A sequence is an ordered list of numbers: $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$, and a series is the sum of those numbers: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$. In either case, we want to determine if the sequence converges to a finite number or diverges and if the series converges to a finite number or diverges. If the series converges, that means that a sum of infinitely many numbers is equal to a finite number! If the sequence $\{a_n\}$ diverges or converges to anything other than 0, then the series $\sum a_n$ diverges. If the sequence $\{a_n\}$ converges to 0, then the series $\sum a_n$ may converge or may diverge.

For any given series $\sum a_n$ there are two associated sequences: the **sequence of terms** $\{a_n\}$ and the **sequence of partial sums** $\{s_n\}$, where $s_n = a_1 + a_2 + \ldots + a_n$. If $\sum a_n = L$, then $\lim_{n \to \infty} a_n = 0$ (as stated above) and $\lim_{n \to \infty} s_n = L$.

1 When can we calculate the sum of a series?

Unfortunately, we are unable to compute the exact sum of a series in most cases. However, there are a few examples that can be computed.

Geometric Series	For $ r < 1$, the series converges to $\frac{a}{1-r}$.
$\sum_{n=1}^{\infty} ar^{n-1}$	For $ r \ge 1$, the series diverges.
~ .	

Telescoping SeriesAlso known as "canceling pairs", subsequent pairs $\stackrel{\infty}{\longrightarrow}$

 $\sum_{n=1}^{\infty} (b_n - b_{n+c})$ of the series terms may cancel with each other.

2 Tests for determining if a series converges or diverges

In most cases, we will not be able to compute the exact sum of a series, but there are several tests which allow us to at least determine if a series is convergent or divergent. In some cases we can give approximations for the sum of a series as well.

Test for Divergence

If
$$\lim_{n \to \infty} a_n \neq 0$$
, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

p-Series Test	For $p > 1$, the series converges.
$\sum_{n=1}^\infty \frac{1}{n^p}$	For $p \leq 1$, the series diverges.

Applies when $a_n = f(n)$, and f(x) is a continuous, **Integral Test** positive, decreasing function on $[1, \infty)$. The series $\sum_{n=1}^{\infty} a_n$ converges *if and only if* the integral $\int_{1}^{\infty} f(x) dx$ converges.

Comparison	Applies as long as a_n and b_n are always positive.
\mathbf{Test}	(i) If $a_n \leq b_n$ and $\sum b_n$ converges, then so does $\sum a_n$.
	(ii) If $a_n \ge b_n$ and $\sum b_n$ diverges, then so does $\sum a_n$.

Limit	Applies as long as a_n and b_n are always positive,
Comparison	and $\lim_{n\to\infty} \frac{a_n}{b_n}$ is a positive, finite number.
Test	Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Alternating Series Test		Applies when $a_n \ge 0$. The series converges if
$\sum (-1)^{n+1} a_n$	(i)	$a_n \ge a_{n+1}$, and
or $\sum (-1)^n a_n$	(ii)	$\lim_{n \to \infty} a_n = 0.$

Absolute Convergence Test

Ratio Test

 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ Study this limit:

(i) If the limit exists and is *less than* 1, the series $\sum a_n$ is absolutely convergent (and convergent).

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

- (ii) $\overline{\text{If}}$ the limit exists and is greater than 1 (or if the limit diverges to infinity,) the series $\sum a_n$ diverges. If the limit equals 1, the Ratio Test is useless.
- (iii)

Root Test

 $\lim_{n \to \infty} \sqrt[n]{|a_n|}$ Study this limit:

- (i) If the limit exists and is *less than* 1, the series $\sum a_n$ is absolutely convergent (and convergent).
- (ii) If the limit exists and is greater than 1 (or if the limit diverges to infinity,) the series $\sum a_n$ diverges.
- (iii) If the limit *equals* 1, the Root Test is useless.

3 How do we know which test to use?

- 1. If you can see easily that $\lim_{n \to \infty} a_n \neq 0$, apply the **Test for Divergence**.
- 2. Is $\sum a_n$ a *p*-series or geometric series? If yes, apply those tests.
- 3. If the series $\sum a_n$ appears to be a **telescoping sum**, then find a closed formula for the partial sum s_n and use $\sum a_n = \lim_{n \to \infty} s_n$.
- 4. Is $\sum a_n$ similar to a *p*-series or geometric series? If yes, try one of the Comparison Tests. You will compare $\sum a_n$ with the series $\sum b_n$ that $\sum a_n$ is similar to.
 - (a) If the inequality works out the way you need it to, you will you the **Comparison Test**.
 - (b) If the inequality does not work out the way you need it to, try the Limit Comparison Test.
- 5. If $a_n = f(n)$ and $\int_1^{\infty} f(x) dx$ is easily evaluated, use the **Integral Test**.
- 6. If the series is of the form $\sum (-1)^{n+1} a_n$ or $\sum (-1)^n a_n$, try the Alternating Series Test.
- 7. When earlier tests can not be used simply because some of the terms may be negative, try using the **Absolute Convergence Test**.
- 8. Series involving factorials (e.g. n!) or n^{th} powers of a constant (e.g. 4^n) can often be studied with the **Ratio Test** (if an easier test does not work.)
- 9. When a_n looks like $(\cdots)^n$, and the term inside the parentheses *also* involves *n*, try the **Root Test**.