
We want to know when M = 0.9e�0.1MM + 1, i.e. when 0 = 0.9e�0.1MM + 1 �M . So,

we try intermediate value theorem computing the right side, with M = 0, we get an output

of 1. You chose M = 4 next and we get an output of �0.586848, so the zero is between 0

and 4. To get closer we’ll run the updating function once 0.9e�0.1⇤4
4+1 = 3.41315. Ok, now

let’s switch to Newton’s method. We’re trying to find where 0 = 0.9e�0.1MM + 1�M . The

right hand side is our function to use, let’s call it f(M) = 0.9e�0.1MM + 1�M . We’ll need

a derivative, f 0
(M) = 0.9e�0.1M � 0.09Me�0.1M � 1. And now we compute

3.41315 � f(3.41315)/f 0
(3.41315) = 3.01614 and then 3.01614 � f(3.01614)/f 0

(3.01614) =
3.00042, finally 3.00042 � f(3.00042)/f 0

(3.01614) = 3.00039, which has oddly stabilised to

3.000, in fact to 5 places the answer is 3.00039, which is oddly close to 3, but it’s not 3

exactly.
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Mathematics 228 PS2 Solutions

4.1 20

Question:  Is the cheetah in or out of the jungle?  The book isn’t clear.  
I’ll do it both ways.  Suppose the cheetah is in the savanna.  

dx
d t

 = v(t) = et

The graph should look exponential, and be 1 at 0.  
We integrate to find x = et + C.  If we call 0 the edge of the jungle then 

1 = x(0) = e0 + C = 1 + C, so C = 0.  Thereore x(t) = et, which looks identical 
to the first graph, and we want to know when et = 200, at ln(200) ≈ 5.2983 
seconds later.

Suppose the cheetah is in the jungle.  Things are the same until −1 = 
x(0) = e0 + C = 1 + C, so C = −2.  Thereore x(t) = et −2, which looks like the 
other graphs shifted down two, and we want to know when et − 2 = 200, at 
ln(202) ≈ 5.3083 seconds later.

4.1 28. We now use Euler’s method with step 1.  (I’ll do this for cheetah 
in the savanna)

x̂0(t) = 1t + 1,  So we approximate x(1) = 2
x̂1(t) = e(t − 1) + 2, so we approximate x(2) = e + 2  ≈ 4.718
x̂2(t) = e2(t − 2) + e + 2, so we approximate x(3) = e2 + e + 2 ≈ 12.107
This pattern continues and our approximation x(5) = e4 + e3 + e2 + e + 2 ≈ 

86.791
The actual value is e5 ≈ 148.413
Since the growth is exponential, Euler is having a difficult time 

keeping up.  
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4.2 26  dM
dt

 = 2 g
day

1
t

Integrating produces M = g
day

4 t  + C.  Since M(0) = 5, C = 5, so M(t) = 
g
day

4 t  + 5.  Graphs could be on a scale of t [0,10].  M is increasing, but 

less and less so as dM
dt

 is decreasing. 

4.2 34
t i m e 0 1 2 3 4

veloc i ty 1 3 6 1 0 1 5

Use Euler’s method with step 1 to estimate the position at t =  4 if it 
starts at 10.  

p̂0(t) =  1t +  10, p̂0(1) = 11
p̂1(t) = 3(t − 1) + 11, p̂1(2) = 14
p̂2(t) = 6(t − 2) + 14, p̂2(3) = 20
p̂3(t) = 10(t − 3) + 20, p̂3(4) = 30

We know v(t) = 1
2

t2 +  at +  b
because v(0) =1, b = 1.
3 = v(1) = 1

2
 + a + 1, so a = 3

2
, so v(t) = 1

2
t2 +  3

2
t +  1

We may check that v(2) = 6, v(3) = 10 and v(4) = 15
The exact position is p(t) = 1

6
t3 +  3

4
t2 + t + 10.  Note:  p(4) = 110

3
 ≈36.67

Euler’s method is again having a little trouble keeping up with the  
increase.

You should have a graph of your Euler’s points and a graph of p(t).  The 
window [0,5]x[0,100] looks good to me.
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4.3 36  dW
dt

 = (4t − t2)e−3t W(0) = 0.

When is dW
dt

 largest?  We use calc I:  d2W
dt2 

 = −3(4t − t2)e−3t + (4 − 2t)e−3t = 

e−3t(3t2 −14t +  4) =  0 if t =  14± 148
6 

 ≈ 4.3609, 0.30574

At each of those times dW
dt

 = −0.00000327 and 0.4513736, respectively
Clearly the second is larger.  

Find W(2).  This is done by integration.  
W(2) = W(0) + ∫0

2
(4t −  t2)e−3tdt 

We need integration by parts.  
Let f =  4t −  t2 and g’ =  e−3td t
f’ = 4 − 2tdt and g = − 1

3
e−3t so we have 

=  0 +  (4t −  t2)
 


− 1

3
e−3t

 


 − ∫0

2
(4 −2t)

 


− 1

3
e−3t

 


d t

=  (4t −  t2)
 


− 1

3
e−3t

 


 + 2

3 ∫0
2

(2 − t)(e−3t)dt

Hm, we need integration by parts again.
Let f = 2 − t and g’ = e−3td t
f’ = −dt and g = g = − 1

3
e−3t so we have

=  (4t −  t2)
 


− 1

3
e−3t

 


 + 2

3  
(2− t) 



− 1

3
e−3t

 


 − ∫0

2 1
3

e−3tdt
 


=�   

(4t −  t2) 



− 1

3
e−3t

 


 + 2

3  


(2− t) 



− 1

3
e−3t

 


 + 1

9
e−3t

 


0

2 = 10 − 34e−6

2 7
 ≈ 0.36725

If it always grew at the maximum rate it would be 0.90274716 instead.  
This is .535498 more or 2.45813 times as large.  I don’t know what units 
are used in this question.
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5.1 50 dp
d t

 = 0.5p(p − 1)

p̂0(t) = −0.12t + 0.6, p̂0(0.25) = .57
p̂0.25(t) = −0.12255(t − 0.25) + 0.57, p̂0.25(0.5) = 0.5393625
p̂0.5(t) = −0.124225296797(t − 0.5) + 0.5393625, p̂0.5(0.75) = 

0.508306175801
p̂0.75(t) = −0.124965503722(t − 0.75) + 0.508306175801,
p̂0.75(1) = 0.47764799871

The exact solution is p(t) = 
0.6e2.5t

0.6e2.5t + 0.4e3t
 p(1) ≈ 0.476383862223

5.2 42  dV
d t

 =  a1V2/3 −  a2V3/4

V is cm3

dV
dt

 is cm3/day

V 2/3 is cm2

a1 is cm/day
V 3/4 is cm9 / 4

so a2 is cm3/4/day (units like this are typical for equations made from 
data observations).

a1V2/3 − a2V3/4 = V2/3(a1 − a2V1/12) = 0.  Either V = 0 or V = 
 





a1

a2  





1 2

If a1 decreases the creature gets less energy intake so grows to a 
smaller size.  If a2 decreases the creatures uses less energy, so grows to 
a larger size.  

5.3 42  dI
d t = α I(1 − I) − I = α I − α I2 − I = α I

 


1 − 1

α
 − I

 



This rate is zero when I = 0 or when I = 1 − 1
α

We wish to check the stability of both of these equilibria so we take 
d
dI

dI
d t = α − 2αI − 1

d
dI

dI
d t (I = 0) = α − 1 < 0 stable if α < 0

d
dI

dI
d t  


I = 1 − 1

α  


 = α − 2α + 2 − 1 = 1 − α < 0 stable if α > 0



A

The graph will be on an in−class handout.
5.4 31−38
dp
dt

 = p(1 − p)

dp
p(1 − p)

 =  dt

Note 1
p

 + 1
1 − p

 = p + 1 − p
p(1 − p)

 = 1
p(1 − p)

So we have 

∫ 
1
p

 + 1
1 − p  



dp = ∫dt

Integrating both sides we get
ln(p) − ln(1 − p) = t + c

ln
 



p
1 − p  



 =  t +  c

So p
1 − p

 = Ket and p = (1 − p)Ket = Ket − Kpet and p = Ket

1 + Ket

If p(0) = 0.01 we have 0.01 = K
1 + K

 so K = 1
9 9

, lim
t→∞

 
1
9 9 et

1 + 1
9 9 et

 = 1

If p(0) = 0.5 we have 0.5 = K
1 + K

 so K = 1, lim
t→∞

 et

1 + et  = 1

5.5 34 dI
d t = αIS − µI; dS

d t
 = −αIS + 2

3
µ I

5.5 38 dI
d t = αIS − µI; dS

d t
 = −αIS + µI + b(I + S)

5.6 32a 2β b β c 
dA1

d t
 = βC2 − 2βC1, 

dA2

d t
 = 2βC1 − βC2

d. 
dC1

d t
 = 1

V1
(βC2 − 2βC1) 

  
dC2

d t
 = 1

V2
(2βC1 − βC2)

The nullcline for C1 is given by β(C2 − 2C1) = 0, i.e. C2 = 2C1.
The nullcline for C2 is given by β(2C1 − C2) = 0, i.e. C2 = 2C1
Since the nullclines are identical, any concentration that meets this 

ratio will be stable, it is only a matter how much total chemical is 
around.  
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5.6 40 find nullclines and equilibria of 5.5 38
dI
d t = 2IS − I 
dS
d t

 = −2IS + I + (I + S) = −2IS + 2I + S

The nullclines of I:  2IS − I = 0 are I = 0 and S = 1
2

The nullcline of S:  −2IS + 2I + S = 0 is S = 1 + 1
2I − 1

 = 2 I
2I − 1

To find the equilbria we find the intersections.  On the S nullcline if I =  
0, we have S = 0, our old (0,0) equilibrium.  If S = 1

2
, we get I = − 1

2
.  This is 

not biologically possible, so the only equilibrium is at (0, 0).

5.7.36 add direction arrows to the previous
We’ll compute the derivatives at some points (I’m using (I, S) 

coordinates, so I is the first coordinate)

I S dI
d t

dS
d t

0 0 0 0

0 1 0 1

1 0 −1 2

1 1 1 1

0 2 0 2

2 0 −2 4

2 2 6 −2

1 2 3 0

2 1 2 1

0 0.5 0 0.5

0.5 0.5 0 1

5.7.44 draw a trajectory starting at (0.5, 0.5) for the previous.  
Follow the arrrows starting at (0.5, 0.5).  Both are drawn on the class 

handout, which will also include nullclines and the equilibrium.



> > 
(1)(1)

> > 

> > 

with plots, textplot, display ;
textplot, display

plot1 plot 0, 1 , 1, 2 , 2, 3.4718 , 3, 12.107 , 4, 31.193 , 5, 86.791 , style
= POINT :

  plot2 plot exp x , x = 0 ..5 :
  display plot1, plot2, view = 0 ..5, 0 ..150 ;

x
0 1 2 3 4 5

0

50

100

150

plot 4 sqrt t 5, t = 0 ..10, y = 0 ..18 ;



> > 
t

0 2 4 6 8 10

y

0

2

4

6

8

10

12

14

16

18

 plot1 plot 0, 10 , 1, 11 , 2, 14 , 3, 20 , 4, 30 , style = POINT :

  plot2 plot
1
6
x3 3

4
x2 x 10, x = 0 ..5 :

  display plot1, plot2, view = 0 ..5, 0 ..100 ;



> > 
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