1 Equivalence Relation

Definition 1. An equivalence relation is a relationship on a set, generally denoted by "~", that is reflexive, symmetric, and transitive for everything in the set.

- 1. (Reflexivity) $a \sim a$,
- 2. (Symmetry) if $a \sim b$ then $b \sim a$,
- 3. (Transitivity) if $a \sim b$ and $b \sim c$ then $a \sim c$.

Equivalence relations are often used to group together objects that are similar, or "equivalent", in some sense.

2 Examples

Example: The relation "is equal to", denoted "=", is an equivalence relation on the set of real numbers since for any $x, y, z \in \mathbb{R}$:

- 1. (Reflexivity) x = x,
- 2. (Symmetry) if x = y then y = x,
- 3. (Transitivity) if x = y and y = z then x = z.

All of these are true.

Example: Let " \simeq " denote the relation on the set of symmetric matrices (recall symmetric means $A = A^t$) defined as follows. $A \simeq B$ if $A = B^t$. This is an equivalence relation since for any symmetric matrices A, B, C:

- 1. (Reflexivity) $A \simeq A$ since $A = A^t$.
- 2. (Symmetry) If $A \simeq B$ then $A = B^t$, but then $B = (B^t)^t = (A)^t = A^t$. And this implies $B \simeq A$.
- 3. (Transitivity) If $A \simeq B$ and $B \simeq C$ then $A = B^t$ and $B = C^t$. Of course, since these are symmetric matrices, we know $B = B^t$. Thus $A = B^t = B = C^t$, and therefore $A \simeq C$.

(Of course this is actually a "stupid" equivalence relation since it is the same as the "is equal to" equivalence relation on the set of symmetric matrices. Do you see why?)

Non-example: The relation "is less than or equal to", denoted " \leq ", is NOT an equivalence relation on the set of real numbers. For any $x, y, z \in \mathbb{R}$, " \leq " is reflexive and transitive but NOT necessarily symmetric.

- 1. (Reflexivity) Of course $x \leq x$ is true since x = x.
- 2. (Symmetry) If $x \leq y$ then it is not necessarily true that $y \leq x$. For example, $5 \leq 7$, but $7 \nleq 5$.
- 3. (Transitivity) If $x \le y$ and $y \le z$ then $x \le z$ since $x \le y \le z$.