Theorem 1: The Onto and One-to-One Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T : \mathbb{R}^p \to \mathbb{R}^m$. Then the following statements are equivalent:

1. T is both one-to-one and onto,

2. $T(\vec{x}) = \vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^p$ for every $\vec{b} \in \mathbb{R}^m$,

3. $A\vec{x} = \vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^p$ for every $\vec{b} \in \mathbb{R}^m$, and

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

4. REF(A) has a pivot in every row and every column.

Theorem 2: The Invertible Matrix Theorem

Let A be the $n \times n$ standard matrix for the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$. Then the following statements are equivalent:

- 1. *A* is invertible, Caution: *A* **must** be a **square** matrix.
- 2. $\operatorname{RREF}(A) = I_n$,
- 3. REF(A) has a pivot in every row and every column,
- 4. REF(A) has *n* pivots,
- 5. $A\vec{x} = \vec{0}$ has exactly one solution $\vec{x} = \vec{0}$,
- 6. $A\vec{x} = \vec{b}$ has exactly one solution $\vec{x} = A^{-1}\vec{b}$ for every $\vec{b} \in \mathbb{R}^n$,
- 7. The columns (and rows) of A are linearly independent,
- 8. The columns (and rows) of A span \mathbb{R}^n ,
- 9. T is one-to-one,
- 10. T is onto, and
- 11. $T(\vec{x}) = \vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^p$ for every $\vec{b} \in \mathbb{R}^m$.