Let D be the set of odd natural numbers, and $f: \mathbb{N} \rightarrow D$ be defined by $f(n)=2 n-1$. Then. . .

Theorem 1. f is an injection.
Proof. We assume that $f: \mathbb{N} \rightarrow D$ is defined by $f(n)=2 n-1$, and prove that f is an injection. We do this by showing that if a and b are two natural numbers such that $f(a)=f(b)$, then $a=b$. Thus we assume that $f(a)=f(b)$, i.e., that $2 a-1=2 b-1$. Now adding 1 to both sides of this equation and then dividing by 2 yields $a=b$, which is what we wanted to show. Thus, we have proven that if $f: \mathbb{N} \rightarrow D$ is defined by $f(n)=2 n-1$, then f is an injection.

Theorem 2. f is a surjection.
Proof. We assume that $f: \mathbb{N} \rightarrow D$ is defined by $f(n)=2 n-1$, and prove that f is an surjection by showing that every element of the codomain has a preimage in the domain. Specifically, let y be an element of D, i.e., $y=2 a+1$ for some integer a and $y \geq 1$. Since $y \geq 1$, we see that $2 a+1 \geq 1$, or that $a \geq 0$. Furthermore the preimage of y is the n such that

$$
2 n-1=y=2 a+1
$$

Solving this equation for n we get

$$
\begin{aligned}
n & =\frac{2 a+1+1}{2} \\
& =\frac{2 a+2}{2} \\
& =a+1
\end{aligned}
$$

Now since a is an integer greater than or equal to $0, n$ is an integer greater than or equal to 1 , i.e., a natural number.

To check that the n thus found really is a preimage of y, calculate

$$
\begin{aligned}
f(n) & =2 n-1 \\
& =2(a+1)-1 \\
& =2 a+2-1 \\
& =2 a+1 \\
& =y
\end{aligned}
$$

This completes the demonstration that if $f: \mathbb{N} \rightarrow D$ is defined by $f(n)=$ $2 n-1$, then f is an surjection.

Theorem 3. f is a bijection.
Proof. By Theorem 1, f is an injection, and by Theorem 2, f is a surjection. Thus from the definition of bijection, f is a bijection.

