## Mathematics 228 PS1 Solutions

1.266.

$$
\begin{aligned}
& \mathrm{M}(\mathrm{t})=\mathrm{P}(\mathrm{t}) \mathrm{W}(\mathrm{t})=\left(2 \times 10^{6}+2 \times 10^{4} \mathrm{t}\right)\left(80-0.005 \mathrm{t}^{2}\right) \\
& =-100 \mathrm{t}^{3}-10^{4} \mathrm{t}^{2}+1.6 \times 10^{6} \mathrm{t}+1.6 \times 10^{8}
\end{aligned}
$$

Graph $P(t)$ on $[0 . .100] \times\left[0 . .5 \times 10^{6}\right]$ to find the population growing linearly from 2 to 4 million in 100 years.

Graph $\mathrm{W}(\mathrm{t})$ on $[0 . .100] \times[0 . .90]$ to find the weight decreasing from 80 kg to 30 kg , with the decrease becoming more rapid as the years go by.

Graph $\mathrm{M}(\mathrm{t})$ on $[0 . .100] \times\left[0 . .3 \times 10^{8}\right]$ to find the total mass increasing from $1.6 \times 10^{8}$ for the first 47 years (about) to a little above $2 \times 10^{8} \mathrm{~kg}$ then falling more rapidly to $1.2 \times 10^{8}$ after 100 years.
1.560 . a. The ratio of the next to the original is $\frac{404}{400}=1.01$. b. The second notable tone would then be $1.01(404)=408.04 \mathrm{~Hz}$. c. We have a DTDS: $T_{n+1}=1.1 T_{n}$. The values are in this table

| $n$ | $T_{n}$ |
| :---: | :---: |
| 0 | 400 |
| 1 | 404.00 |
| 2 | 408.04 |
| 3 | 412.12 |
| 4 | 416.24 |
| 5 | 420.40 |

d. For the musician the ratio is $\frac{400.5}{400}=1.00125$, the DTDS is
$T_{n+1}=1.00125 T_{n}$ and the fifth value is 402.5 , still imperceptible to the non-musician.
1.6 46. $b_{t+1}=r b_{t}-10^{6}$, so $b^{*}=r b^{*}-10^{6}$ yields $b^{*}=\frac{10^{6}}{r-1}$, a positive value if $r>1$.
1.7 54. The equation is $P(t)=1600\left(2^{-t / 43}\right)$, so $P(t+1)=2^{-1 / 43} P(t)$.
1.7.58. Our goal is to plot $t v . \ln (P(t))$, so we plot $t$ and $\ln \left(1600\left(2^{-t / 43}\right)\right)$, which equals $\ln (1600)-\frac{t}{43} \ln (2)$ on the window [0..100]×[0..10]. The semilog graph is linear. It has gone down to half when we reach $\ln (800)$ which is about 6.68 . This happens at 43 years later as stated. Note how the height is not half the height - this is the $\log$, but it is $\ln (2)$ less $[\ln (800=\ln (1600 / 2)=\ln (1600)-\ln (2)]$.
1.9..34. DTDS: $c_{t+1}=0.8\left(c_{t}+S\right)+0.2(0.0004)$
solve to find $c^{*}=4 S+0.0004$. So, if $c^{*}=0.04$, then $S=0.0099$
1.9.46. DTDS: $s_{t+1}=\left(\frac{3.3}{3.45}\right) s_{t}+\left(\frac{0.3}{3.45}\right)(0.001)$
solve to find $s^{*}=0.002$, twice the inflowing concentration because of the evaporation raising the salinity.
1.10.42 DTDS: $M_{t+1}=M_{t}-\left(\frac{0.5}{1.0+\alpha M_{t}}\right) M_{t}+1.0$
solve to find $\mathrm{M}^{*}=\frac{1}{.5-\alpha}$ Graph on [0..0.4]×[0..10]. When $\alpha>0.5$ the values become negative and meaningless. Note as $\alpha$ approaches 0.5 we have a higher and higher concentration (less is being used, so more remains). At 0.5 and higher there is no actual equilibrium, the concentration increases without bound. Cobwebbing reinforcs these results, leading to the equilibrium of 2.5 for $\alpha=0.1$ and no equilibrium for $\alpha=1$.
1.10.45. Graph $r(b)$ on $\left[0 . .5 \times 10^{6}\right] \times[0 . .3]$

DTDS: $b_{t+1}=2 e^{-\frac{b_{t}}{10^{6}}} b_{t}$; graph on $\left[0 . .5 \times 10^{6}\right] \times\left[0 . .5 \times 10^{6}\right]$
Unsurprisingly one equilibrium is at zero. Another is at $b^{*}=10^{6} \ln 2$ or about 693147. The zero one is not stable, but the nearly 700,000 one is.
1.11.18. Suppose we're considering:
$N_{r+1}= \begin{cases}1.65 N_{t}-1000 & \text { if } N_{t}>1000 \\ 1.65 N_{t} & \text { if } N_{t} \leq 1000\end{cases}$
To find the equilibrium we try
$\mathrm{N}^{*}=1.65 \mathrm{~N}^{*}-1000$ to get 1538
Looking at the updating function graph, examine what happens when $\mathrm{N}_{0}$ is close to 1000, but just below. It jumps past the equilibrium point. To see with values: Suppose $N_{0}=950$. Then $N_{1}=1567.5, N_{2}=1586.4$, $N_{3}=1617.5$, and we see the values continue to increase, with the updating function now above the diagonal (once we get above the diagonal, there's no stopping it from growing - and we got above the diagonal when we jumped to 1567 for $\mathrm{N}_{1}$.
2.8.44. $\frac{d b}{d t}=e^{-b(t)}$ says that the rate of increase of the population is decaying exponentially with the increase of the population. In other words, as the population grows the rate of increase of the population drastically gets closer to 1 . The solution $\mathrm{b}(\mathrm{t})=\ln (\mathrm{t})$ is an increasing function To check that it works, we compute:
$\frac{d \ln (t)}{d t}=\frac{1}{t}$
$e^{-\ln (t)}=\frac{1}{e^{\ln (t)}}=\frac{1}{t}$, they are, indeed, equal, so $\ln (t)$ is in fact a solution.
3.1.42 Graph $V_{t+1}=\left\{\begin{array}{ll}0.8 V_{t} & \text { if } 0.8 V_{t}>20 \\ \text { if } V_{t}>25 \\ 0.8 V_{t}+10 & \text { if } 0.8 V_{t} \leq 20 \\ \text { if } V_{t} \leq 25\end{array}\right.$ along with the diagonal. Notice the diagonal passes through the gap in the graph. This says there is no equilibrium. We may check by attempting to find one algebraically: $\mathrm{V}^{*}=0.8 \mathrm{~V}^{*}+10$ yields 50 , but that equation isn't used for $\mathrm{V}_{\mathrm{t}}=50$. In fact, $\mathrm{V}^{*}=0.8^{2} \mathrm{~V}^{*}+10$ yields 36 , where the equation still isn't used. $\mathrm{V}^{*}=0.8^{3} \mathrm{~V}^{*}+10$ yields 20.49 which produces our $3: 1$ equilibrium situation.
3.2.32. Correction to book: suppose the temperature produced is a linear function of the temperature on the thermostat.
a. Call T the temperature produced and z the theromostat setting. Then $\mathrm{T}=2.5 \mathrm{z}-29$ from the two given points $(20,21)$ and $(19,18.5)$.
b. We respond to $18.5^{\circ}$ by setting the thermostat to $21.5^{\circ}$. This produces a temperature of $24.75^{\circ}$. We're overreacting on both sides, so we now say *curse this*, I'm going lower to fix things quickly. So, we set it to $15.25^{\circ}$. This produces a temperature of $9.125^{\circ}$. This is cold indoors. So we want to heat things up quickly and we ask for $30.875^{\circ}$. We get more than we bargain for with $48.1875^{\circ}$. If you're not used to C, I recommend converting these numbers to F to see how extreme they are.

| Day | Setting before | effect |
| :---: | :---: | :---: |
| 0 | 20 | 21 |
| 1 | 19 | 18.5 |
| 2 | 21.5 | 24.74 |
| 3 | 15.25 | 9.125 |
| 4 | 30.875 | 48.1875 |

c. $z_{t}=20+\left(20-T_{t}\right)=40-T_{t}$
d. $T_{t+1}=2.5 z_{t}-29=2.5\left(40-T_{t}\right)-29=71-2.5 T_{t}$

Because the slope is less than -1, the system is unstable - no surprise there. If only we had been smart enough to set the thermostat at 19.6.
3.2.38

| year | seeds | size | seeds/adult |
| :---: | :---: | :---: | :---: |
| 0 | 20 | 4 | 3 |
| 1 | 60 | 1.5384 | .5384 |
| 2 | 32.304 | 2.6807 | 1.6807 |
| 3 | 54.293 | 1.6866 | .6866 |

$n_{t+1}=n_{t}\left(\frac{100}{n_{t}+5}-1\right)$. We solve for an equilibrium to find $n^{*}=45$.
To check we take a derivative and evaluate at $n_{t}=45$
$\frac{d n_{t+1}}{d n_{t}}=\left(\frac{100}{n_{t}+5}-1\right)+n_{t}\left(-\frac{100}{\left(n_{t}+5\right)^{2}}\right)$
at $n_{t}=45$ gives $\frac{d n_{t+1}}{d n_{t}}=-\frac{4}{5}$
This is just barely above -1 (hard to see on a graph), but supports our data above which appear to be slowly converging to 45 .

