Series Summary

A sequence is an ordered list of numbers: $\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, and a series is the sum of those numbers: $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$. In either case, we want to determine if the sequence converges to a finite number or diverges and if the series converges to a finite number or diverges. If the series converges, that means that a sum of infinitely many numbers is equal to a finite number! If the sequence $\left\{a_{n}\right\}$ diverges or converges to anything other than 0 , then the series $\sum a_{n}$ diverges. If the sequence $\left\{a_{n}\right\}$ converges to 0 , then the series $\sum a_{n}$ may converge or may diverge.

For any given series $\sum a_{n}$ there are two associated sequences: the sequence of terms $\left\{a_{n}\right\}$ and the sequence of partial sums $\left\{s_{n}\right\}$, where $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$. If $\sum a_{n}=L$, then $\lim _{n \rightarrow \infty} a_{n}=0$ (as stated above) and $\lim _{n \rightarrow \infty} s_{n}=L$.

1 When can we calculate the sum of a series?

Unfortunately, we are unable to compute the exact sum of a series in most cases. However, there are a few examples that can be computed.

$$
\begin{array}{cl}
\text { Geometric Series } & \text { For }|r|<1, \text { the series converges to } \frac{a}{1-r} . \\
\sum_{n=1}^{\infty} a r^{n-1} & \text { For }|r| \geq 1, \text { the series diverges. }
\end{array}
$$

$\begin{array}{cl}\text { Telescoping Series } & \text { Also known as "canceling pairs", subsequent pairs } \\ \sum_{n=1}^{\infty}\left(b_{n}-b_{n+c}\right) & \text { of the series terms may cancel with each other. }\end{array}$

2 Tests for determining if a series converges or diverges

In most cases, we will not be able to compute the exact sum of a series, but there are several tests which allow us to at least determine if a series is convergent or divergent. In some cases we can give approximations for the sum of a series as well.

Test for Divergence

p-Series Test

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

For $p>1$, the series converges.
For $p \leq 1$, the series diverges.

Integral Test

Comparison
 Test

Applies when $a_{n}=f(n)$, and $f(x)$ is a continuous, positive, decreasing function on $[1, \infty)$.
The series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the integral $\int_{1}^{\infty} f(x) d x$ converges.

Applies as long as a_{n} and b_{n} are always positive.
(i) If $a_{n} \leq b_{n}$ and $\sum b_{n}$ converges, then so does $\sum a_{n}$.
(ii) If $a_{n} \geq b_{n}$ and $\sum b_{n}$ diverges, then so does $\sum a_{n}$.

Applies as long as a_{n} and b_{n} are always positive, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is a positive, finite number.
Then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.

Applies when $a_{n} \geq 0$. The series converges if
(i) $a_{n} \geq a_{n+1}$, and
(ii) $\lim _{n \rightarrow \infty} a_{n}=0$.

If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges.

Study this limit: $\quad \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$
(i) If the limit exists and is less than 1 , the series $\sum a_{n}$ is absolutely convergent (and convergent).
(ii) If the limit exists and is greater than 1 (or if the limit diverges to infinity,) the series $\sum a_{n}$ diverges.
(iii) If the limit equals 1 , the Ratio Test is useless.

Study this limit: $\quad \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$
(i) If the limit exists and is less than 1 , the series $\sum a_{n}$ is absolutely convergent (and convergent).
(ii) If the limit exists and is greater than 1 (or if the limit diverges to infinity,) the series $\sum a_{n}$ diverges.
(iii) If the limit equals 1 , the Root Test is useless.

3 How do we know which test to use?

1. If you can see easily that $\lim _{n \rightarrow \infty} a_{n} \neq 0$, apply the Test for Divergence.
2. Is $\sum a_{n}$ a p-series or geometric series? If yes, apply those tests.
3. If the series $\sum a_{n}$ appears to be a telescoping sum, then find a closed formula for the partial sum s_{n} and use $\sum a_{n}=\lim _{n \rightarrow \infty} s_{n}$.
4. Is $\sum a_{n}$ similar to a p-series or geometric series? If yes, try one of the Comparison Tests. You will compare $\sum a_{n}$ with the series $\sum b_{n}$ that $\sum a_{n}$ is similar to.
(a) If the inequality works out the way you need it to, you will you the Comparison Test.
(b) If the inequality does not work out the way you need it to, try the Limit Comparison Test.
5. If $a_{n}=f(n)$ and $\int_{1}^{\infty} f(x) d x$ is easily evaluated, use the Integral Test.
6. If the series is of the form $\sum(-1)^{n+1} a_{n}$ or $\sum(-1)^{n} a_{n}$, try the Alternating Series Test.
7. When earlier tests can not be used simply because some of the terms may be negative, try using the Absolute Convergence Test.
8. Series involving factorials (e.g. n !) or $n^{\text {th }}$ powers of a constant (e.g. 4^{n}) can often be studied with the Ratio Test (if an easier test does not work.)
9. When a_{n} looks like $(\cdots)^{n}$, and the term inside the parentheses also involves n, try the Root Test.
