b has a unique solution x∗. For any x(0), the
sequence (x(k)) generated by the iteration (6.1) converges to x∗ if and only if ρ(T) < 1.

The quickest way to prove this theorem is to use the following two facts.

Lemma 6.17

Let X be square matrix and suppose that ε > 0. Then there exists a matrix norm ‖ · ‖
such that ‖X‖ < ρ(X) + ε.

By Theorem 6.15, ρ(X) is a lower-bound for ‖X‖ for all matrix norms and thus Lemma 6.17

implies that

ρ(A) = inf{‖A‖ : ‖ · ‖ is a matrix norm}.
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Lemma 6.18

Every matrix norm on Mn is induced by a vector norm.

We now prove Theorem 6.16.

Proof of Theorem 6.16. Let x∗ denote the unique solution to Ax = b. If for any x(0) the

sequence (x(k)) converges to x∗ then limk→∞Tke(0) = 0 for any e(0). By Theorem 6.15,

this implies that ρ(T) < 1. Now suppose that ρ(T) < 1. There exists ε > 0 such that

ρ(T)+ε < 1. By Lemma 6.17, there exists a matrix norm ‖·‖ such that ‖T‖ < ρ(T)+ε < 1,

that is, ‖T‖ < 1. By the discussion above, this implies that limk→∞ e(k) = 0, that is,

limk→∞ x(k) = x∗.

6.4 Jacobi and Gauss-Siedel Methods

In component form, the linear system Ax = b is

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi

for i = 1, 2, . . . , n. If ai,i 6= 0 then we can isolate for xi:

xi =
1

ai,i


−

n∑

j=1
j 6=i

ai,jxj + bi




The idea of the Jacobi iteration is to use the right-hand side of the above equation as our

iteration function. Hence, the Jacobi iteration scheme is

x
(k+1)
i =

1

ai,i


−

n∑

j=1
j 6=i

ai,jx
(k)
j + bi




for i = 1, 2, . . . , n. We now write this in matrix form. Let D = diag(a1,1, a2,2, . . . , an,n).

Then in matrix form the Jacobi scheme is

x(k+1) = D−1
[
−(A−D)x(k) + b

]

= D−1(D−A)x(k) +D−1b

= (I−D−1A)x(k) +D−1b.
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Hence, the Jacobi scheme is the iteration (6.1) with M = D. In practice, Jacobi iteration

is done by first computing the residual r(k) = b−Ax(k), scaling the ith entry of r(k) by 1
ai,i

and then adding x(k):

r(k) = b−Ax(k)

x(k+1) = x(k) +D−1r(k)

Remark 6.2. In Python (and most numerical software), it is not efficient to compute D−1r

as a matrix-vector multiplication because multiplying a vector by a diagonal matrix is equiv-

alent to the Hadamard product of two vectors:

D−1r =




1
a1,1

1
a2,2

...

1
an,n




◦




r1

r2

...

rn




=




r1
a1,1

r2
a2,2

...

rn
an,n




If d = ( 1
a1,1

, 1
a2,2

, . . . , 1
an,n

) and r are defined as Numpy arrays then D−1r can be computed

as d ∗ r. The operator ∗ performs multiplication component-wise on matrices/vectors of the

same size. Alternatively, if d = a1,1, a2,2, . . . , an,n) then D−1r = r/d.

The Gauss-Siedel method is based on the idea that if x
(k+1)
1 , . . . , x

(k+1)
i have been com-

puted (for i > 1) then instead of using x
(k)
1 , . . . , x

(k)
i to compute x

(k+1)
i+1 we can use x

(k+1)
1 , . . . , x

(k+1)
i .

Therefore, In component form, Gauss-Siedel iteration scheme is

x
(k+1)
i =

1

ai,i

[
∑

1≤j<i

ai,jx
(k+1)
j −

∑

i+1<j≤n

ai,jx
(k)
j + bi

]

To write this in matrix form, decompose A as A = AL + D + AU where AL is a lower-

triangular matrix (with zeros on the diagonal) and AU is an upper-triangular matrix (with

zeros along the diagonal). For example,

A =



1 2 3
4 5 6
7 8 9


 =



0 0 0
4 0 0
7 8 0




︸ ︷︷ ︸
AL

+



1 0 0
0 5 0
0 0 9




︸ ︷︷ ︸
D

+



0 2 3
0 0 6
0 0 0




︸ ︷︷ ︸
AU

Then in matrix form, the Gauss-Siedel method is

x(k+1) = D−1
[
−ALx

(k+1) −AUx
(k) + b

]

and after isolating for x(k+1) and straightforward matrix algebra we obtain

x(k+1) =
[
I− (AL +D)−1A

]
x(k) + (AL +D)−1b.
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Thus, the Gauss-Siedel iteration scheme takes M = AL +D in (6.1).

We now prove that the Jacobi and Gauss-Siedel methods converge when A is strictly

diagonally dominant. We begin with noting that for anyM, the eigenvalues ofT = I−M−1A

are of the form 1 − λ where λ is an eigenvalue of M−1A. By Theorem 6.16, convergence

follows if and only if ρ(T) < 1 if and only if |λ − 1| < 1 for all eigenvalues λ of M−1A.

Theorem 6.19: Convergence of Jacobi and Gauss-Siedel Methods

Consider the linear system Ax = b. If A is strictly diagonally dominant then both
the Jacobi and Gauss-Siedel iteration schemes converge to the unique solution x∗ of the
system for any initial condition x(0).

Proof. We first note that if A is strictly diagonally dominant then A is invertible and there-

fore Ax = b has a unique solution. To prove convergence for either method, we must prove

that ρ(T) < 1. We note that since A is strictly diagonally dominant, for all i = 1, 2, . . . , n

we have

|ai,i| >
∑

j 6=i

|ai,j| ≥ 0

which is equivalent to
∑

j 6=i

|ai,j|
|ai,i|

< 1.

First consider the Jacobi scheme. The product matrix D−1A is obtained by multiplying row

i of A by 1
ai,i

for each i ∈ {1, 2, . . . , n}. Hence, the ith row of D−1A is

(
ai,1
ai,i

ai,2
ai,i

· · · ai,i−1

ai,i
1

ai,i+1

ai,i
· · · ai,n

ai,i

)

and therefore

‖T‖∞ = ‖I−D−1A‖∞ = max
1≤i≤n

∑

j 6=i

|ai,j|
|ai,i|

< 1.

Therefore, ρ(T) ≤ ‖T‖∞ < 1 and convergence follows.

Now consider the Gauss-Siedel scheme. In this case, M = (AL +D) and therefore,

T = I−M−1A = I− (AL +D)−1(AL +D+AU) = −(AL +D)−1AU .

Let (λ, z) be an eigenpair of T. Then Tz = λz implies that

λ(AL +D)z = −AUz (6.3)

Let i ∈ {1, 2, . . . , n} be such that ‖z‖∞ = |zi|. Then from (6.3)

λ
i∑

j=1

ai,jzj = −
n∑

j=i+1

ai,jzj
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and therefore

λai,izi = −
∑

j≤i−1

λai,jzj −
∑

j≥i+1

ai,jzj.

Hence, by the triangle inequality

|λ||ai,i||zi| ≤
∑

j≤i−1

|λ||ai,j||zj |+
∑

j≥i+1

|ai,j||zj | ≤ |zi|
(
∑

j≤i−1

|λ||ai,j|+
∑

j≥i+1

|ai,j|
)

and thus

|λ||ai,i| ≤
∑

j≤i−1

|λ||ai,j|+
∑

j≥i+1

|ai,j|

Hence,

|λ|
(
1−

∑

j≤i−1

|ai,j|
|ai,i|

)
≤
∑

j≥i+1

|ai,j|
|ai,i|

and finally

|λ| ≤
∑

j≥i+1
|ai,j |
|ai,i|

1−
∑

j≤i−1
|ai,j |
|ai,i|

We note that by the strictly diagonally dominant assumption on A,

1 >
∑

j 6=i

|ai,j|
|ai,i|

=
∑

j≤i−1

|ai,j|
|ai,i|

+
∑

j≥i+1

|ai,j|
|ai,i|

and consequently

1 >

∑
j≥i+1

|ai,j |
|ai,i|

1−
∑

j≤i−1
|ai,j |
|ai,i|

This proves that |λ| < 1 for all eigenvalues of T and thus ρ(T) < 1.

Another condition for convergence of the Gauss-Siedel method is the following.

Theorem 6.20: Convergence of Gauss-Siedel Method

Consider the linear system Ax = b. If A is symmetric and positive definite then the
Gauss-Siedel iteration schemes converges to the unique solution x∗ of the system for any
initial condition x(0).

Proof. As before, we have

T = I−M−1A = I− (AL +D)−1(AL +D+AU) = −(AL +D)−1AU

Let (λ, z) be an eigenpair of T. Then Tz = λz implies that

λ(AL +D)z = −AUz = −AT
Lz
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Therefore,

λzT (AL +D)z = −zAT
Lz = −zTALz,

that is,

λ(zTALz+ zTDz) = −zTALz

Let a = zTALz and let b = zTDz > 0 (a positive definite matrix has positive diagonal

entries). Then

λ(a+ b) = −a

Now (a+ b) 6= 0, otherwise a < 0 and thus −a 6= 0. Thus,

λ2 =
a2

a2 + 2ab+ b2
.

Now sinceA is positive definite, zTAz = a+b+a > 0 and therefore 2a > −b and consequently

2ab+ b2 > 0. Therefore,

λ2 =
a2

a2 + 2ab+ b2
< 1

and then |λ| < 1. Hence, ρ(T) < 1 and convergence follows.
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7

Approximating Eigenvalues

In this section we consider methods to compute and approximate eigenvalues and eigenvectors

of matrices.

7.1 The Power Method

The Power Method is used to approximate the largest eigenvalue (in magnitude) and corre-

sponding eigenvector of a matrix. Assume that A has n linearly independent eigenvectors

x1,x2, . . . ,xn, with corresponding eigenvalues λ1, λ2, . . . , λn. Assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|,

that is, the eigenvalues are ordered with respect to magnitude from largest to smallest and

only λ1 satisfies ρ(A) = |λ1|. We will call λ1 the dominant eigenvalue of A and a

corresponding eigenvector a dominant eigenvector. Let v ∈ Rn be fixed. Then since

x1,x2, . . . ,xn form a basis of Rn, there exists constants c1, c2, . . . , cn such that v = c1x1 +

c2x2 + · · ·+ cnxn. Then

Av = c1Ax1 + c2Ax2 + · · ·+ cnAxn = c1λ1x1 + c2λ2x2 + · · ·+ cnλnxn

A2v = c1λ
2
1x1 + c2λ

2
2x2 + · · ·+ cnλ

2
nxn

and in general for any k ∈ N we have

Akv = c1λ
k
1x1 + c2λ

k
2x2 + · · ·+ cnλ

k
nxn

Equivalently,

Akv = λk
1

[
c1x1 + c2

(
λ2

λ1

)
x2 + · · ·+ cn

(
λn

λ1

)
xn

]

Since |λj/λ1| < 1, for j = 2, . . . , n, then limk→∞
λj

λ1
= 0 for j = 2, . . . , n, and therefore when

k is large we have

Akv ≈ c1λ
k
1x1.
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Hence, when k is large, the vector Akv is approximately a scalar multiple of x1 (provided

c1 6= 0) and thus Akv is approximately an eigenvector of A with eigenvalue λ1. We could

therefore use Akv as an approximation to an eigenvector of A. To obtain an estimate for

λ1, compute Ak+1v and then

Ak+1v = A(Akv) ≈ λ1A
kv

and we can extract a non-zero component of Ak+1v and Akv, and solve for λ1:

λ1 ≈
(Ak+1v)i
(Akv)i

To summarize, the idealized Power Method is to first choose a non-zero vector v(0) and then

compute iteratively the vector v(k+1) = Av(k). For large k, we obtain an estimate of λ1 as

λ1 ≈
v
(k+1)
i

v
(k)
i

provided v
(k)
i 6= 0 and v(k+1) is an approximate eigenvector.

In practice, numerical difficulties will arise with the above implementation of the Power

Method. For instance, if |λ1| < 1 then limk→∞ v(k) = 0 and thus both v
(k+1)
i and v

(k)
i are

close to zero and the ratio
v
(k+1)
i

v
(k)
i

is likely to be dominated by round-off error. On the other

hand, if |λ1| > 1 then the sequence of vectors v(k) is unbounded and numerical over-flow

might occur so that v
(k+1)
i and v

(k)
i are no longer numerically useful to approximate λ1. To

circumvent these numerical difficulties, we normalize the vectors v(k) at each iteration step

using the ∞-norm. We begin with a unit norm vector v(0) such that there exists an index

p0 ∈ {1, 2, . . . , n} such that v
(0)
p0 = 1 = ‖v(0)‖∞ . Then compute w(1) = Av(0) and then set

v(1) =
w(1)

w
(1)
p1

where p1 ∈ {1, 2, . . . , n} is the least integer such that |w(1)
p1 | = ‖w(1)‖∞. Then ‖v(1)‖∞ =

v
(1)
p1 = 1. Inductively, having computed v(k) of unit norm with v

(k)
pk = 1 for some pk ∈

{1, 2, . . . , n}, compute w(k+1) = Av(k) and then set

v(k+1) =
w(k)

w
(k+1)
pk+1

where pk+1 ∈ {1, 2, . . . , n} is the least integer such that |w(k+1)
pk+1 | = ‖w(k+1)‖∞. Then

‖v(k+1)‖∞ = v
(k+1)
pk+1 = 1. From our analysis above, when k is large, v(k) is a good ap-

proximation to an eigenvector of A, that is,

w(k+1) = Av(k) ≈ λ1v
(k)
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Now, the maximum entry (in absolute value) of the vector λ1v
(k) is at pk since v

(k)
pk = 1.

Hence, pk+1 = pk and w
(k+1)
pk+1 ≈ λ1. Therefore,

v(k+1) =
w(k+1

w
(k+1)
pk+1

≈ v(k).

Hence, once ‖v(k+1) − v(k)‖∞ is within tolerance, we can use v(k+1) as an approximation to

an eigenvector of A with eigenvalue λ1, and λ1 ≈ w
(k+1)
pk . Below is the pseudocode for the

Power Method.

Algorithm 7.1 Power Method

input: A, w (initial guess), Nmax, ε > 0

output: Approximations (λ̃, ṽ) to dominating eigenpair of A

1: find smallest integer p such that |wp| = ‖w‖∞
2: set v = w/wp

3: for k = 1, . . . , Nmax

4: set w = Av

5: set λ = wp

6: find smallest integer p such that |wp| = ‖w‖∞
7: if |wp| < ε then

8: print(“A has zero as an eigenvalue; choose new w and restart”)

9: if ‖v −w/wp‖ < ε

10: print(“Power method converged!”)

11: return λ,w/wp

12: else

13: v = w/wp

14: print(“Power method did not converge!”)

15: return λ,v

Example 7.1. Perform three iterations of the Power method for

A =




2 0 1
1 0 1
0 1 2





with initial condition w(0) = (1, 1, 1), and produce approximations to the dominant eigenpair

of A.
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Solution. The eigenvalues ofA are λ1 = 2.80193774, λ2 = 1.44504187, and λ3 = −0.2469796.

The initial vector w(0) is of unit ∞-norm and the first entry is 1. Hence, v(0) = w(0).

Compute

w(1) = Av(0) = (3, 2, 3)

Then v(1) = w(1)/3 = (1, 2/3, 1). One computes that ‖v(0) − v(1)‖∞ = 1/3. Next, compute

w(2) = Av(1) = (3, 2, 8/3)

Then v(2) = w(2)/3 = (1, 2/3, 8/9). One computes that ‖v(2)−v(1)‖∞ = 1/9. Next, compute

w(3) = Av(2) = (26/9, 17/9, 22/9) ≈ (2.8888, 1.8888, 2.4444)

Then v(3) = w(3)/(26/9) = (1, 16/26, 22/26). One computes that ‖v(2) − v(1)‖∞ ≈ 0.0740.

An approximation to λ1 is λ1 ≈ 26
9
= 2.88888 and an approximation to a dominant eigen-

vector is v(3).

7.2 Symmetric Power Method

If (λ,v) is an eigenpair of A with v a unit eigenvector (unit in the ‖ · ‖2 norm) then

vTAv = vT (λv) = λ(vTv) = λ.

Conversely, if v is a unit vector (again, in the 2-norm) then if

Av− (vTAv)v = 0

then v is an eigenvector of A with eigenvalue vTAv. Thus, given any unit vector w, if

Aw− (wTAw)w ≈ 0

then w is an approximate eigenvector of A with approximate eigenvalue wTAw. This forms

the basis for the symmetric Power method described below.

Suppose that v(0) is a unit vector in the 2-norm. Compute

w(1) = Av(0)

µ1 = (v(0))Tw(1) = (v(0))TAv(0)

From the discussion above, if

‖w(1) − µ1v
(0)‖2 < ε
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then v(0) is a good approximation to an eigenvector of A with eigenvalue µ1. Otherwise, set

v(1) =
1

‖w(1)‖2
w(1).

and repeat the process with v(1). Thus compute

w(2) = Av(1)

µ2 = (v(1))Tw(2) = (v(1))TAv(1)

and if

‖w(2) − µ2v
(1)‖2 < ε

then v(1) is a good approximation to an eigenvector of A with eigenvalue µ2. Below is the

pseudocode for the Power method applied to a symmetric matrix.

Algorithm 7.2 Symmetric Power Method

input: A, w (initial guess), Nmax, ε > 0

output: Approximations (λ̃, ṽ) to dominating eigenpair of symmetric A

1: set v = w/‖w‖2
2: for k = 1, . . . , Nmax

3: set w = Av

4: set λ = vTw

5: if ‖w − λv‖2 < ε then

6: print(“Power method converged!”)

7: return λ,v

8: else

9: v = w/‖w‖2
10: print(“Power method did not converge!”)

11: return λ,v

Example 7.2. Perform three iterations of the symmetric power method for the matrix

A =

(
−4 1
1 2

)

with initial condition w = (1, 1).
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7.3. PAGERANK ALGORITHM

7.3 PageRank Algorithm

Finding the dominant eigenvector of a matrix has applications in several ranking problems,

the most widely known is the PageRank algorithm used by Google to rank webpages. The

ranking of the webpages is done to determine the order that webpages are displayed when

a user types in a search query. The ranking of the webpages is obtained by finding the

dominant eigenvector of the Google matrix G associated to the network and the individual

entries of the dominant eigenvector are ordered which produces the desired ranking. We now

describe how we model a network using a matrix and how to create the Google matrix for a

given network.

The story begins by first modeling the internet as a collection of vertices and arcs. Each

vertex represents an internet website and an arc exists from website wi to website wj if in

the website wi there is a link to website wj. To be concrete, consider the directed network

shown in Figure 7.1.

w1

w3

w6

w4 w5

w2

Figure 7.1: This is a tiny network

The adjacency matrix for this directed network is

A =




0 1 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0



.

In the adjacency matrix, each column corresponds to the out-going links for the correspond-

ing vertex. For example, vertex w2 links to vertices {w1, w3, w4} and thus column i = 2 of

A has 1’s in positions {1, 3, 4} and 0’s elsewhere. The rows of A correspond to the in-links

for the corresponding vertex. For example, the non-zero entries of row j = 3 are {2, 5}
because vertex w3 has in-links from vertices {w2, w5}. Vertices that have no out-going links

are called dangling nodes and the columns corresponding to these nodes are zero columns.

For example, in the above tiny network, nodes w1 and w6 are dangling nodes. Dangling

nodes can be identified by computing the out-degree vector
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d = np.sum(A, axis = 0)

and the entries of d that are zero correspond to dangling nodes since d records the number

of out-going links of each vertex. The out-degree vector for the tiny network above is

d = (0, 3, 3, 2, 2, 0).

We now create what is called the hyperlink matrix H of the network. To that end,

each non-zero column of A is normalized so that its sum is equal to one. For example, if

column A[:, i] is non-zero then the ith column of H is

H[:, i] =
1

d[i]
A[:, i].

For the tiny network above, the hyperlink matrix is

H =




0 1
3

0 0 0 0

0 0 1
3

1
2

0 0

0 1
3

0 0 1
2

0

0 1
3

1
3

0 1
2

0

0 0 0 1
2

0 0

0 0 1
3

0 0 0




We now make one further modification to the hyperlink matrix H to create a new matrix

H. The matrix H is obtained by replacing each zero column of H with the vector 1
n
e where

e = (1, 1, 1 . . . , 1) is the all ones vector. This modification of H fixes the dangling node

problem (recall that a dangling node corresponds to a zero column ofH). It is straightforward

to compute H using a for loop but we do not actually want to compute or store H. Instead

we want to decompose H in the form

H = H+X

where X has two types of columns: if vertex wi is a dangling node then X[:, i] = 1
n
e and, if

wi is not a dangling node then X[:, i] = 0. To see how X can be computed, first define the

dangling node vector a as:

a[i] =





1, if wi is a dangling node

0, otherwise.

Hence, a identifies which nodes are dangling nodes. For example, if d = (3, 8, 0, 4, 11, 0, 9, 0)

then
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a = [0, 0, 1, 0, 0, 1, 0, 1]

because the nodes {w3, w6, w8} are the dangling nodes. Then

X = 1
n
e · aT

and therefore

H = H+ 1
n
e · aT (7.1)

For example, for the hyperlink matrix H of the tiny network above

H =




1
6

1
3

0 0 0 1
6

1
6

0 1
3

1
2

0 1
6

1
6

1
3

0 0 1
2

1
6

1
6

1
3

1
3

0 1
2

1
6

1
6

0 0 1
2

0 1
6

1
6

0 1
3

0 0 1
6




=




0 1
3

0 0 0 0

0 0 1
3

1
2

0 0

0 1
3

0 0 1
2

0

0 1
3

1
3

0 1
2

0

0 0 0 1
2

0 0

0 0 1
3

0 0 0




︸ ︷︷ ︸
H

+




1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6




︸ ︷︷ ︸
1
n
e·aT

We finally create the Google matrix associated to the network:

G = αH+ (1− α) 1
n
J (7.2)

where α is a constant parameter such that 0 < α < 1 and J is the n × n all ones matrix

(every entry in J is 1). We will choose the value α = 0.85. From the definition (7.2) of the

Google matrix, equation (7.1), and the fact that J = e · eT we have that

G = αH+ (1− α) 1
n
J

= α(H+ 1
n
e · aT ) + (1− α) 1

n
e · eT

= αH+ α
n
e · aT + (1− α) 1

n
e · eT

= αH+ e ·
(
α
n
aT + (1− α) 1

n
eT
)

Thus, given any vector v ∈ Rn we have

Gv = αHv +
(
α
n
aTv + (1− α) 1

n
eTv

)
e (7.3)

Notice that the coefficient of e in (7.3) is the scalar

β(v) =
(
α
n
aTv + (1− α) 1

n
eTv

)
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and thus

Gv = αHv + β(v)e.

The above decomposition of G makes computing Gv very efficient. Specifically, to compute

Gv all we need to compute is the vector Hv, and the two scalar quantities aTv and eTv

appearing in β. In Python the latter computations can be done as follows:

a = np.where( d < 1)[0]

aTv = np.sum( v[ a ] )

eTv = np.sum( v )

So, what properties does the Google matrix satisfy? The ones we are interested in are below

and can be proved using a well-known result in matrix analysis called the Perron-Frobenius

theorem.

Theorem 7.1: PageRank

For the Google matrix G the following hold:
(i) The dominant eigenvalue of G is λ1 = 1 is and it is a simple eigenvalue.
(ii) There is a unique positive vector v∗ such that Gv∗ = v∗ and the entries of v∗ sum

to one.
(iii) For any vector w whose entries sum to one it holds that

lim
k→∞

Gkw = v∗

The vector v∗ in the PageRank theorem is known as the PageRank vector of G and the

PageRank theorem states that we can perform the power method with G that will generate

a sequence converging to v∗. Below we present pseudocode implementing the PageRank

algorithm which, in addition to returning the PageRank vector v∗ = (v∗1, v
∗
2, . . . , v

∗
n), returns

the PageRank indices I = (i1, i2, i3, . . . , in) such that

v∗i1 ≥ v∗i2 ≥ v∗i3 ≥ · · · ≥ v∗in .

The ordering I = (i1, i2, . . . , in) is used to rank the importance of the vertices in the network.

Specifically, the larger the numerical value of v∗j the larger the ranking of vertex wj . We

define the PageRank of vertex wj in the network as the integer rj ∈ {1, 2, . . . , n} such that

irj = j. In other words, rj is the location of j in the list I = (i1, i2, . . . , in).

Example 7.3. For the tiny network in Figure 7.1, performing the PageRank algorithm with

tolerance ε = 1× 10−12, after k = 31 iterations the PageRank vector is computed as

v∗ =
(
0.11527 0.20696 0.18139 0.23278 0.15557 0.10803

)
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The PageRank index is therefore I = (4, 2, 3, 5, 1, 6). The rankings are therefore r =

(5, 2, 3, 1, 4, 6). Note that in Python, r = np.argsort(I).

Below is the pseudocode for the PageRank algorithm.

Algorithm 7.3 PageRank

input: A, ε > 0, Nmax

output: Approximate PageRank vector of Google matrix and PageRank index I

1: create degree vector d

2: create vector a containing the indices of the dangling nodes

3: create diagonal matrix D such that D[i, i] = 1
d[i]

if d[i] 6= 0

and D[i, i] = 0 if d[i] = 0

4: H = αAD (this is technically not H)

5: vold = 1
n
e

6: β = α
n
aTvold + (1− α) 1

n
eTvold

7: v = Hvold + βe

8: k = 0

9: while ‖v − vold‖2 > ε and k < Nmax

10: vold = v

11: β = α
n
aTvold + (1− α) 1

n
eTvold

12: v = Hv + βe

13: k = k + 1

14: end

15: find PageRank index set I = (i1, i2, . . . , in)

16: return v, I

7.4 Singular Value Decomposition

The singular value decomposition of a matrix is closely related to the eigenvector-eigenvalue

decomposition of a symmetric matrix. Recall that if A is a n × n symmetric matrix then

there exists an orthogonal matrix V (meaning that VTV = I) and a diagonal matrix D such

that

A = VDVT .

The columns of V =
[
v1 v2 · · · vn

]
are orthonormal eigenvectors of A and the entries

of D = diag(λ1, λ2, . . . , λn) are the corresponding eigenvalues of A, that is Avi = λiv for
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i = 1, 2, . . . , n. The decomposition A = VDVT is called the spectral decomposition of

A. The decomposition A = VDVT can also be written as

A = VDVT

=
[
λ1v1 λ2v2 · · · λnvn

]
VT

= λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λnvnv

T
n

Hence, A is the sum of the spectral components λiviv
T
i . This expansion is called the outer

product expansion.

Geometrically, orthogonal matrices are generalizations of rotation and reflection matrices

on R2. This is because orthogonal matrices preserve the Euclidean norm of a vector:

‖Vx‖2 =
√

(Vx)TVx =
√
xTVTVx =

√
xTx = ‖x‖2.

With this interpretation of orthogonal matrices, the spectral decomposition factors a sym-

metric matrix A as a series of three transformations; first a rotation/reflection VT , second

a scaling D, and third a rotation/reflection V.

When A is not symmetric or (even worse) not a square matrix, say that A is m × n,

then A does not generally have a spectral decomposition, and when it is not square it

does not even have eigenvalues/eigenvectors. However, the singular value decomposition is

rooted in the idea of decomposing A as a sequence of a reflection/rotation, then a scal-

ing, and finally another reflection/rotation. Finding such a decomposition is equivalent to

finding an orthonormal basis v1,v2, . . . ,vn of Rn, an orthonormal basis u1,u2, . . . ,um of

Rm, and positive constants σ1, σ2, . . . , σr such that Avi = σiui for i = 1, 2, . . . , r, where

r = rank(A) ≤ min{n,m}. Having found such data, then

A = UΣVT

where U =
[
u1 u2 · · · um

]
, V =

[
v1 v2 · · · vm

]
, and Σ is a m× n diagonal matrix

whose first k diagonal entries are σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and all other entries are zero.

This is called the singular value decomposition (SVD) of A. Before we prove that any

matrix has a SVD, we need the following.

Lemma 7.2

The matricesA andATA have the same nullspace and consequently rank(A) = rank(ATA)
and nullity(A) = nullity(ATA).

Proof. The nullspace of a matrix M will be denoted by ker(M). Suppose that v ∈ ker(A).

Then from Av = 0 we have ATAv = 0 and thus v ∈ ker(ATA). Now suppose that
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v ∈ ker(ATA). Then from ATAv = 0 we have vTATAv = 0 and thus ‖Av‖22 = 0.

Therefore, Av = 0 and this proves that v ∈ ker(A). This proves that ker(A) = ker(ATA).

The rank and nullity relationships follow from the Rank theorem.

We now prove that any matrix has a singular value decomposition.

Theorem 7.3: Singular Value Decomposition

For any m×n matrix A, there exists anm×m orthogonal matrixU, an n×n orthogonal
matrix V, and a m× n diagonal matrix Σ such that

A = UΣVT

Proof. The matrix ATA is a n × n symmetric matrix and therefore there exists an or-

thonormal basis v1,v2, . . . ,vn of Rn consisting of eigenvectors of ATA. The matrix ATA is

positive semi-definite and thus its eigenvalues are all non-negative. Label these eigenvalues

as σ2
1 , σ

2
2, . . . , σ

2
n in non-increasing order and consistent with the ordering of the eigenvectors,

that is, (ATA)vi = σ2
i vi. Let r ≤ n be such that σ2

r > 0 and σ2
r+1 = · · · = σ2

n = 0. Then

(ATA)vi = 0 for i = r + 1, . . . , n and thus r = rank(ATA) = rank(A) ≤ min{m,n}. Let

V =
[
v1 v2 · · · vn

]
and note that V is orthogonal. Now define, for i = 1, 2, . . . , r, the

vector

ui =
1

σi
Avi.

Then for 1 ≤ i, j ≤ r, and using the fact that v1, . . . ,vn are orthonormal, we have

uT
i uj = (σ−1

i σ−1
j )vT

i A
TAvj = (σ−1

i σ−1
j )vT

i (σ
2
jvj) =

σ2
j

σiσj
vT
i vj =

{
1, if i = j

0, if i 6= j

Therefore, u1, . . . ,ur are orthonormal. We then extend the set {u1, . . . ,ur} to an or-

thonormal basis {u1,u2, . . . ,um} of Rm (say using the Gram-Schmidt procedure). Let

U =
[
u1 u2 · · · um

]
. Then,

AV =
[
Av1 Av2 · · · Avr Avr+1 · · · Avn

]

=
[
σ1u1 σ2u2 · · · σrur 0 · · · 0

]

= UΣ

and this completes the proof.

The numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of A, and as the proof above

showed, they are found by taking the (positive) square roots of the non-zero eigenvalues of

ATA. The proof above also showed the following.
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Corollary 7.4

The number of singular values of A is the rank of A. In other words, the number of
non-zero eigenvalues of ATA is the rank of A.

Although we will not spend much time computing by hand the SVD of specific matrices,

we make the following observation on computing the matrixU. The vectors {u1,u2, . . . ,um}
are eigenvectors of the matrix AAT since

AAT = (UΣVT )(VΣTUT ) = UΣΣTUT

For this we also deduce that the non-zero eigenvalues of AAT are σ2
1 ≥ · · · ≥ σ2

r (the same

as those of ATA). Moreover, by definition ui = 1
σi
Avi for i = 1, 2, . . . , r, and therefore

Avi are eigenvectors of AAT aligned with ui since σi > 0. Hence, an alternative method to

compute U is to determine an orthonormal set of eigenvectors of AAT , say ũ1, ũ2, . . . , ũm,

with corresponding eigenvalues σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > σ2

r+1 = · · · = σ2
m = 0. Then, for

i = 1, 2, . . . , r, if 〈ũi,Avi〉 > 0 then set ui = ũi otherwise set ui = −ũi, and for i > r set

ui = ũi.

Example 7.4. Let A =

(
1 3

2

0 1

)
. Then A is not symmetric and also not diagonalizable.

Compute

ATA =

(
1 3

2

3
2

13
4

)

One finds that the eigenvalues of ATA are σ2
1 = 4 and σ2

2 = 1/4, with corresponding

orthonormal eigenvectors v1 =
1√
5

(
1
2

)
and v2 =

1√
5

(
−2
1

)
. Then one computes

u1 =
1

σ1

Av1 =
1√
5

(
2
1

)

and

u2 =
1

σ2

Av2 =
1√
5

(
−1
2

)

Therefore, the SVD of A is

A = UΣVT =




2√
5

− 1√
5

1√
5

2√
5




(
2 0

0 1
2

)


1√
5

2√
5

− 2√
5

1√
5





Below is a figure illustration the sequence of linear transformations VT , Σ, and V:
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−2 −1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Initial

−2 −1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Image of VT

−2 −1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Image of Σ

−2 −1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Image of U

Example 7.5. Let

A =




1 0 1
0 1 0
0 1 1
0 1 0
1 1 0




Then

AAT =




2 0 1 0 1

0 1 1 1 1

1 1 2 1 1

0 1 1 1 1

1 1 1 1 2




and

ATA =




2 1 1

1 4 1

1 1 2




The eigenvalues of AAT are σ2
1 = 5, σ2

2 = 2, σ2
3 = 1, σ2

4 = 0, and σ2
5 = 0, and the eigenvalues

of ATA are σ2
1 = 5, σ2

2 = 2, σ2
3 = 1. Hence,

Σ =




√
5 0 0

0
√
2 0

0 0 1

0 0 0

0 0 0




An orthogonal eigenvector matrix for ATA is

V =




√
6
6

√
3
3

−
√
2
2

√
6
3

−
√
3
3

0
√
6
6

√
3
3

√
2
2
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and an orthogonal eigenvector matrix for AAT is

U =




√
30
15

√
6
3

0 −
√
7
7

√
70
35

√
30
15

−
√
6
6

0 −2
√
7

7
−3

√
70

70
√
30
10

0
√
2
2

√
7
7

−
√
70
35

√
30
15

−
√
6
6

0 0
√
70
10

√
30
10

0 −
√
2
2

√
7
7

−
√
70
35




One can verify that 〈ui,Avi〉 > 0 for i = 1, 2, 3. Therefore,

A = UΣVT .

We make the following observation that is a by-product of the SVD and can be used

to compute the a basis for the nullspace and range of a matrix. Let A have singular value

decomposition A = UΣVT and suppose that A has rank r. Then by construction of the

SVD, we have that Avi = σiu for i = 1, 2, . . . , r and Avj = 0 for j = r+1, . . . , n. Therefore,

the set {u1, . . . ,ur} is a basis for the range ofA and {vr+1, . . . ,vn} is a basis for the nullspace
of A:

nullspace(A) = span{vr+1, . . . ,vn}

range(A) = span{u1, . . . ,ur}

7.5 SVD and Image Processing

We now consider an application of the SVD to image processing. The SVD when expanded

can be written as

A = UΣVT = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r . (7.4)

Recall that the singular values are ordered from largest to smallest, that is, σ1 ≥ σ2 ≥ · · · ≥
σr > 0. If for some k < r the singular values σk+1, . . . , σr are small relative to σ1, σ2, . . . , σk,

then we can approximate A with

A ≈ σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
k .

Although we have discarded the terms from k + 1, . . . , r, the approximation might be rea-

sonably good if the discarded terms are indeed small. To quantify “small” in a reasonable

way, consider

ωj =
σj∑r
i=1 σi

.
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Hence, ωj is the contribution of the singular value σj to the overall sum
∑

σi. If ωj < α for

some chosen tolerance 0 < α < 1, then we could declare that σj is small enough that we can

discard σjujv
T
j from the expansion (7.4). Since the singular values are ordered from largest

to smallest, we find the smallest k such that ωk > α and discard σk+1, . . . , σr.

To see how the above approximation technique can be used, consider an image containing

m × n pixels. Each pixel pi,j in the image has a RED Ri,j, GREEN Gi,j, and BLUE Bi,j

numerical intensity value each ranging between 0 and 1, that is, 0 ≤ Ri,j ≤ 1, 0 ≤ Gi,j ≤ 1,

and 0 ≤ Bi,j ≤ 1. If Ri,j = 0 then the color black is assigned and if Ri,j = 1 then the red

color is assigned, and similarly with Gi,j and Bi,j with red replaced with green and blue,

respectively. The resulting color at pixel pi,j is the superposition of the three RGB colors:

pi,j = Ri,j + Gi,j + Bi,j . Hence, an image P is the superposition (the sum) of three m × n

matrices R, G, and B:

P = R+G+B

As an example, consider the image below of a cargo ship leaving the San Francisco bay:

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

The image is the superposition of the following R, G, B images:

In this case, the image has m× n = 1704× 2272 pixels. For each R, G, and B matrix, we

compute the singular value decomposition and keep only the terms in the expansion (7.4)

such that ωj > α for various values of α and we display the results in Figure 7.2.

Consider the case of α = 0.0011. In all cases of the matrices R,G, and B, the number

of singular values is r = m = 1704, that is, all matrices R,G, and B have maximum rank.
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The amount of data points needed to reconstruct the image is m × n × 3 = 11, 614, 464.

For the value of α = 0.0011, one computes that the number of singular values σj such that

ωj > α is kR = 109 for R, kG = 105 for G, and kB = 83 for B. Hence, the number

of data points kept in the SVD expansion of R is (m + n) × kR = 433, 384, for G it is

(m+ n)× kG = 471, 480, and for B it is (m+n)× kB = 330, 008. Hence, the approximation

requires (m+ n)× (kR + kG + kB) = 1, 180, 872 data points. This results in a compression

ratio of

κ =
m× n× 3

(m+ n)× (kR + kG + kB)
=

11, 614, 464

1, 180, 872
≈ 10
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Figure 7.2: Approximation of image for various values of α; as α increases we demand that
the weight ωj of the singular value σj contribute more to the total sum

∑
σi and thus less

of the singular values will be included in the approximation
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8

Numerical Solutions to Ordinary Differential
Equations

8.1 Ordinary differential equations

A one-dimensional ordinary differential equation (ODE) is an equation of the form

dx

dt
= f(x(t)) (8.1)

where x(·) and f(·) is are real-valued functions of a single variable. The function f is given

and the problem is to find x(t) satisfying (8.1); such a function is called a solution or

trajectory of (8.1). In the theory of ODEs, the Newtonian notation for differentiation

ẋ := dx
dt

is more widely used, and we will follow this convention. The ODE (8.1) is said to

be linear if f is a linear function, that is, f(x) = ax for some a ∈ R, and is said to be

nonlinear otherwise.

Example 8.1. Show that x(t) = 1
1−t

is a solution to the differential equation

ẋ = x2.

Solution. Here f(x) = x2. Now, if x(t) = 1
1−t

then

ẋ = (−1)(1− t)−2(−1) =

(
1

1− t

)2

= f(x(t)).

Notice that the function x(t) = 1
1−t

is not defined at t = 1.

Example 8.2. Show that x(t) = tan(t + c), where c ∈ R is an arbitrary constant, is a

solution to the nonlinear ODE

ẋ = 1 + x2.
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Solution. Here f(x) = 1 + x2, which is indeed nonlinear. We compute

ẋ =
d

dt
(tan(t+ c)) = sec2(t+ c) = 1 + tan2(t+ c) = 1 + x(t)2 = f(x(t)).

This shows that x(t) = tan(t+ c) is a solution to the ODE.

In the previous example, the constant c is a constant of integration and thus we have

actually produced a family of solutions and not a particular one. We must therefore specify

an additional condition on x(t) in order to distinguish one particular solution of the ODE.

This condition is commonly called an initial condition and is of the form

x(t0) = x0. (8.2)

The ODE (8.1) with initial condition (8.2) is called an initial value problem (IVP).

Example 8.3. Consider the initial value problem

ẋ = 1 + x2

x(0) = 1.

It has solution x(t) = tan(t+π/4) since x(0) = tan(π/4) = 1. On the other hand, the initial

value problem

ẋ = 1 + x2

x(0) = 0

has solution x(t) = tan(t). Notice that for both cases, the solution x(t) is defined only on a

finite interval (a, b) containing t0 = 0; for x(t) = tan(t + π/4) it is defined for (−3π
4
, π
4
) and

for x(t) = tan(t) it is defined for (−π
2
, π
2
). Hence, in general, a solution to a IVP may exist

only on a finite interval (a, b) and moreover, it is possible that as t → a and/or t → b, x(t)

becomes unbounded in finite time.

Example 8.4. Consider the IVP

ẋ = 3x2/3

x(0) = 0.

Here f(x) = 3x2/3. The constant function x(0) = 0 clearly solves the IVP. On the other

hand, the function x(t) = t3 is also a solution since

ẋ = 3t2 = 3(t3)2/3 = f(x(t)).

This example shows that, in general, solutions to ODEs are not unique, even if f(x) is

continuous.
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The previous examples show that even when f is a well-behaved function, solutions to

ODEs may not be so well-behaved globally. However, the next theorem states that under

some fairly mild assumptions on f , solutions will indeed exist (for a short while, at the very

least) and they will be unique.

Theorem 8.1: Existence and Uniqueness

Consider the initial value problem

ẋ = f(x)

x(t0) = x0

and suppose that f and f ′ are continuous on an open interval I ⊂ R. If x0 ∈ I then
there exists an interval (a, b) containing t0 and a unique solution x : (a, b) → R to the
initial value problem.

From now on, we implicitly assume that f satisfies the conditions of Theorem 8.1 and thus

consider only initial value problems that have a unique solution on some interval.

In most interesting cases, unlike Example 8.3 and 8.4, it is not possible to determine an

explicit closed-form formula for the solution of an initial value problem, at least not using

the familiar functions from calculus.

Now we consider general n-dimensional differential equations. To do this, we introduce

the notion of a vector field and a curve in Rn. A vector field F in Rn is a mapping

F : Rn → Rn that assigns to each point x = (x1, x2, . . . , xn) ∈ R a vector F(x) ∈ Rn. In

component form, a vector field F(x) can be written as

F(x) =




F1(x)
F2(x)

...
Fn(x)


 =




F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

...
Fn(x1, x2, . . . , xn)


 .

An example of a vector field in R
2 is

F(x) =

[
−x1 + sin(x1x2)

x2 + x2
1

]

and one in R3 is

F(x) =




x2 − x1

x1 − x2 − x1x3

x1x2 − x3


 .

In R2, we can visualize the behavior of a vector field by drawing at each x ∈ R2 the vector

F(x) with tail based at x. An example of the type of plots obtained by doing this for a

two-dimensional vector field is shown in Figure 8.1.
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Figure 8.1: A vector field in R2

A curve in Rn is a function x : I → Rn, where I ⊂ R is an interval. If in component

form we have

x(t) =




x1(t)
x2(t)
...

xn(t)




then the derivative of x(t) is

dx

dt
= ẋ(t) =




ẋ1(t)
ẋ2(t)
...

ẋn(t)




provided the individual derivatives

ẋi(t) = lim
h→0

xi(t + h)− xi(t)

h

exist. In this case, we say that x(t) is a differentiable curve on I. For example,

x(t) =




t3 sin(t)− 1
cos(t2) + t3

et
2 − 3t





is a differentiable curve on I = R3 with derivative

ẋ(t) =



3t2 sin(t) + t3 cos(t)
−2t sin(t2) + 3t2

2tet
2 − 3
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An n-dimensional ordinary differential equation (ODE) is an equation of the form

dx

dt
= F(x(t)) (8.3)

where F : Rn → Rn is an n-dimensional vector field and x : I → Rn is an unknown

differentiable curve. An initial value problem is an ODE with an initial condition:

ẋ = F(x(t))

x(t0) = x0

where x0 ∈ R is a given fixed vector.

Example 8.5. Consider the initial value problem

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

x(0) = (3, 2).

Here F(x) =

[
−x1 − 3x2

2x2

]
. Show that the curve

x(t) =

[
3e−t + 2(e−t − e2t)

2e2t

]

is a solution to the IVP.

Solution. First of all,

x(0) =

[
3e0 + 2(e0 − e0)

2e0

]
=

[
3
2

]
.

Now,

ẋ =

[
−3e−t + 2(−e−t − 2e2t)

4e2t

]
=

[
−5e−t − 4e2t

4e2t

]
(8.4)

On the other hand,

F(x(t)) =

[
−(3e−t + 2(e−t − e2t))− 3(2e2t)

2(2e2t)

]

=

[
−5e−t + 2e2t − 6e2t

4e2t

]

=

[
−5e−t − 4e2t

4e2t

]
(8.5)

Comparing (8.4) and (8.5), we see that ẋ = F(x(t)), and therefore x(t) solves the IVP. The

curve x(t) is plotted in Figure 8.2.
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Figure 8.2: Solution of ODE in Example 8.5

Example 8.6. Verify that

x(t) =

[
e−t(2 cos(2t)− 9 sin(2t))

e−t(4 cos(2t)− sin(2t))

]

is a solution to the initial value problem

ẋ1 = −5x2

ẋ2 = x1 − 2x2

x(0) = (2, 4)

Solution. This is left as an exercise.

To end this section, we now introduce the derivative of a vector field F : Rn → Rn.

Definition 8.2

Let F : Rn → R
n be a vector field with component functions F1(x), F2(x), . . . , Fn(x).

We say that F is continuously differentiable if for all i, j = 1, 2, . . . , n,

∂Fi

∂xj
(x1, x2, . . . , xn)

exist and are continuous on Rn. In this case, the derivative of F at p is the n × n
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matrix

DF(p) =




∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn

...
... · · · ...

∂F1

∂xn

∂Fn

∂x2
· · · ∂Fn

∂xn




where all ∂Fi

∂xj
are evaluated at p. The matrix DF is called the Jacobian matrix of F.

Example 8.7. Find the derivative of the vector field F : R2 → R2 given by

F(x) =

[
x1 sin(3x2)− x3

1x2

ln(x1 + 1)− x1e
5x2

]

at the point p = (1, 2).

Solution. By definition, for any x = (x1, x2):

DF(x) =




∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2


 =



sin(3x2)− 3x2

1x2 3x1 cos(3x2)− x3
1

1
x1+1

− e5x2 −5x1e
x2




Therefore,

DF(p) =

[
sin(6)− 9 3 cos(6)− 1

1
2
− e5 −5e2

]

Example 8.8. Find the derivative DF(x) if x = (x1, x2, x3) and

F(x) =




x1x2 − x3
2x3 − 7x1

x2
3 − x2

1

x1x3 − x2x3




Solution. By definition,

DF(x) =




∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3

∂F3

∂x1

∂F3

∂x2

∂F3

∂x3


 =



x2 − 7 x1 − 3x2

2x3 −x2
2

−2x1 0 2x3

x3 −x3 x1 − x2


 .
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In many models of physical phenomenon, there is variable of interest x(t) (position,

temperature, concentration, etc.) that is known to satisfy a high-order differential equation.

For example, let x(t) denote the position of a body of mass m acted upon by a force F in

the direction of motion. Then Newton’s 2nd law of motion states that

F = mẍ(t).

This equation is a 2-nd order differential equation for the variable x(t). In practice, it is

convenient to introduce a system of differentiable equations instead of directly solving a high-

order equation. For this example, we introduce the vector x = (x1, x2) and let x1(t) = x(t)

(the position of the body) and let x2(t) = ẋ(t) (the velocity of the body). Then

ẋ1 = x2

ẋ2 =
F

m
The vector field associated to this 2-dimensional ODE is therefore

F(x) =

[
x2

F
m

]

If x(t) = (x1(t), x2(t) is a trajectory of the system of equations, then the position of the

body is simply x1(t) by definition.

Example 8.9. Suppose that the function w(t) satisfies the differential equation

2w(4)(t)− sin(ẇ) + 7
w(3)(t)

1 + ẅ(t)
= 0

Write an equivalent 4-dimensional system of differential equations.

Solution. Let x1 = w, let x2 = ẇ, let x3 = ẅ, let x4 = w(3), and let x = (x1, x2, x3, x4). Then

ẋ1 = ẇ = x2

ẋ2 = ẅ = x3

ẋ3 = w(3) = x4

ẋ4 =
1

2

(
sin(ẇ)− 7

w(3)

1 + ẅ

)

=
1

2

(
sin(x2)− 7

x4

1 + x3

)

is the equivalent 4-dimensional system of ODEs. The associated vector field is then

F(x) =




x2

x3

x4

1
2

(
sin(x2)− 7 x4

1+x3

)
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8.2 Euler’s Method

Suppose that x(t) is a solution of the one-dimensional ODE ẋ = f(x(t)) with initial condition

x(t0) = x0, and assume that x(t) is defined for a ≤ t ≤ b where a = t0. By Taylor’s theorem,

for t ∈ [a, b] we have

x(t) = x(t0) + ẋ(t0)(t− t0) +
ẍ(ξ(t0))

2!
(t− t0)

2

where ξ(t0) is in between t0 and t. Now, if t is close to t0, and in particular so that |t−t0| < 1,

then |t− t0|2 will be small compared to |t− t0|. We therefore take as an approximation

x(t) ≈ x(t0) + ẋ(t0)(t− t0).

Since ẋ(t0) = f(x(t0)) = f(x0) we have

x(t) ≈ x0 + f(x0)(t− t0). (8.6)

The function ℓ(t) = x0+f(x0)(t− t0) is the tangent line to the graph of x(t) passing through

the point (t0, x0). The approximation (8.6) is the basis for Euler’s method which we now

describe.

Suppose that x(t) is defined on [a, b]. Partition the interval [a, b] into equally spaced

points a = t0 < t1 < · · · < tN = b, which we call mesh points. The step-size is therefore

h = b−a
N

. Since t0 = a we have

ti = ti−1 + h = a + ih

for i = 1, . . . , N . At the mesh point ti we will approximate x(ti) with wi computed as follows.

We first set w0 = x(t0) = x0. To compute the approximation w1 to x(t1) we use (8.6):

x(t1) ≈ x(t0) + f(x0)(t1 − t0) = w0 + f(w0)h

Hence, we set w1 = w0 + f(w0)h. Now,

x(t2) ≈ x(t1) + f(x(t1))(t2 − t1) ≈ w1 + f(w1)h

and thus we set w2 = w1 + f(w1)h. Similarly,

x(t3) ≈ x(t2) + f(x(t2))(t3 − t2) ≈ w2 + f(w2)h

and thus we set w3 = w2 + f(w2)h. Continuing in this way, we obtain

wi = wi−1 + f(wi−1)h

for i = 1, . . . , N . At the end of this process, we obtain the points (t0, w0), (t1, w1), . . . , (tN , wN)

that approximate the exact values (t0, x(t0)), (t1, x(t1)), . . . , (tN , x(tN)).
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Figure 8.3: Euler approximation to the solution of ẋ = x, x(0) = 1 with N ∈ {10, 20}

Example 8.10. Consider the initial value problem

ẋ = x

x(0) = 1

The solution is x(t) = et. We apply Euler’s method on the interval [0, 1] with N = 10 and

N = 20 and compute w0, w1, . . . , wN for each case. We plot the true solution x(t) = et and

the approximate values x(ti) = wi in Figure 8.3 for both cases of N .

Euler’s method in the n-dimensional case is identical to the 1-dimensional case. Given

the initial value problem

ẋ = F(x(t))

x(t0) = x0

we seek to approximate the solution x(t), assumed to be defined on the interval [a, b], at

discrete points a = t0 < t1 < · · · < tN = b. As before, we consider the mesh points

ti = ti−1 + h, for i = 1, 2, . . . , N , where t0 = a, and seek to approximate x(ti) with wi. We

set w0 = x0 and define

wi = wi−1 + F(wi−1)h

for i = 1, 2, . . . , N , where h = b−a
N

is the step-size.
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Figure 8.4: True solution and Euler approximation with N = 20

Example 8.11. Consider the initial value problem

ẋ1 = −5x2

ẋ2 = x1 − 2x2

x(0) = (2, 4)

As shown in Example 8.6, the solution is

x(t) =

[
e−t(2 cos(2t)− 9 sin(2t))

e−t(4 cos(2t)− sin(2t))

]
.

Let w0 = x0 = (2, 4) and compute w1, . . . ,wN , for N = 20. The results are shown in

Figures 8.4. We also plot the trajectory x(t) = (x1(t), x2(t)) and the approximation vectors

w0,w1, . . . ,wN on the (x1, x2)-plane in Figure 8.5.

We now analyze the error in using Euler’s method. To that end, we need the following

lemma.

Lemma 8.3

Let α, β > 0 and let (a0, a1, . . . , ak) be a sequence of numbers such that a0 ≥ −β/α, and

ai+1 ≤ (1 + α)ai + β

for each i = 1, . . . , k. Then

ai ≤ eiα
(
a0 +

β

α

)
− β

α
.

The following result describes the error between the estimates wi obtained using Euler’s

method and the true value x(ti).
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Figure 8.5: True solution and Euler approximation with N = 20 in the phase space

Theorem 8.4

Consider the initial value problem

ẋ = f(x)

x(a) = x0,

and let x : [a, b] → R denote its unique solution. Assume that |x′′(t)| ≤ M for all
t ∈ [a, b]. Suppose further that f is Lipschitz on R with constant L, that is, |f(x) −
f(y)| ≤ L|x− y| for all x, y ∈ R. Let w0, w1, . . . , wN denote the sequence obtained from
Euler’s method. Then, for each i = 0, 1, . . . , N ,

|x(ti)− wi| ≤
hM

2L

(
eihL − 1

)
.

and consequently

max
1≤i≤N

|x(ti)− wi| ≤
hM

2L
(e(b−a)L − 1).

Proof. From Taylor’s theorem

x(ti+1) = x(ti) + hf(x(ti)) +
h2

2
x′′(ξi)

for some ti < ξi < ti+1. For simplicity, let xi = x(ti). Now, by definition,

wi+1 = wi + hf(wi)
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Therefore,

|xi+1 − wi+1| ≤ |xi − wi|+ h|f(xi)− f(wi)|+
h2

2
|x′′(ξi)|

= (1 + hL)|xi − wi|+
h2

2
M

Applying Lemma 8.3 with α = hL, β = h2M/2, and ai = |xi − wi| we have

|xi+1 − wi+1| ≤ e(i+1)hL

(
|x0 − w0|+

h2M

2hL

)
− h2M

2hL
,

and since w0 = x0, we have

|xi+1 − wi+1| ≤
hM

2L

(
e(i+1)hL − 1

)
.

for i = 0, 1, . . . , N − 1. Note that since ih ≤ hN for i = 1, . . . , N , and b = a+ hN , we have

|xi − wi| ≤
hM

2L
(e(b−a)L − 1).

and the second claim follows.

Hence, the above inequality implies that the error in using Euler’s method will decrease

linearly as a function of the step-size h.

8.3 Taylor Methods

Euler’s method is a special case of high-order Taylor methods. Consider the initial value

problem

ẋ = f(x)

x(a) = x0

and let x(t) denote the unique solution on the interval [a, b]. Let a = t0 < t1 < · · · < tN = b

be equally spaced mesh-points in the interval [a, b] and let h = ti+1− ti be the step-size. Let

xi = x(ti) for i = 0, 1, . . . , N . If x(t) is (k + 1) continuously differentiable then by Taylor’s

theorem,

x(ti+1) = x(ti) + x′(ti)h+
h2

2!
x(2)(ti) +

h3

3!
x(3)(ti) + · · ·+ hn

k!
x(k)(ti) +

hk+1

(k + 1)!
x(k+1)(ξi)

where ti < ξi < ti+1. The idea now is to expand the derivatives x(j)(ti) appearing in the

Taylor expansion all in terms of f and the derivatives of f . For example, since x′(t) = f(x(t)),

then by the chain rule

x(2)(t) = f ′(x(t))x′(t) = f ′(x(t))f(x(t))
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and similarly

x(3)(t) = f ′′(x(t))x′(t)f(x(t))+f ′(x(t))f ′(x(t))x′(t) = f (2)(x(t))(f(x(t))2+(f ′(x(t)))2f(x(t)).

This, obviously, becomes very tedious and non-trivial as higher-order derivatives x(j)(t) are

computed. However, this is the basis of the nth-order Taylor method. For example, the 1st

order Taylor method is Euler’s method:

wi+1 = wi + hf(wi).

The 2nd order Taylor method is

wi+1 = wi + hf(wi) + (f ′(wi)f(wi))
h2

2

and the 3rd order Taylor method is

wi+1 = wi + hf(wi) + (f ′(wi)f(wi))
h2

2
+
(
f (2)(wi)f(wi)

2 + f ′(wi)
2f(wi)

) h3

3!

for i = 0, 1, . . . , N − 1, and where w0 = x0. In general, the kth order Taylor method is

wi+1 = wi + hf(wi) +
d

dt
[f(x(t))]

∣∣∣
x(t)=wi

h2

2!
+ · · ·+ dk−1

dtk−1
[f(x(t))]

∣∣∣
x(t)=wi

hk

k!

where
dj

dtj
[f(x(t))]

∣∣∣
x(t)=wi

is obtained by computing the jth derivative of f(x(t)) using the chain rule and then sub-

stituting wi for x(t). The main disadvantage with high-order Taylor methods is that one

needs to differentiate f(x(t)), and for this reason Taylor methods are hardly used in prac-

tice. However, one expects that high-order Taylor methods are more accurate than Euler’s

method.

Example 8.12. Consider the IVP

ẋ = x

x(0) = 1
2

the solution of which is x(t) = 1
2
et. In this case, f(x) = x and thus f ′(x) = 1 and f (2)(x) = 0.

Hence, the 3rd order Taylor method is

wi+1 = wi + hf(wi) + (f ′(wi)f(wi))
h2

2!
+
(
f (2)(wi)f(wi)

2 + f ′(wi)
2f(wi)

) h3

3!

= wi + hwi + wi
h2

2
+ wi

h3

6
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ti Euler 3rd Taylor

0.00 0.0000e+00 0.0000e+00
0.20 1.0701e-02 3.4712e-05
0.40 2.5912e-02 8.4793e-05
0.60 4.7059e-02 1.5535e-04
0.80 7.5970e-02 2.5298e-04
1.00 1.1498e-01 3.8623e-04
1.20 1.6707e-01 5.6607e-04
1.40 2.3601e-01 8.0661e-04
1.60 3.2661e-01 1.1259e-03
1.80 4.4493e-01 1.5470e-03
2.00 5.9866e-01 2.0994e-03

Table 8.1: Error |xi − wi| for N = 10

ti Euler 3rd Taylor

0.00 0.0000e+00 0.0000e+00
0.10 2.5855e-03 2.1257e-06
0.20 5.7014e-03 4.6985e-06
0.30 9.4294e-03 7.7890e-06
0.40 1.3862e-02 1.1478e-05
0.50 1.9106e-02 1.5856e-05
0.60 2.5279e-02 2.1028e-05
0.70 3.2518e-02 2.7113e-05
0.80 4.0976e-02 3.4245e-05
0.90 5.0828e-02 4.2577e-05
1.00 6.2270e-02 5.2283e-05
1.10 7.5525e-02 6.3560e-05
1.20 9.0844e-02 7.6630e-05
1.30 1.0851e-01 9.1747e-05
1.40 1.2885e-01 1.0920e-04
1.50 1.5222e-01 1.2930e-04
1.60 1.7903e-01 1.5242e-04
1.70 2.0974e-01 1.7898e-04
1.80 2.4487e-01 2.0944e-04
1.90 2.8499e-01 2.4433e-04
2.00 3.3078e-01 2.8423e-04

Table 8.2: Error |xi − wi| for N = 20

We compare the error |xi−wi| using both the Euler method and the 3rd order Taylor method

for two cases of N on the interval [0, 2]. The results are shown in Table 8.1-8.2. As expected,

for both cases of N , the Taylor method of third order produces a smaller error.

For an n-dimensional differentiable equation, the 2nd order Taylor method is

wi+1 = wi + F(wi)h+DF(wi)F(wi)
h2

2
.

and the 3rd order Taylor method is

wi+1 = wi +F(wi)h+DF(wi)F(wi)
h2

2
+
[
D2F(F(wi),F(wi)) +DF(wi)DF(wi)F(wi)

]h3

6
.
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8.4. RUNGE-KUTTA METHODS

8.4 Runge-Kutta Methods

In Euler’s method, given wi we compute wi+1 by following the line with direction vector

F(wi) along a time interval of length h starting from wi:

wi+1 = wi + F(wi)h

We are therefore using the value of F at the beginning of the interval [ti, ti+h] to obtain the

new estimate at the end-point of the interval. To improve Euler’s method, we could seek an

improved “average” value of F along the entire interval. As a first attempt, we could instead

follow the line t → wi + F(wi)t only to the mid-point of the interval [0, h], and thus arrive

at the point y = wi + F(wi)
h
2
, and then use F(y) as an estimate for the average value of F

along the entire interval. The hope is that F(y) is a better estimate of the average change

x(ti + h)− x(ti)

h
.

Using this approach, our estimate wi+1 ≈ x(ti + h) is then computed in two-stages and is

known as the modified Euler method or the mid-point method:

Algorithm 8.5: Modified Euler Method

Set w0 = x0 and for i = 0, 1, . . . , N − 1 compute

y = wi + F(wi)
h

2
wi+1 = wi + F(y)h

Notice that the computation of F(y) requires nested evaluations of F:

F(y) = F(wi + F(wi)
h
2
)

Another attempt to improve Euler’s method is to use the average of F(wi) and F(y)

as the final direction in computing the new estimate wi+1 from wi. The result is another

two-stage method known as Heun’s method:

Algorithm 8.6: Heun’s Method

Set w0 = x0 and for i = 0, 1, . . . , N − 1 compute

y = wi + F(wi)h

wi+1 = wi +
1

2

[
F(wi) + F(y)

]
h
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8.4. RUNGE-KUTTA METHODS

Both the mid-point method and Heun’s method seem rather ad-hoc. We will show that

in fact there is a systematic way to obtain both methods (and other methods), and that

they agree with the 2nd order Taylor method up to order h2. We begin by noticing that all

methods we have considered thus far can be written in the form

wi+1 = wi +Φ(wi, h)h.

for a suitably defined function Φ(wi, h). Explicitly: We now show that the mid-point and

Method Φ(w, h)
Euler F(w)

2nd-Order Taylor F(w) +DF(w)F(w)h
2

Mid-point F(w + F(w)h
2
)

Heun 1
2

[
F(w) + F(w + F(w)h)

]

Table 8.3: Numerical methods considered thus far

Hen’s method agree with the 2nd-order Taylor method up to order h2. To keep the notation

less cumbersome, we will consider the 1-dimensional case. The starting point is to consider

the general method

Φ(w, h) = a1f(w) + a2f(w + µf(w)h)

for yet to be determined constants a1, a2, µ. The idea is to expand Φ in a Taylor series with

respect to h:

Φ(w, h) = a1f(w) + a2
[
f(w) + f ′(w)µhf(w) + 1

2!
f ′′(w)µ2h2(f(w))2 + · · ·

]

= (a1 + a2)f(w) + a2µf
′(w)f(w)h+O(h2)

In order for Φ(w, h) to agree with the 2nd order Taylor method up to order h2, we need

a1 + a2 = 1

a2µ =
1

2

One possible solution is a1 = a2 =
1
2
and µ = 1 which gives

Φ(w, h) =
1

2
f(w) +

1

2
f(w + f(w)h)

and from Table 8.3 we observe that this is Heun’s method. Another possible solution is

a1 = 0, a2 = 1, and µ = 1
2
which gives

Φ(w, h) = f(w + f(w)h
2
)

159



8.5. CONVERGENCE

and from Table 8.3 we observe that this is the Mid-point method. In general, we observe

that we obtain a family of methods parametrized by say µ 6= 0 all of which agree with the

2nd order Taylor method up to order h2:

a1 = 1− 1

2µ

a2 =
1

2µ

The punchline of this approach is that we can achieve high-order accuracy by using nested

evaluation of f instead of explicitly computing derivatives of f as needed in direct Taylor

methods.

Following a similar approach of using nested evaluations, one can derive a 4th order

method, known as the 4th order Runge-Kutta (RK4) method, or simply the Runge-

Kutta method:

Algorithm 8.7: RK4

Set w0 = x0 and for i = 0, 1, . . . , N − 1 compute

y1 = F(wi)

y2 = F
(
wi + y1

h
2

)

y3 = F
(
wi + y2

h
2

)

y4 = F(wi + y3h)

wi+1 = wi +
(
y1 + 2y2 + 2y3 + y4

)h
6

8.5 Convergence

In this section we settle the issue of convergence of a numerical scheme

wi+1 = wi +Φ(wi, h)h (8.7)

that produces discrete values w0,w1, . . . ,wN that approximate x(t0),x(t1), . . . ,x(tN) where

x(t) is the unique solution to the initial value problem

ẋ = F(x(t))

x(a) = x0

(8.8)
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defined on the interval [a, b]. Here as before ti = a+ ih for i = 0, 1, . . . , N and h = b−a
N

. We

define the global discretization error as

ei = x(ti)−wi

for i = 0, 1, . . . , N . We say that the scheme Φ is convergent if

lim
N→∞

(
max
0≤i≤N

‖ei‖
)
= 0

An important notion needed in a typical proof of convergence of numerical methods for

ODEs is that of the local truncation error.

Definition 8.8: Local Truncation Error

Let x : [a, b] → R
n be the unique solution to the IVP (8.8). The local truncation

error of the method Φ is

τ(t, h) =
x(t + h)− x(t)

h
− Φ(x(t), h)

for t, t+ h ∈ [a, b].

The local truncation error of a method Φ is a measure of how well the exact solution x(t)

satisfies the method Φ, or equivalently it is a measure of the accuracy of the method at

a specific step assuming the exact solution is known at the previous step. Consider for

example the mid-point method Φ(w, h) = f(w+ f(w)h
2
), where for simplicity we consider a

1-dimensional ODE (the n-dimensional is conceptually the same just more notation). Then

as previously shown

Φ(w, h) = f(w) + f ′(w)f(w)
h

2
+ f ′′(ξ)f(w)2

h2

8

where ξ is in between w and w + f(w)h
2
. On the other hand,

x(t+ h) = x(t) + f(x(t))h+ f ′(x(t))f(x(t))
h2

2
+ x(3)(s)

h3

6

where t < s < t+h. Note that the x(3)(s) depends on up to the second derivatives of f since

ẋ(t) = f(x(t)). Therefore,

τ(t, h) =
x(t + h)− x(t)

h
−Φ(x(t), h)

= x(3)(s)
h2

6
− f ′′(ξ)f(w)2

h2

8

=

[
x(3)(s)

6
− f ′′(ξ)f(x(t))2

8

]
h2
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Therefore if the second order derivative of f are continuous then

|τ(t, h)| ≤ Mh2

for some constant M > 0. We say then that the local truncation error is O(h2). A similar

computation shows that the local truncation error of Heun’s method is O(h2) and the RK4

method has local truncation error O(h4), provided of course that f has continuous derivatives

of sufficiently high order. The next theorem gives a sufficient condition for convergence of

a method Φ whose local truncation error is of order O(hp) and that satisfies a Lipschitz

condition.

Theorem 8.9: Convergence

Consider the IVP (8.8) and let x : [a, b] → Rn be its unique solution. Consider the
numerical method (8.7) where h = b−a

N
and ti = a+ ih for i = 0, 1, . . . , N . Suppose that

there constants M,L, h0 > 0 such that the local truncation error satisfies

‖τ(t,x(t), h)‖ ≤ Mhp

for all t, t+ h ∈ [a, b] for some p > 0 and

‖Φ(y, h)−Φ(z, h)‖ ≤ L‖y − z‖

for all y, z ∈ Rn, and all h ≤ h0. Then the discretization error ei = x(ti)−wi satisfies

‖ei‖ ≤ Mhp

L

(
eihL − 1

)

for all i = 0, 1, . . . , N . Consequently, the method Φ is convergent.

Proof. The discretization error can be written as

ei+1 = x(ti+1)−wi+1

= x(ti) +

(
x(ti+1)− x(ti)

h

)
h− (wi +Φ(wi, h)h)

= ei +

(
x(ti+1)− x(ti)

h
−Φ(wi, h)

)
h

= ei +

((
x(ti+1)− x(ti)

h

)
−Φ(x(ti), h) +Φ(x(ti), h)−Φ(wi, h)

)
h

= ei + (τ(ti,x(ti), h) +Φ(x(ti), h)−Φ(wi, h))h
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By the triangle inequality and the assumption on the local truncation error and the Lipschitz

condition on Φ:

‖ei+1‖ ≤ ‖ei‖+ ‖τ(ti,x(ti), h)‖h+ ‖Φ(x(ti), h)−Φ(wi, h)‖h

≤ ‖ei‖+Mhp+1 + L‖x(ti)−wi‖h

= (1 + hL)‖ei‖+Mhp+1

Then by Lemma 8.3 with α = hL and β = Mhp+1, and since ‖e0‖ = 0, we have

‖ei‖ ≤ Mhp

L

(
eihL − 1

)

This proves the first claim. Since ih ≤ Nh = (b− a) we obtain that

‖ei‖ ≤ Mhp

L

(
e(b−a)L − 1

)

and therefore

max
1≤i≤N

‖ei‖ ≤ Mhp

L

(
e(b−a)L − 1

)

Hence, since h = b−a
N

we have that

lim
N→∞

(
max
1≤i≤N

‖ei‖
)

= 0

proving that the method is convergent.

We have simplified the proof by assuming that Φ satisfies a global Lipschitz condition. This

global Lipschitz condition can be relaxed significantly but the idea of the proof remains the

same.

Example 8.13. Consider the mid-point method Φ(w, h) = f(w + f(w)h
2
). Suppose that

f : Rn → Rn satisfies a Lipschitz constant, say that ‖f(y)− f(z)‖ ≤ K‖y − z‖.
(a) Show that if h0 > 0, then Φ satisfies a Lipschitz condition on the set

{(w, h) |w ∈ R
n, 0 < h ≤ h0}.

(b) Under what conditions will the local truncation error satisfy the assumptions of the

convergence theorem.
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Solution. (a) Suppose that ‖f(y)− f(z)‖ ≤ K‖y − z‖ for some constant K > 0. Then for

z, y ∈ R
n:

‖Φ(y, h)− Φ(z, h)‖ = ‖f(y + f(y)h
2
)− f(z + f(z)h

2
)‖

≤ K‖(y + f(y)h
2
)− (z + f(z)h

2
)‖

= K‖(y − z) + (f(y)− f(z))h
2
‖

≤ K
(
‖y − z‖+ ‖f(y)− f(z)‖h

2

)
(triangle inequality)

= K‖y − z‖+K‖f(y)− f(z)‖h
2

≤ K‖y − z‖ +K2‖y − z‖h
2

= (K +K2 h
2
)‖y − z‖

≤ (K +K2 h0

2
)‖y − z‖.

Hence, if L = K +K2 h0

2
, then ‖Φ(y, h)− Φ(z, h)‖ ≤ L‖y − z‖ for all y, z ∈ R

n.

(b) We have previously shown that

Φ(w, h) = f(w) + f ′(w)f(w)
h

2
+ f ′′(ξ)f(w)2

h2

8

where ξ is in between w and w + f(w)h
2
and that

x(t + h) = x(t) + f(x(t))h + f ′(x(t))f(x(t))
h2

2
+ x(3)(s)

h3

6

where t < s < t+ h. Therefore,

τ(t, h) =
x(t + h)− x(t)

h
− Φ(x(t), h)

= x(3)(s)
h2

6
− f ′′(ξ(t))f(x(t))2

h2

8

=
(
x(3)(s)1

6
− f ′′(ξ(t))f(x(t))2 1

8

)
h2

If f ′′ is continuous then x(3) is continuous and then ‖x(3)(s)1
6
− f ′′(ξ(t))f(x(t))2 1

8
‖ ≤ M

for some M > 0. In this case, ‖τ(t, h)‖ ≤ Mh2, and the assumption needed in the

convergence theorem is satisfied.
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The 4th order Runge-Kutta method requires four function evaluations per step whereas

the midpoint method requires two and Euler’s method only requires one. Hence, to compare

the accuracy of the methods we must ensure the computational effort for each method is the

same. Thus if a step size of h is used for RK4 then we should use a step-size of h
4
for Euler

and h
2
for the midpoint method. If RK4 is to be a superior method then it should give a

smaller global discretization error with a larger step-size.

Example 8.14. Consider the IVP

ẋ = 1 + x2, x(0) = 0.

The solution is x(t) = tan(t). Compare the global discretization error using Euler’s method

with N1 = 40, midpoint method with N2 = 20, and RK4 with N3 = 10, on the interval

[0, 10].
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