Elimination reactions: E1, E2

E2: biomolecular elimination

Reverse of H-X addition
Need an α proton
if more than one, product mixture results

kinetics: rate = k[RBr][B:\]

Zaitsev’s Rule: In general, for base promoted elimination reactions, the more highly substituted alkene is the major product.
Chiral substrate

NaOEt

Ph = C₆H₅
Et = C₃H₅

100%
Anti-periplanar conformation preferred

- to reduce steric strain.
- maximize developing π overlap

E2: substrate requirement summary

- α proton must be present
- must achieve anti-periplanar conformation

R,R
one α proton
not peri-planar
E2: leaving groups

\[
\begin{align*}
\text{Transition state} & \\
& \text{leaving group is developing negative charge} \\
& \text{good leaving groups are weak bases}
\end{align*}
\]

E2: Base/solvent combination (nucleophile)

Prevalent elimination mechanism when a strong base is used in combination with its CA as solvent.

\[
\text{OH} / \text{H}_2\text{O}
\]

useful when \(\alpha\)-proton is not very acidic

Elimination reactions and cyclohexane conformation

\[
\begin{align*}
\text{cis} & \quad \text{O}_2\text{Na}^+ \\
\text{trans} & \quad \text{O}_2\text{Na}^+ \\
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

\(\text{[\(\alpha\)]}_\text{D} = 0\) racemic

\(\text{[\(\alpha\)]}_\text{D} = 0\) racemic

Why the difference in rate?

Substrate requirements

- \(\alpha\)-proton
- anti-periplanar arrangement
Consider chair conformations: bigger group wants to be in equatorial position

Rationalize:

- Ethyl is larger than Br, so takes equatorial position in most stable conformer
Summary of E2 requirements

substrate
- α-proton
- anti-periplanar (trans diaxial H, LG)

LG
- weak base

B/solvent
- strong/conjugate acid

An aside: How do we know which step is rate determining?
Isotope Effects—changes in the rate resulting from the use of different isotopes.
- 2H or D, deuterium, most commonly used
- C-D bond is slightly stronger, so E_{act} is greater
- if breaking C-H bond is r.d.s., substitution with D will result in slower rate

$$
\begin{align*}
\text{CH}_4 + \text{Cl} & \rightarrow \text{CH}_3\text{Cl} + \text{HCl} & \text{rel. rate} = 12 \\
\text{CD}_4 + \text{Cl} & \rightarrow \text{CD}_3\text{Cl} + \text{DCl} & \text{rel. rate} = 1 \\
\end{align*}
$$

bond breaking occurs in transition state

Supporting evidence for E2

Faster

Slower
E1: unimolecular elimination reaction

Usually get mixture of products.

S_N1 and E1 share common carbocation

B: is too weak to remove α-proton but the carbocation increases its acidity.

Not very useful for synthesis; usually a side-reaction in S_N1 reactions.

S_N1 and E1 share common carbocation intermediate:

ΔG° vs rxn progress
Some examples:

\[
\begin{align*}
&\text{CH}_3\text{Cl} \quad \text{CH}_3\text{OH} \\
&\quad \quad \quad \quad \quad \text{E1} \quad \text{S}\text{N}1
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3\text{Cl} \quad \text{CH}_3\text{OH} \\
&\quad \quad \quad \quad \quad \text{E1} \quad \text{S}\text{N}1
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3\text{Cl} \quad \text{CH}_3\text{OH} \\
&\quad \quad \quad \quad \quad \text{E1} \quad \text{S}\text{N}1
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3\text{Cl} \quad \text{CH}_3\text{OH} \\
&\quad \quad \quad \quad \quad \text{E1} \quad \text{S}\text{N}1
\end{align*}
\]
E1 summary

substrate
- α-proton
- anti-periplanar not required

leaving group
- weak base

base = solvent
- weak bases
- neutral species with electron pair

Distinguishing between S_N^1, S_N^2, E1, E2

substrate, base/nucleophile

1o substrates: S_N^2, E2

- good Nu
- strong base
- polarizable (increases going down a group)

Cannot form stable carbocation
- no E1
- no S_N^1

α-proton, anti-periplanar
t-butoxide is a very strong base, so excellent nucleophile but:
• steric bulk of t-butoxide disfavors S_N2
 (easier to pluck off a proton)
• t-butanol is a poor S_N2 solvent (polar protic)

3° substrates (S_N1, $E1$ or $E2$): do not react by S_N2!

weak bases

strong bases
α-proton, anti-periplanar

weak base

S_N2:

$E2$:

3° substrates (S_N1, E1 or E2): do not react by S_N2!
Strong Base

\[\text{H}_3\text{C}-\text{C}-\text{Br} \xrightarrow{\text{O-}} \text{H}_2\text{C}=\text{C}-\text{Br} \]

\[\text{OH} \quad \text{OH} \quad \text{Br}^- \]

\[\text{E2} \]

\[\text{H}_3\text{C}-\text{C}-\text{Br} \xrightarrow{\text{OH}} \text{H}_3\text{C}=\text{C}-\text{CH}_3 \]

\[\text{OH} \quad \text{Br}^- \]

SUMMARY

Use substrate and base/Nu to distinguish pathways!

1° substrates: $\text{S}_\text{N}2$, E2

- good Nu
- strong base
- α-proton, anti-periplanar

3° substrates ($\text{S}_\text{N}1$, E1 or E2)

- weak bases
- strong bases
- α-proton, anti-periplanar

2° substrates: difficult to predict, can react by all 4 pathways!