884  CHAPTER 16 Vector Calculus

Check the last (easy) step.

The calculation is similar for the second parametrization:

x = cos(t%); dx = —2t sin(¢?) dt; y = sin(t?); dy = 2t cos(t%) dt.

This gives <

N
/—ydx+xdy=/ (sinz(rz)—!—cosz(tz)) 2tdt =m.
¥ 0

The results are the same, as they should be.

The general case A general argument for independence of parametrization in line in-
tegrals resembles the specific calculation in Example 3. Suppose we are given any two

differentiable parametrizations
Xi(s) = (xi(s), () and  Xa(r) = (x2(0), y2(1))

for the curve y, where a <s <b and ¢ <t <d. For the line integral fy Pdx + Qdy, these
parametrizations lead, respectively, to two ugly integrals:

b dx dvy

I: /[: (P(X1(S))ddsl+Q(X1(s)) %) A
¢ dx d

b: / (P(Xz(r)) d—f +0(Xa(1)) %) dt.

These integrals look complicated, to be sure, and much notation is involved. But here
we care only that /; and I, have the same value. To see this one shows first that s is a

differentiable function of ¢ such that X,(7) = Xj os. In other words,
Xo(1) = (x2(0). 32(0)) = X (5() = (x1(s0). () )

(Showing in general that s(¢) is differentiable is slightly delicate. In Example 3, we had

simply s = ¢2, which is clearly differentiable.) In particular, s(c) = a and s(d) = b.
Assuming the foregoing facts, we can make the change of variable s = s(¢) in I1, which

(despite its complicated appearance) is an ordinary integral of the single-variable type.

The happy result is that I emerges:

b
I 2/ (P(Xl(s)) % + Q(Xl(s)) %) ds

a .
ds

~ [ (P(xio0) S+ 0 (s) ) G

d .
= [ (P() 2+ 0(%:0) D) =,

t

(We used the ordinary chain rule in the last line, in the form

dxy ds d dxy(1)
= a b)) ==

for the first summand and similarly in y for the second.) We conclude that Iy = I, just as
desired.
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The fundamental theorem for line integrals

One version of the fundame
th

ntal theorem of elementar
e derivative: If a function

y calculus relates the integral and
J and its derivative J" are continuous on [a, b], then

b

S dx = f(b) - f(a).

(There are other ways to state the fundamenta] theorem of calculus; this version is best
for present purposes.)
A similar “fundamental theorem” h
dients exist, we assume that the functio
near the curve y, and that ¥ is smooth,

olds for line inte

grals. To ensure that all the ingre-
n/i(x,y

) has continuous partial derivatives on and

except perhaps at its endpoints.

(x,y):R? =
: ting at X = (xo, Y0) and
ending at X; = (x1, y1). Then

/ Vh«dX = (X)) - h(Xo).

If y is a closed curve (i.e., X; = Xo), then

/Vh-dX:O.

¥

Proof The proofis a pleasin

& and straightforward exer
curve y be parametrized, as u

cise with the chain rule. Let the
sual, by a function

X(1) = (x(z), y(1)); a<t<bp.

(Because y is smooth, w

€ can assume that x’ and y
the needed integrals exi

are continuous functions, and thus all
st.) Then the line integral h

as the form

= / VhedX — / b( 1 (X(0). 1y (X)) ) -X (1) .

(%(/z (X(r))) = Vh(X(1)) - X'(1).

In other words, the int

egrand in the Jast integral above is the t-derivative of h(X(r)).
Therefore, by the ordin

ary fundamenta] theorem of calculus,

b
/ :[ (%(h(X(r))) dt = /7(X(b)) —/1(X(a)) =¥l 1)

as claimed.

(Xo, )’0),



