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Mathematics 228 PS1 Solutions

1.2 66.

M(t) = P(t)W(t) = (2 × 106 + 2 × 104t) (80 - 0.005t2)
 = -100t3 - 104t2 + 1.6 ×  106t + 1.6 ×  108

Graph P(t) on [0..100]×[0..5×106] to find the population growing linearly 
from 2 to 4 million in 100 years.  

Graph W(t) on [0..100]×[0..90] to find the weight decreasing from 80 kg 
to 30 kg, with the decrease becoming more rapid as the years go by.

Graph M(t) on [0..100]×[0..3×108] to find the total mass increasing from 
1.6 ×  108 for the first 47 years (about) to a little above 2×108 kg then 
falling more rapidly to 1.2 ×  108 after 100 years.  

1.5 60.  a.  The ratio of the next to the original is 404

400
 = 1.01.  b.  The 

second notable tone would then be 1.01(404) = 408.04 Hz.  c. We have a 
DTDS:  Tn+1 = 1.1Tn.  The values are in this table

n Tn

0 400

1 404.00

2 408.04

3 412.12

4 416.24

5 420.40

So, the fifth perceivable tone is 420 Hz

d.  For the musician the ratio is 400.5

400
 = 1.00125, the DTDS is 

Tn+1 = 1.00125Tn and the fifth value is 402.5, still imperceptible to the 

non-musician.  
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1.6 46.  bt+1 = rbt - 106, so b* = rb* - 106 yields b* = 106

r - 1
, a positive 

value if r > 1.

1.7 54. The equation is P(t) = 1600(2-t/43), so P(t+1) = 2-1/43P(t).

1.7.58.  Our goal is to plot t v. ln(P(t)), so we plot t and 

ln(1600(2 -t/43)), which equals ln(1600) - t

4 3
ln(2) on the window 

[0..100]×[0..10].  The semilog graph is linear.  It has gone down to half 
when we reach ln(800) which is about 6.68.  This happens at 43 years 
later as stated.  Note how the height is not half the height - this is the 
log, but it is ln(2) less [ln(800 = ln(1600/2) = ln(1600) - ln(2)].

1.9..34.  DTDS:  ct+1 = 0.8(ct + S) + 0.2(0.0004)

solve to find c* = 4S + 0.0004.  So, if c* = 0.04, then S = 0.0099

1.9.46.  DTDS:  st+1 = 
 


3.3

3.45  
s t + 

 


0.3

3.45  
 (0.001)

solve to find s* =  0.002, twice the inflowing concentration because of 
the evaporation raising the salinity.  

1.10.42  DTDS:  Mt+1 = Mt − 
 



0.5

1.0 + αM t  

Mt + 1.0

solve to find M* =  1

.5 − α
  Graph on [0..0.4]×[0..10].  When α > 0.5 the 

values become negative and meaningless.  Note as α  approaches 0.5 we 
have a higher and higher concentration (less is being used, so more 
remains).  At 0.5 and higher there is no actual equilibrium, the 
concentration increases without bound.  Cobwebbing reinforcs these 
results, leading to the equilibrium of 2.5 for α  =  0.1 and no equilibrium for 
α =1.

1.10.45. Graph r(b) on [0..5×106]×[0..3]

DTDS:  bt+1 = 2e
−

bt

106 bt; graph on [0..5×106]×[0..5×106]

Unsurprisingly one equilibrium is at zero.  Another is at b* =  106 ln 2 or 
about 693147.  The zero one is not stable, but the nearly 700,000 one is.  
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1.11.18.  Suppose we’re considering:

Nr+1 = 
 







1.65Nt − 1000 if Nt > 1000

1.65Nt if Nt ≤ 1000

To find the equilibrium we try
N * = 1.65N* − 1000 to get 1538
Looking at the updating function graph, examine what happens when N0 

is close to 1000, but just below.  It jumps past the equilibrium point.  To 
see with values:  Suppose N0 = 950.  Then N1 = 1567.5, N2 = 1586.4,          

N3 = 1617.5, and we see the values continue to increase, with the updating 

function now above the diagonal (once we get above the diagonal, there’s 
no stopping it from growing − and we got above the diagonal when we 
jumped to 1567 for N1.

2.8.44.  db

d t
 = e−b(t) says that the rate of increase of the population is 

decaying exponentially with the increase of the population.  In other 
words, as the population grows the rate of increase of the population 
drastically gets closer to 1.  The solution b(t) =  ln(t) is an increasing 
function  To check that it works, we compute:

dln(t)
d t

 = 1

t

e−ln(t) = 1

eln(t)
 = 1

t
, they are, indeed, equal, so ln(t) is in fact a solution.

3.1.42  Graph Vt+1 = 
 







0.8V t if 0.8Vt > 20 if Vt > 25

0.8V t + 10 if 0.8Vt ≤ 20 if Vt ≤ 25
 along with the 

diagonal.  Notice the diagonal passes through the gap in the graph.  This 
says there is no equilibrium.  We may check by attempting to find one 
algebraically:  V* =  0.8V* +  10 yields 50, but that equation isn’t used for 
V t =  50.  In fact, V* =  0.82V * +  10 yields 36, where the equation still isn’t 

used.  V* = 0.83V * + 10 yields 20.49 which produces our 3:1 equilibrium 
situation.  
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3.2.32.  Correction to book:  suppose the temperature produced is a 
linear function of the temperature on the thermostat.

a. Call T the temperature produced and z the theromostat setting.  Then    
T = 2.5z − 29 from the two given points (20, 21) and (19, 18.5).  

b. We respond to 18.5° by setting the thermostat to 21.5°.  This 
produces a temperature of 24.75°.  We’re overreacting on both sides, so we 
now say *curse this*, I’m going lower to fix things quickly.  So, we set it 
to 15.25°.  This produces a temperature of 9.125°.  This is cold indoors.  
So we want to heat things up quickly and we ask for 30.875°.  We get more 
than we bargain for with 48.1875°.  If you’re not used to C, I recommend 
converting these numbers to F to see how extreme they are.  

Day Setting before e f f ec t

0 2 0 2 1

1 1 9 18.5

2 21.5 24.74

3 15.25 9.125

4 30.875 48.1875

c. zt = 20 + (20 − Tt) = 40 − Tt

d. Tt+1 = 2.5zt − 29 = 2.5(40 − Tt) − 29 = 71 − 2.5Tt

Because the slope is less than −1, the system is unstable − no surprise 
there.  If only we had been smart enough to set the thermostat at 19.6.
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3.2.38

year seeds size seeds/adult

0 2 0 4 3

1 6 0 1.5384 .5384

2 32.304 2.6807 1.6807

3 54.293 1.6866 .6866

n t+1 = nt 



100

nt + 5
 − 1

 

 .  We solve for an equilibrium to find n* = 45.

To check we take a derivative and evaluate at nt = 45 

dnt+1

dnt

 = 
 



100

nt + 5
 − 1

 

  + nt

 



− 100

(nt + 5)2
 




at nt = 45 gives 
dnt+1

dnt

 = −
4

5

This is just barely above −1 (hard to see on a graph), but supports our 
data above which appear to be slowly converging to 45.  


