Theorem F: The Onto Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T : \mathbb{R}^p \to \mathbb{R}^m$.

- 1. T is <u>not onto</u> if m > p (i.e. if A has more rows than columns).
- 2. T is onto (and $m \le p$) if and only if: (a) $A\vec{x} = \vec{b}$ always has at least one solution for any $\vec{b} \in \mathbb{R}^m$,
 - (b) Any $\vec{b} \in \mathbb{R}^m$ is a linear combination of columns of A,
 - (c) Columns of A span (or generate) all of \mathbb{R}^m ,
 - (d) REF(A) has a pivot in every row,
 - (e) REF(A) has m pivot columns and p m free columns,
 - (f) Of the p columns of A, m of them are linearly independent, and

(g) All rows of A are linearly independent.

Theorem G: The One-to-One Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T : \mathbb{R}^p \to \mathbb{R}^m$.

- 1. T is not one-to-one if p > m (i.e. if A has more columns than rows).
- 2. T is <u>one-to-one</u> (and $p \le m$) if and only if:

Theorem 1: The Onto and One-to-One Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T : \mathbb{R}^p \to \mathbb{R}^m$. Then the following statements are equivalent: 1. $T(\vec{x}) = \vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^p$ for every $\vec{b} \in \mathbb{R}^m$,

2. $AA\vec{x} = \vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3. T is both one-to-one and onto, and

4. REF(A) has a pivot in every row and every column.