1 Equivalence Relation

Definition 1. An equivalence relation is a relationship on a set, generally denoted by " \sim ", that is reflexive, symmetric, and transitive for everything in the set.

1. (Reflexivity) $a \sim a$,
2. (Symmetry) if $a \sim b$ then $b \sim a$,
3. (Transitivity) if $a \sim b$ and $b \sim c$ then $a \sim c$.

Equivalence relations are often used to group together objects that are similar, or "equivalent", in some sense.

2 Examples

Example: The relation "is equal to", denoted " $=$ ", is an equivalence relation on the set of real numbers since for any $x, y, z \in \mathbb{R}$:

1. (Reflexivity) $x=x$,
2. (Symmetry) if $x=y$ then $y=x$,
3. (Transitivity) if $x=y$ and $y=z$ then $x=z$.

All of these are true.
Example: Let " \simeq " denote the relation on the set of symmetric matrices (recall symmetric means $A=A^{t}$) defined as follows. $A \simeq B$ if $A=B^{t}$. This is an equivalence relation since for any symmetric matrices A, B, C :

1. (Reflexivity) $A \simeq A$ since $A=A^{t}$.
2. (Symmetry) If $A \simeq B$ then $A=B^{t}$, but then $B=\left(B^{t}\right)^{t}=(A)^{t}=A^{t}$. And this implies $B \simeq A$.
3. (Transitivity) If $A \simeq B$ and $B \simeq C$ then $A=B^{t}$ and $B=C^{t}$. Of course, since these are symmetric matrices, we know $B=B^{t}$. Thus $A=B^{t}=B=C^{t}$, and therefore $A \simeq C$.
(Of course this is actually a "stupid" equivalence relation since it is the same as the "is equal to" equivalence relation on the set of symmetric matrices. Do you see why?)

Non-example: The relation "is less than or equal to", denoted " \leq ", is NOT an equivalence relation on the set of real numbers. For any $x, y, z \in \mathbb{R}$, " \leq " is reflexive and transitive but NOT necessarily symmetric.

1. (Reflexivity) Of course $x \leq x$ is true since $x=x$.
2. (Symmetry) If $x \leq y$ then it is not necessarily true that $y \leq x$. For example, $5 \leq 7$, but $7 \not \leq 5$.
3. (Transitivity) If $x \leq y$ and $y \leq z$ then $x \leq z$ since $x \leq y \leq z$.
