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0012 Demonstrate an understanding of the fundamental concepts of calculus.

l. Analyzing the concept of limit numerically, algelwally, graphically and in
writing

A. Defining Limit

“The concept of limit is critical in the developmest calculus. It revolves
around the question: As x approach a certain nurdogrossibly +/-
infinity) what behave does f(x) exhibit? “For a lirto exist, the limit from
the left and the limit from the right must be edu@lrost). The symbolism
for limit is:

lim /() = L
This is read as “the limit as x approaches c ofigX..” This statement
can still be true if f(c) does not equal L. Thedtion does not have to be
defined at c.”

B. Analyzing limit numerically
“To construct the behavior of f(x) numerically, wenstruct a table of
values.” We let c be the value that x approacheésf@y be the value
mapped to by c.

Numerical Investigation

c-0.1 c-0.01 c-0.00I—™» c¢T ¢+0.001 c+0.01L c+0.1

X
f(x) f(c)-0.1 | f(c)-0.01| f(c)-0.004—> f(c) «+(c)+0.001 | f(c)+0.01 | f(c)+0.1

C. Analyzing limit algebraically

“Graphs are very useful tools for investigatingitsnespecially if
something unusual happens at the point in ques{Beiinett). Limits can
be analyzed algebraically in the three followingyaia

1. Direct Substitution

To analyze the limit of a function f(x) algebraigahs x
approaches a value c, we simply plug the valueioffor x. This
method is called direct substitution. This methad only be used
if a function is continuous at ¢ and it works foniks of all
polynomial functions. It also works for radical fttion (Randall).

2. Factor and Cancel
Another analytical method for finding the limit ffk) is
called “factor and cancel”. This is used when disbstitution
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into a rational function leads to an undefined espion (i.e.with
zero in the denominator).

3. Rationalize the numerator

When there is a radical in the numerator it is wisef
rationalize the numerator. This can be done byipiyiihg the
function by 1 (numerator/numerator).

D. Analyzing limit graphically

We can graphically analyze a limit by graphing filmection. Using a
graphing calculator allows us to zoom in closer eloder to c to assess
the value of f(c).

Il. Interpreting the derivative as the limit of thefeience quotient
A. Defining the Difference Quotient

The difference quotierdt x=c is the slope of a secant line that joins a
point on the graph of f(c) with some nearby powat) it f(c+h). We call the
limit of this difference quotient the first derivweg of f(x) evaluated at x=c.
This limit is actually the slope of the tangentliat x=c.

When the value of the derivative is positive, thapip of the tangent line
has a positive slope and we say that the functiamcreasing. Conversely,
when the value of the derivative is negative, ttegh of the tangent line has a
negative slope and we say that the function isedesing. At any point where
the value of the derivative is 0, the line tangerthe graph is horizontal and
the function is neither increasing nor decreadiAgstincc)

B. Formulas for the Difference Quotient

1. The’Difference Quotient, or the average rate of chasfgéx) over
the interval [a, b] is:
f f(b)-f(a)
X = a—
2. An alternative formula for the difference quotieaplaces b with a+h:

Average rate of change = f(a+hJ(a)
h

[l Interpreting the definite integral as the limitaoRiemann sum

A. Defining a Riemann sum

" zweigmedia
** Ostebee and Zorn
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A Riemann sum is a system for approximating theeslof integrals.
“Let the interval [a,b] be partitioned into n sut@rvals by any n+1 points

1=1Tg<T] <ITy<...<T,=25b
and let the width of each subinterval be denoted ¥y xi-xi-1 denote the width
of the ith subinterval. Within each subintervalixxi], choose any sampling point
ci. The sum

Sn=f(c1) axi+f(c2) axa+...+f(Cn) aXn
is a Riemann sum with n subdivision for f on [d1].

B. Limit of Riemann sum as an interpretation of deénntegral

Let a function f(x) be defined on the interval [a,bhe integral of f over
[a,b] is the number, if one exists, to which aleRiann sumsrSapproach
as n approaches infinity and as the widths ofidldsvisions appoach
zero. In symbols:

f f(x)dx = !]I[I;lo Zn:f(xi)Ax

a i=1
Applying the fundamental theorem of calculus

A. Definition

The first part of fundamental theorem of calculizes: Let f be
continuous real-valued function defined on a claséerval [a,b], and
F be the function defined for x in [a,b} by

F(z) = /Tf(t)dt

then, for every x in [a,b]:

F(z) = f(x)

The second part of the fundamental theorem of tadcstates that, if f is
continuous on the closed interval [a,b] and F ésahtiderivative
(indefinite integral) of f on [a,b] for all x in [B]:

f(z) = F(z)

then
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B. Application

1. The Fundamental Theorem of Calculus (FTC) is agphbenever an
integral is evaluated. We apply this theorem when&e wish to
evaluate the derivative of a function between avy points.
Physically, this theorem allows us to find the anader a function on
a graph (or the area between the function and-pasy given the
function lies below the x-axis).

2. The FTC is also applied when finding the area betwevo functions.

3. Lastly, the FTC is used when finding the volumeablid revolution.

Applying the concepts of derivatives to interpreddjents, tangents, and slopes.

A. Gradients
If f is a function of two variables, then the dient of f is:
VI(xy) = ay)i +(xy)]
The concept of derivatives often uses the gradeefind the directional
derivative of f in the direction of the unit vectotby dotting the gradient
of f with u.
?f(x,y) =V f (x,y). u
B. Tangents
“The slope of a curve at a point P can be thou§hsdhe slope of a
certain straight line through P, called the tandi@etat P. Roughly speaking, the
tangent line ‘points in the direction of the cura¢’P(Ostebee and Zorn, page
40).”
Let F'(x) be the derivative of F(x). Then:
1. F(x)>0 implies the tangent line at F(x) is increasit x
2. F(x)=0 implies the tangent line at F(x) is constant
3. F'(x)<0 implies the tangent line at F(x) is deciiegsat x.
C. Slopes
Let F'(x) be the derivative of F(x). Then:
4. F(x)>0 implies F(x) has a positive slope at x
5. F(x)=0 implies that x is a critical point for F(xhd the
slope is O at x
6. F'(x)<0 implies that F(x) has a negative slope .at x

Applying the concept of limit to analyze and intefpthe properties of functions
(e.g. continuity, asymptotes)

. Asymptotes

An asymptote is a straight line or curve to whaciother curve approaches
closer and closer when moving along it. (A curveymamay not actually touch
or cross its asymptote. In fact, the curve mayrgget the asymptote an infinite
number of times.) Suppo$és a function. Then the ling=ais ahorizontal
asymptote for f j _ : _

m f(z)=a or lim f(z)=a.

D0
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This means that f(x) will get closer and closea tdepending on how big x is.
Note thatif T}y f(z) —a and lim f(z) =5
E—r—00

E— G

then the graph dfhas two horizontal asymptotes= a andy = b (Example: the
arctangent function).

The linex = a is avertical asymptote of a functionf if either of the
following conditions is true:

lim f(x) = %co
“lim f(z) = o0

r—at
B. Continuity
A function f is continuous at a numbeif the following three conditions
are satisfied:
0] f is defined on an open interval containing
(i) the limit of f(X) as x approachesexists
@ii)  the limit of f(x) as x approachesequals &)

VII.  Applying the concept of rate of change to intergtatements from science,
technology, economics, and other disciplines

A. Science

In Physics, the derivative is often interpretedhesinstantaneous rate of
change of a function or the velocity. It is alsediso assess the acceleration of an
object. By using derivatives, one can also evalttaegeaction rate of a chemical
reaction.

B. Technology

Rates of change of used in technology to find alisahaximums,
minimums and for optimization. Derivatives can p&yimportant role in
investment strategies by enabling the most flexdole cost effective strategies.
They are used to determine the most efficient wiaysansport materials and
design factories.

C. Economics
Rates of change are used in economics to evalxak@aege rates, outputs,
money, and pricing.



Rose 6

Problems

1. Investigate the Iim_wj (2x?— 5)/(3¥+x+2) algebraically.
2. Let f(x)=2x-5. Write the difference quotient andhgilify it.
_ 3 .
3. (Riemann Sum) Given the functiqrﬂ-x:' =*-the closed bounded interval

o

1 3 35
[0-1]. and the partitior* 2 4 0 ' compute a Riemann sum.

Use the Fundamental Theorem of Calculus to evaluate

f2 e*— 5 cos (x) dx
1|

If f(x,y)=x>-4xy

(a) find the gradient of f at the point P(3,-2)

(b) use the gradient to find the directional derivaté at P(3,-2) in the
direction from P(3,-2) to Q(4,1)

(c) discuss the significance of the answer to parif (g),y) is the
temperature at (x,y)

Letf(x) = »3 — g fox= 2. Show how to definé(2) in order to maké

r—2

a continuous function at 2.

. A ball is dropped vertically from a height of 10@tars. Assume that the

acceleration due to gravity has a magnitude of 4. hat is the
velocity at t=27?

. Find any horizontal asymptotes fdK) =
I

r—3
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Solutions

1. Since we are interested only in negative vatifes we may assume that®. First we
divide numerator and denominator of the given esgiom by % and then employ
the appropriate limit theorems. Thus

limyc. [ (2x% = 5)/(3%+x+2)
= lim [ (2 (81 %) 13+ (U X) + (2/ )

= limy.. [ (2= (/X)) ) limn [ 3+ 1/ %) + 2/ X))
=(2-0)/(3+0+0)
=2/3
2. (f(x+h)-f(x))/h = (2(x+h)-5-(2x-5)/h
= (2x+2h-5-2x+5)/h
=2h/2
=2

3. Organizing into a table we compute the values,

i | subinterval | x;* ™) Ax;
1 1 F133 1 1 _1
L gl (5] 8r=5 | 3-0=3
1 3 2 F243_ 8 301 _ 1
IR
27 4 3 3 27 4 2 4
303 g g 3 64 5 3 1
s sleEr-2l:-2-3
47§ 10 10 125 | & 4 12
5 72 5
B [S|Er-2]-i-1
& 10 10 1000 6

So the Riemann sum for the™ is

4
Z Slx™) Ax;
k=1

= fla®) Axy + fx2™) Axa + flx3™) Axea + floes™) Axg

- (5)(3)+ (3G (3)55)+ (5) (3)

2773
10800

4. J'Ze -5cos(X)dx J'Zexdx+ j 5xcos(X)dx

—Zé[e“ €’] — 5[sin(7)-sin(0)]
=2&-2
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5. (@) Of (x,¥) = 2x—4y)i — 4x]
Hence, P(3,-2),
Of 3-2) = (6+8)i —12] =14i —12]
(b) If we let a4 B then
a=<4-3,1-(-2)>=<1,3>=i+3]
A unit vector having the direction adf k- is

I R
U—|ala m(l+3])

We then have [¥(3,-2)=0f (3-2)+ u

- (14i-12j) %(i +3))
=% (14-36) = —% ~6.96

(c)If f(x,y) is the temperature (in degreespay), then the fact that [i{-3,2)~-6.96
indicates that if a point moves in the directionl]b]‘;2 - ,the temperature at P is

decreasing at approximately 6.96 degrees per baitge in distance.

Let P(x,y) be a fixed point, and consider the dite@l derivative f(x,y) as
u=<u,W> varies. For certain unit vectors u the directlaeivative may be
positive (that is, f(x,y) may increase), or negatff(x,y) may decrease), or it may
be 0. In many applications it is important to fiié direction in which f(x,y)
increases most rapidly and also to find the maximat@ of change.

6. We have
r — 8

r—2

is equal to...
(z —2)(z% + 22 +4)
(z—2)
which is equal to...
0 + 2 + 4)

Thusf (X) — (22 + 2.2 + 4) = 12 ag— 2. So definind (2) = 12 make$ continuous at 2,
(and hence for all values gy.

7. Hereaccelerations in the negative direction, since it is towand ground, which is
designated with a coordinate of zero. &e,- 10 meters per second per second \éNd
=\p + a(t). But the initial velocity is zero, set) = - 1. v(2) = - 20 meters per second.

8. To find horizontal asymptotes, we take limitsrdinity:
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lim lim
L — 02 I — O
I —_—
r—3 Eiﬁ

lim
1
-3
=1
lim - lim
r—3 Eié
lim
1
-3
=1

So, the linegy = 1 is a horizontal asymptote of this functiorbath positive and negative
infinity.
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