Theorem F: The Onto Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$.

1. T is not onto if $m>p$ (i.e. if A has more rows than columns).
2. T is onto (and $m \leq p$) if and only if:
(a) $A \vec{x}=\vec{b}$ always has at least one solution for any $\vec{b} \in \mathbb{R}^{m}$,
(b) Any $\vec{b} \in \mathbb{R}^{m}$ is a linear combination of columns of A,
(c) Columns of A span (or generate) all of \mathbb{R}^{m},
(d) $\operatorname{REF}(A)$ has a pivot in every row,
(e) $\operatorname{REF}(A)$ has m pivot columns and $p-m$ free columns,
(f) Of the p columns of A, m of them are linearly independent, and
(g) All rows of A are linearly independent.

Theorem G: The One-to-One Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$.

1. T is not one-to-one if $p>m$ (i.e. if A has more columns than rows).
2. T is one-to-one (and $p \leq m$) if and only if:
(a) $\vec{x} \neq \vec{y} \Rightarrow T(\vec{x}) \neq T(\vec{y})$
(b) $T(\vec{x})=T(\vec{y}) \Rightarrow \vec{x}=\vec{y}$
(c) $A \vec{x}=\vec{b}$ has at most one solution for any $\vec{b} \in \mathbb{R}^{m}$,
(d) $T(\vec{x})=\overrightarrow{0}$ has only one solution $\vec{x}=\overrightarrow{0}$,
(e) $A \vec{x}=\overrightarrow{0}$ has only one solution $\vec{x}=\overrightarrow{0}$,
(f) Rows of A span (or generate) all of \mathbb{R}^{p},
(g) $\operatorname{REF}(A)$ has a pivot in every column,
(h) Of the m rows of A, p of them are linearly independent, and
(i) All columns of A are linearly independent.

Theorem 1: The Onto and One-to-One Theorem

Let A be the $m \times p$ standard matrix for the linear transformation $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$. Then the following statements are equivalent:

1. $T(\vec{x})=\vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$,
2. $\mathrm{A} A \vec{x}=\vec{b}$ has exactly one solution $\vec{x} \in \mathbb{R}^{p}$ for every $\vec{b} \in \mathbb{R}^{m}$,
3. T is both one-to-one and onto, and
4. $\operatorname{REF}(A)$ has a pivot in every row and every column.
