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223 Assignment 6 Solutions

§11.5 #1 These two intersect at the unit circle centred at the origin. Note z = r2 and z = 2− r2. What

we really have here is a triple integral in cylindrical coordinates:
∫ ∫ ∫

R
1rdzdrdθ =

∫ 2π

0

∫ 1

0

∫ 2−r2

r2
rdzdrdθ

but I expect you started with∫ 2π

0

∫ 1

0

(2− 2r2)rdrdθ =

∫ 2π

0

∫ 1

0

2r − 2r3drdθ =

∫ 2π

0

[
r2 − 1

2
r4
∣∣∣∣1
0

dθ =

∫ 2π

0

1

2
dθ = π

§11.5 #3 For all of these, please ask if you wish to see the regions. I will attempt to describe. You get
to choose two; I must do all four. Alas.

a. The region is a quarter of a circle of radius 3 in the third quadrant. So, the integral in rectangular

coordinates is
∫ 0

−3(
∫ 0

−
√
9−x2 x

2 + y2dy)dx (notice that one of the rs in r3 goes to be part of rdrdθ). I

hope you’re not surprised that I would rather do the polar integral:
∫ 3π/2

π

∫ 3

0
r3drdθ =

∫ 3π/2

π

[
r4

4

∣∣∣3
0
dθ =∫ 3π/2

π
81
4 dθ = 81π

8 .
b. This is the one I mentioned on 21 November - the region is a circle centred at (1, 0) of radius 1.

Shifting coordinates actually doesn’t help because it messes up the integrand. If you’re lucky, you remember
something from Calc II, in particular that the circle to the right is parametrised by r = cos θ, but that

has radius = 1
2 , so use r = 2 cos θ where −π2 ≤ θ ≤ π

2 . So, we get
∫ π/2
−π/2

∫ 2 cos θ

0
r2drdθ, where one of the

rs comes from rdrdθ. This integral looks not great, but surely better than the original, so away we go:∫ π/2
−π/2

∫ 2 cos θ

0
r2drdθ =

∫ π/2
−π/2

8 cos3 θ
3 dθ =

∫ π/2
−π/2

8((1−sin2 θ) cos θ
3 dθ = 8

3

[
sin θ − 1

3 sin3 θ
∣∣π/2
−π/2 = 32

9 .

c. Here is the opposite of b., r = sin θ is a circle of radius 1
2 centred at (0, 12 ). This goes from 0

to π
2 so it produces a half circle in the first quadrant. So, we have

∫ 1

0

∫√ 1
4−(y−

1
2 )

2

0

√
1− x2 − y2dxdy.

Again that rectangular integral looks rough. And the polar one has some promising signs, so we re-

sume:
∫ π/2
0

∫ sin θ

0
r
√

1− r2drdθ =
∫ π/2
0

[
(1−r2)3/2

3

∣∣∣sin θ
0

dθ =
∫ π/2
0

1
3 cos3 θ =

∫ π/2
0

1
3 (1 − sin2 θ) cos θdθ =

1
3

[
sin θ − 1

3 sin3 θ
∣∣π/2
0

= 2
9 .

d. The region here is deceiving in rectangular but quiet nice in polar - it is the first eighth of a unit

circle. So, our polar integral becomes
∫ π/4
0

∫ 1

0
cos(r2)rdrdθ. Again, I select the polar one. I think this is

rigged.
∫ π/4
0

∫ 1

0
cos(r2)rdrdθ =

∫ π/4
0

[
1
2 sin(r2)

∣∣1
0
dθ =

∫ π/4
0

1
2 sin(1)dθ = π

8 sin(1) .

§11.6 #2 Note, here we use “sensible” spherical coordinates, i.e. latitude and longitude, not the silliness
from §11.8. We derived:

x(s, t) = R cos(s) cos(t), y(s, t) = R cos(s) sin(t), z(s, t) = R sin(s)

We can write this as r(s, t) = 〈R cos(s) cos(t), R cos(s) sin(t), R sin(s)〉 Now we can compute
∂r
∂s = 〈−R sin(s) cos(t),−R sin(s) sin(t), R cos(s)〉 and ∂r

∂t = 〈−R cos(s) sin(t), R cos(s) cos(t), 0〉. Now, we

need
∣∣∂r
∂s ×

∂r
∂t

∣∣ =
∣∣〈−R2 cos2 s cos t,−R2 cos2 s sin t,−R2 cos s sin s〉

∣∣ =
∣∣−R2 cos s〈cos s cos t, cos s sin t, sin s〉

∣∣ =

R2 cos s(
√

cos2 s cos2 t+ cos2 s sin2 t+ sin2 s) = R2 cos s. Finally we can set up our integral:
∫ π/2
0

∫ π/2
0

R2 cos sdsdt

is for the all-positive octant. This is about the easiest integral we’ve seen this chapter:
∫ π/2
0

(
R2 sin s

∣∣π/2
0

dt =∫ π/2
0

R2dt = R2π
2 . Because it’s an octant we multiply by 8 to get the entire sphere which gives us the com-

forting result of 4πR2.

§11.7 #1 The region of integration here is clearly presented as a triangle underneath a cone. The range
of z values is 0 to 3

√
x2 + y2. I might like to try cylindrical coordinates because of that, but I don’t think



2

the triangle will be well suited. I’m going to stick to rectangular until I run into a stumbling point. The
range of y values is 0 to 2− x, and the range of x values is 0 to 2.

∫ 2

0

(∫ 2−x

0

(∫ 3
√
x2+y2

0

xzdz

)
dy

)
dx =

∫ 2

0

∫ 2−x

0

[
1

2
xz2
∣∣∣∣3
√
x2+y2

0

dy

 dx =

∫ 2

0

(∫ 2−x

0

9

2
(x3 + xy2)dy

)
dx

=

∫ 2

0

[
9

2
x3y +

3

2
xy3
∣∣∣∣2−x
0

dx =

∫ 2

0

12x− 18x2 + 18x3 − 6x4dx =

[
6x2 − 6x3 +

9

2
x4 − 6

5
x5
∣∣∣∣2
0

=
48

5

§11.7 #3 a. The two surfaces intersect at 4x2 + 4y2 = 8, i.e. x2 + y2 = 2, a circle of radius
√

2 centred
at the origin.

b. To find centre of mass, we integrate density. The xy-projection is the circle, and one surface is top

and one bottom. We find
∫√2

−
√
2

∫√2−x2

−
√
2−x2

∫ 8−3x2−3y2

x2+y2
δdzdydx. I’m not sure what they meant by x first, since

this seems x last to me, but it’s the only natural way to set it up.

c. Yuck to doing this in other orders. One is easy:
∫√2

−
√
2

∫√2−y2

−
√

2−y2

∫ 8−3x2−3y2

x2+y2
δdzdxdy. And luck-

ily we always get two-for-one because of x-y symmetry. So, we must do the four others. Each of the
other ways will require breaking into two integrals. Let’s try the less-unpleasant one first: dydzdx. The
range of x values remains the same. The z values are bounded above by 8 − 3x2 and below by x2, by
finding the projection, which happens conveniently when y = 0. But, then the range of y values is
a mess. It depends on the particular z value. For z ≤ 2 we solve z = x2 + y2 for y = ±

√
z − x2,

and for z ≥ 2 we solve z = 8 − 3x2 − 3y2 for y = ±
√

8−3x2−z
3 . So putting this together we have∫√2

−
√
2

∫ 2

x2

∫√z−x2

−
√
z−x2 δdydzdx +

∫√2

−
√
2

∫ 8−3x2

2

∫√
8−3x2−z

3

−
√

8−3x2−z
3

δdydzdx. We do get two-for-one, so can switch x and

y to get
∫√2

−
√
2

∫ 2

y2

∫√z−y2
−
√
z−y2

δdxdzdy +
∫√2

−
√
2

∫ 8−3y2

2

∫√
8−3y2−z

3

−
√

8−3y2−z
3

δdxdzdy.

Now, what about dydxdz? The range of z values is from 0 to 8, but will probably need to be broken at
2 again. The curve z = x2 determines left-right bounds for the bottom to be between ±

√
z, and for the top

we have ±
√

8−z
3 . Then for y limits we solve z = x2 + y2 and z = 8 − 3x2 − 3y2 for y in each case to get

±
√
z − x2 and ±

√
8−3x2−z

3 , as before. Assembling we produce∫ 2

0

∫√z
−
√
z

∫√z−x2

−
√
z−x2 δdydxdz +

∫ 8

2

∫√ 8−z
3

−
√

8−z
3

∫√
8−3x2−z

3

−
√

8−3x2−z
3

δdydxdz and correspondingly

∫ 2

0

∫√z
−
√
z

∫√z−y2
−
√
z−y2

δdxdydz+
∫ 8

2

∫ 1
3

√
8−z

− 1
3

√
8−z

∫√
8−3y2−z

3

−
√

8−3y2−z
3

δdxdydz. Although, all of this is silly, why wouldn’t we

just use the first way? Alas. Fortunately the rest of this problem is easy now.

d. This is easy from b. Compute
∫√2

−
√
2

∫√2−x2

−
√
2−x2

∫ 8−3x2−3y2

x2+y2
xδdzdydx,

∫√2

−
√
2

∫√2−x2

−
√
2−x2

∫ 8−3x2−3y2

x2+y2
yδdzdydx

and
∫√2

−
√
2

∫√2−x2

−
√
2−x2

∫ 8−3x2−3y2

x2+y2
zδdzdydx, then divide each by

∫√2

−
√
2

∫√2−x2

−
√
2−x2

∫ 8−3x2−3y2

x2+y2
δdzdydx. This will

tell us the three coordinates of centre of mass. Do not do this in the other orders in c., that would be too
silly.

e. Notice that for this problem I have been ignoring δ the entire time. Now I need to notice one thing
about it if we substitute −x in for x or −y in for y we get the same result. Because of this and because the
solid is symmetric across the y = 0 and x = 0 planes, the x and y coordinates of centre of mass will both be
0. The z coordinate is a mystery, probably somewhere above 2, but that’s not thinking about the density,
which is higher for lower z. That would take the integral. Fortunately, we’re not asked to do it.

§11.8 #1 This really should be cylindrical coordinates. I can’t imagine doing it any other way. So, I will.
The cone is z = r and the paraboloid is z = 2− r2. They equal when r = 1 (or −2, but that doesn’t make
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sense for the square root). So,
∫ ∫ ∫

R
f(x, y, z)dV =

∫ ∫ ∫
R
f(r, θ, z)rdzdrdθ

=

∫ 2π

0

∫ 1

0

∫ 2−r2

r

(r cos θ + r sin θ + z)rdzdrdθ =

∫ 2π

0

∫ 1

0

[
zr2 cos θ + zr2 sin θ +

1

2
z2r

∣∣∣∣2−r2
r

drdθ

=

∫ 2π

0

∫ 1

0

(2r − r3 − r2)(cos θ + sin θ) +
1

2
(r5 − 5r3 + 4r)drdθ

=

∫ 2π

0

[
(r2 − 1

4
r4 − 1

3
r3)(cos θ + sin θ) +

1

12
r6 − 5

8
r4 + 2r2

∣∣∣∣1
0

dθ =

∫ 2π

0

10 cos θ + 10 sin θ + 11

24
dθ

=

[
10 sin θ − 10 cos θ + 11θ

24

∣∣∣∣2π
0

=
11π

12

§11.8 #2 So, we are seeking the sphere ...
a. Let’s decompose the limits: x goes from 0 to 1, and y from 0 to

√
1− x2, which gives us x2 + y2 = 1,

so the xy projection is a quarter circle in the first quadrant, so far so good. z ranges from
√
x2 + y2 to√

2− x2 − y2, notice the second gives us x2 + y2 + z2 = 2 which is a sphere of radius
√

2. That’s very
hopeful. And the first limit gives us z = r, which happens when φ = π

4 . To be sure that we stay in the

first quadrant over xy we limit θ between 0 and π
2 . The distance from the origin can range from 0 to

√
2,

given by that sphere boundary above. Altogether this gives us (after changing the integrand with dV and
exchanging xy)∫ π/2

0

∫ π/4

0

∫ √2

0

ρ sinφ cos θρ sinφ sin θρ2 sinφdρdφdθ =

∫ π/2

0

∫ π/4

0

∫ √2

0

ρ4 sin3 φ cos θ sin θdρdφdθ

Notice this is a spherical box, so the integration is simplified because the variables do not cross reference.
In particular because of this, we can separate them by pulling out constants:

=

(∫ π/2

0

cos θ sin θdθ

)(∫ π/4

0

sin3 φdφ

)(∫ √2

0

ρ4dρ

)

The last integral is easy. The first is a simple calc I substitution, and the middle is a standard calc 2 integral
done by letting sin3 φ = (1− cos2 φ) sinφ. Together they give:

=

(
1

2

)(
8− 5

√
2

12

)(
4
√

2

5

)
=

4
√

2− 5

15

b. is already in spherical coordinates, so it can’t be the one. So, that leaves c. I like the z = r lower
bound, which will correspond nicely with φ = π

4 .
Here’s the next key for this transition: remember z = ρ cosφ so z = 1 becomes ρ = 1

cosφ = secφ. I think

that will serve us nicely for the limits. For the integrand cos θ doesn’t change, but since r2 = x2 + y2 and
ρ2 = x2 + y2 + z2, we have ρ2 = r2 + z2, and so r2 = ρ2 − z2 = ρ2(1− cos2 φ) = ρ2 sin2 φ, hence r = ρ sinφ.
So, let’s see what we can do with the integrand. Remember dxdydz = rdzdrdθ = ρ2 sinφdρdθdφ. So, taking
this piece-by-piece r cos θrdzdrdθ = ρ sinφ cos θρ2 sinφdρdθdφ = ρ3 sin2 φ cos θdρdθdφ.

So, now let’s assemble this with the limits:
∫ 2π

0

∫ π/4
0

∫ secφ

0
ρ3 sin2 φ cos θdρdφdθ. And away we go with in-

tegration. First is easy, then takes some work: =
∫ 2π

0

∫ π/4
0

[
1
4ρ

4 sin2 φ cos θ
∣∣secφ
0

dφdθ =
∫ 2π

0

∫ π/4
0

1
4 sec4 φ sin2 φ cos θdρdφdθ.

Now, let’s rearrange just the new integrand before trying to integrate it: sec4 φ sin2 φ = 1−cos2 φ
cos4 φ

= sec4 φ− sec2 φ = sec2 φ(1+tan2 φ)− sec2 φ = sec2 φ tan2 φ, finally some good news. So, our integral is now∫ 2π

0

∫ π/4
0

1
4 sec2 φ tan2 φ cos θdρdφdθ =

∫ 2π

0

[
1
12 tan

3φ
∣∣π/4
0

cos θdθ =
∫ 2π

0
1
12 cos θdθ =

[
1
12 sin θ

∣∣2π
0

= 0, really??
All that for zero? Now that I see this end, I wish I had stayed in cylindrical all along, because I can see that∫ 2π

0

∫ 1

0

∫ 1

r
r2 cos θdzdrdθ =

(∫ 2π

0
cos θdθ

)(∫ 1

0

∫ 1

r
r2dzdr

)
= 0. Hm.
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§11.9 #1 First just follow the lines . . . . We have a parallelogram to begin with. The corners are at(
− 4

5 ,−
1
5

)
,
(
2
5 ,−

7
5

)
,
(
2
5 ,

8
5

)
. and

(
8
5 ,

2
5

)
. This is intended to not be pleasant, but I’m pleased with the

repeated 2
5 which will only produce two rather than three integrals to do. The left one is from x = − 4

5 to 2
5

and the right is from 2
5 to 8

5 . On the left top we have 3x − 2y = −2 and bottom we have x + y = −1. On
the right top we have x+ y = 2 and bottom 3x− 2y = 4. This produces these integrals:

∫ 2
5

− 4
5

(∫ 3x+2
2

−1−x
(x+ y)dy

)
dx+

∫ 8
5

2
5

(∫ 2−x

3x−4
2

(x+ y)dy

)
dx =

∫ 2
5

− 4
5

[
xy +

1

2
y2
∣∣∣∣ 3x+2

2

−1−x
dx+

∫ 8
5

2
5

[
xy +

1

2
y2
∣∣∣∣2−x
3x−4

2

dx

∫ 2
5

− 4
5

25

8
x2 +

5

2
xdx+

∫ 8
5

2
5

5x− 25

8
x2dx =

[
25

24
x3 +

5

4
x2
∣∣∣∣ 25
− 4

5

+

[
5

2
x2 − 25

24
x3
∣∣∣∣ 25
− 4

5

= 0 +
9

5
=

9

5

That’s a mess. I’m hopeful it will be much prettier with a change of variables. Let’s see. The new
region is just the rectangle [−2, 4]× [−1, 2]. Solving for x = u+2v

5 and y = 3v−u
5 , so our integrand becomes

u+2v
5 + 3v−u

5 = v. ∂(x,y)
∂(u,v) = det

(
1
5

2
5

− 1
5

3
5

)
= 1

5 . So now our integral is the same as

∫ 4

−2

(∫ 2

−1
v

1

5
dv

)
du =

∫ 4

−2

[
1

10
v2
∣∣∣∣2
−1
du =

∫ 4

−2

3

10
du =

9

5
.

Definitely met my hopes of being much prettier.

§11.9 #2 For better or worse, I did this in class. I don’t feel very bad about this. To find the Jacobian
we need to find lots of partial derivatives. Before, we remember the coordinate system:

x(ρ, θ, φ) = ρ sin(φ) cos(θ), y(ρ, θ, φ) = ρ sin(φ) sin(θ), z(ρ, θ, φ) = ρ cos(φ)

Let’s organise this this way, first take derivatives with respect to ρ:

∂x

∂ρ
(ρ, θ, φ) = sin(φ) cos(θ),

∂y

∂ρ
(ρ, θ, φ) = sin(φ) sin(θ),

∂z

∂ρ
(ρ, θ, φ) = cos(φ)

Now take derivatives with respect to θ:

∂x

∂θ
(ρ, θ, φ) = −ρ sin(φ) sin(θ),

∂y

∂θ
(ρ, θ, φ) = ρ sin(φ) cos(θ),

∂z

∂θ
(ρ, θ, φ) = 0

Finally take derivatives with respect to φ:

∂x

∂φ
(ρ, θ, φ) = ρ cos(φ) cos(θ),

∂y

∂φ
(ρ, θ, φ) = ρ cos(φ) sin(θ),

∂z

∂φ
(ρ, θ, φ) = −ρ sin(φ)

Now, let’s put this into a matrix, and find the determinant, and then (unlike in class) remember to take
absolute value. ∣∣∣∣∣∣

sin(φ) cos(θ) sin(φ) sin(θ) cos(φ)
−ρ sin(φ) sin(θ) ρ sin(φ) cos(θ) 0
ρ cos(φ) cos(θ) ρ cos(φ) sin(θ) −ρ sin(φ)

∣∣∣∣∣∣ = −ρ2 sin(φ)

Then notice, since ρ2 is clearly positive, and sinφ is positive for 0 ≤ φ ≤ π, that |−ρ2 sin(φ)| = ρ2 sin(φ),
which is the change in volume element we derived in §11.8.


