Nul A

 $\operatorname{Col} A$

- 1. Nul A is a subspace of \mathbb{R}^n .
- 2. Nul A is implicitly defined; that is, you are given only a condition $(A\mathbf{x} = \mathbf{0})$ that vectors in Nul A must satisfy.
- 3. It takes time to find vectors in Nul A. Row operations on [A 0] are required.
- 4. There is no obvious relation between Nul A and the entries in A.
- 5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = \mathbf{0}$.
- Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av.
- 7. Nul $A = \{0\}$ if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

- 1. Col A is a subspace of \mathbb{R}^m .
- 2. Col A is explicitly defined; that is, you are told how to build vectors in Col A.
- 3. It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
- 4. There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
- 5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
- 6. Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
- 7. Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
- 8. Col $A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .