## Theorem 1: The Onto and One-to-One Theorem

Let $A$ be the $m \times p$ standard matrix for the linear transformation $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$. Then the following statements are equivalent:

1. $T$ is both one-to-one and onto,
2. $T(\vec{x})=\vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$,
3. $A \vec{x}=\vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$, and
4. $\operatorname{REF}(A)$ has a pivot in every row and every column.

## Theorem 2: The Invertible Matrix Theorem

Let $A$ be the $n \times n$ standard matrix for the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then the following statements are equivalent:

1. $A$ is invertible, Caution: $A$ must be a square matrix.
2. $\operatorname{RREF}(A)=I_{n}$,
3. $\operatorname{REF}(A)$ has a pivot in every row and every column,
4. $\operatorname{REF}(A)$ has $n$ pivots,
5. $A \vec{x}=\overrightarrow{0}$ has exactly one solution $\vec{x}=\overrightarrow{0}$,
6. $A \vec{x}=\vec{b}$ has exactly one solution $\vec{x}=A^{-1} \vec{b}$ for every $\vec{b} \in \mathbb{R}^{n}$,
7. The columns (and rows) of $A$ are linearly independent,
8. The columns (and rows) of $A$ span $\mathbb{R}^{n}$,
9. $T$ is one-to-one,
10. $T$ is onto, and
11. $T(\vec{x})=\vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$.
