Finite Mathematics Problem Set E Solutions

3.4 25-26 Pine tree seeds of types W, S, and R are randomly scattered in a field. The seed are 60 percent type W, 30 precent type S, and 10 percent type R. It is known that 30 percent of type W seeds will germinate, 40 percent of type S seeds will germinate, and 70 percent of type R seeds will germinate. If a randomly selected seed has germinated, what is the probability that it is type W? Suppose that a randomly selected seed has not germinated. Find the probability that it is either type W or type S .

Make a tree diagram. By now I hope that is direct and obvious to do. If we denote germinated as G and not germinated as N , then the first question is asking for $\operatorname{Pr}[W \mid G]$. The second question is asking for $\operatorname{Pr}[W \cup S \mid N]$.

Starting on the first question: $\operatorname{Pr}[W \mid G]=\frac{\operatorname{Pr}[W \cap G]}{\operatorname{Pr}[G]}$. The numerator, $\operatorname{Pr}[W \cap G]$ is the probability that the seed is type W and germinates. This is 60% of 30%, i.e. 18%. To find the denominator, $\operatorname{Pr}[G]$, we need the probabilities of each of the different ways to germinate, WG, SG, RG. From the tree we find them to be 18% (we just did this one), 12%, and 7%. We add them to find $\operatorname{Pr}[G]=18 \%+12 \%+7 \%=37 \%$. So, $\operatorname{Pr}[W \mid G]=\frac{\operatorname{Pr}[W \cap G]}{\operatorname{Pr}[G]}=\frac{18 \%}{37 \%}=\frac{18}{37}$.

For the second question: $\operatorname{Pr}[W \cup S \mid N]=\frac{\operatorname{Pr}[(W \cup S) \cap N]}{\operatorname{Pr}[N]}$. The numerator gives us outcomes WN and SN. From the tree diagram we find their probabilities are 42% and 18% respectively, so $\operatorname{Pr}[(W \cup S) \cap N]=60 \%$. For the denominator we also need to include RN, which has probability only 3%. So, $\operatorname{Pr}[N]=63 \%$. Thus $\operatorname{Pr}[W \cup S \mid N]=\frac{\operatorname{Pr}[(W \cup S) \cap N]}{\operatorname{Pr}[N]}=\frac{60 \%}{63 \%}=\frac{60}{63}$.
3.5 29 A professor who intends to bring their briefcase to the office each morning forgets it one-quarter of the time. Assume that forgetting the briefcase any day always has the same probability, and find the probability that they forget it at least twice a week (out of 5 days).

At least twice a week is $2,3,4$, or 5 times. It is also not 0 or 1 time. We can do this both ways. 2,34 or 5 is: $C(5,2)\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{3}+C(5,3)\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}+C(5,4)\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{1}+C(5,5)\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{0}$. Not 0 or 1 time is: $1-C(5,0)\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{5}-C(5,1)\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{4}$. Both ways we get $\frac{47}{128}=0.3671875$.
"Newer question" Recent data has estimated the worldwide percentage of Spam emails as 28.5%. A new software company states that their product can detect 98% of actual spam emails as spam. Sometimes (2%) of the time), the filter incorrectly labels non-spam emails as spam (false positive). With these percentages in mind, what is the true probability that an email, if labeled spam, is actually a non-spam email? To start with the worldwide percentage of non-spam is 71.5%. We're looking for Pr (non-spam | labeled spam). So we want Pr (nonspam \cap labeled spam $)=0.715 * 0.02=0.0143$. $\operatorname{Pr}($ labeled spam $)=\operatorname{Pr}($ non-spam \cap labeled spam $)+\operatorname{Pr}($ spam \cap labeled spam $)=0.0143+0.285 * 0.98=0.2936$. So $\operatorname{Pr}($ non-spam \mid labeled spam $)=\operatorname{Pr}($ non-spam \cap labeled spam $) / \operatorname{Pr}($ labeled spam $)=0.0143 / 0.2936=0.048706=$ 4.9%, so that's just under 5% of your email that you don't see that isn't spam.

First policing question: $\operatorname{Pr}($ searched \mid motorist Black) $=$ searched and black / black stopped $=\frac{67985}{1165871} \simeq 0.058313 \simeq 5.8 \% . \operatorname{Pr}($ searched \mid motorist White $)=$ searched and white $/$ white stopped $=\frac{47826}{1670873} \simeq 0.028623 \simeq 2.9 \%$. Almost exactly twice as much. That seems enough to be concerning.

Second policing question - this is your chance to be thoughtful without doing any computation. Sincere thoughtful answers will earn full credit.

