Finite Mathematics Problem Set A Solutions

1.1 13. Let sets A, B, C, and D be defined by

$$
\begin{aligned}
A & =\{x: x \text { owns a GM car }\} \\
B & =\{x: x \text { works for GM }\} \\
C & =\{x: x \text { is the president of GM }\} \\
D & =\{x: x \text { owns stock in GM }\}
\end{aligned}
$$

Describe in words each of the following sets.
(a) $A \cap B$ is the set of all people who own GM cars and work for GM.
(b) $B \cap A^{\prime}$ is the set of all people who work for GM but do not own GM cars.
(c) $(A \cup B) \cap D$ is the set of all people who own stock in GM and either own GM cars or work for GM.
(d) $C \cap A$ is the set of all people who are the president of GM and own a GM car.
1.1 22. Counting the empty set and the set itself, how many subsets does each of the following sets contain?
(a) $\{x\}$ subsets are only the empty set, \emptyset, and the set itself, $\{x\}$, so there are two subsets.
(b) $\{x, y\}$ subsets are $\emptyset,\{x\},\{y\},\{x, y\}$, so there are four subsets.
(c) $\{x, y, z\}$ subsets are $\emptyset,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}$, so there are eight subsets.
(d) $\{w, x, y, z\}$ subsets are $\emptyset,\{w\},\{x\},\{y\},\{z\},\{w, x\},\{w, y\},\{w, z\},\{x, y\},\{x, z\},\{y, z\}$, $\{w, x, y\},\{w, x, z\},\{w, y, z\},\{x, y, z\},\{w, x, y, z\}$, so there are sixteen subsets.

Is there a pattern? If so, what is the pattern? How many subsets does a set with seven elements contain?

Yes, each time we add an element, the number of subsets doubles. There are 16 subsets for 4 elements. Therefore there are 32 subsets for 5 elements, and 64 subsets for 6 elements. Finally, as requested, there are 128 subsets of 7 elements.
1.1 23. Let $U=\{a, b, c, 2,4,6\}$ be a universal set with subsets X, Y, and Z. Suppose that $X \cup Y=\{b, c, 2,4,6\}, X \cap Y=\{b, 2,4\}, Y^{\prime} \cap Z^{\prime}=\{a, c\}$, and $Z^{\prime}=\{a, c, 2\}$. Find sets X, Y, and Z which satisfy these conditions.

For your part, you need to find sets that satisfy these conditions and check that they do, but you might reasonably want to know how if you didn't. So, I will try to say something about that. Z is the easiest one, because we are told the elements in the complement, so Z is the other elements, i.e. $\{b, 4,6\}$.

Finding X and Y takes more work. From the intersection we know that $X=\{b, 2,4, \ldots\}$, $Y=\{b, 2,4, \ldots\}$. The only question then is what is in the dots. The real question is about c and 6 , as they are in the union, so the question is are they in X or Y (they can't be in both). Because c is in $Y^{\prime} \cap Z^{\prime}$ it is not in Y, since it is in the union it must be in one of them, so c is in X. So far $X=\{b, c, 2,4, \ldots\}, Y=\{b, 2,4, \ldots\}$.

Now what about 6 ? This is the most interesting part. 6 can either be in X or Y, but not both. Therefore there are two correct answers to this question (you only needed one, and it didn't say there was only one):

First answer: $X=\{b, c, 2,4,6\}, Y=\{b, 2,4\}, Z=\{b, 4,6\}$.
Second answer: $X=\{b, c, 2,4\}, Y=\{b, 2,4,6\}, Z=\{b, 4,6\}$.
In both cases, please check that each of the four conditions are met.
1.2 15. Let X, A, B, and C be defined by

$$
\begin{aligned}
& X=\{a, b, c, 1,2,3\} \\
& A=\{a, b, c\} \quad B=\{a, 2,3\} \quad C=\{1,2,3\}
\end{aligned}
$$

Which of the following pairs of subsets form a partition of X ?
(a) A and B is not a partition because $A \cap B=\{a\} \neq \emptyset$ and because $A \cup B=$ $\{a, b, c, 2,3\} \neq X$.
(b) A and C is a partition of X because $A \cap C=\emptyset$ and $A \cup C=X$.
(c) B and C is not a partition because $B \cap C=\{2,3\} \neq \emptyset$ and because $A \cup B=$ $\{a, 1,2,3\} \neq X$.
(d) $(A \cup B)$ and $\left(C \cap B^{\prime}\right)$ require computing first (or at least it's easiest that way). $A \cup B=\{a, b, c, 2,3\} \neq X$ (as done in (a)), and $\left(C \cap B^{\prime}\right)=\{1\}$. Notice that these two sets are a partition of X because they are disjoint and their union is X.

Please provide a Venn diagram of X, A, B, and C. Either draw a generic three set Venn diagram in which you identify where each of the 6 elements of X are located, or a "chain" diagram with A and C at opposite ends.
1.2 23. Let A, B, and C be distinct subsets of a universal subset U with $A \subset B \subset C$. Also suppose $n(A)=3$ and $n(C)=7$. In how many different ways can you select B such that $n(B)=4$?

I think the best way to do this is to be explicit. Let's try. Suppose $C=\{p, q, r, s, t, u, v\}$. Suppose $A=\{p, q, r\}$. To build B to have size 4 and contain A we need to add one of $\{s, t, u, v\}$. There are four elements to pick from, so there are four ways.

Repeat this exercise with $n(B)=5$. Use the same C and A as above. To build B to have size 5 and contain A we need to add two of $\{s, t, u, v\}$. It is not obvious how many ways there are to do this (but we will discuss this soon with "combinations"), so, let's just make a list of the two elements we could add: $\{s, t\},\{s, u\},\{s, v\},\{t, u\},\{t, v\},\{u, v\}$, so there are six ways.

