Corrections to problem set 1 solutions:
1.754 was intended to be 56 . Here is the solution to 54 , which is silly: In 43 years it decreases my half, and in 86 years by half again, so it is $1 / 4$ of the original value or 400 .
1.758 was intended to be 60 . Here is the solution to $58: Q(t)=6.0 \times 10^{1} 0 e^{-0.000122 t}$. We graph t vs. $\ln (Q)=\ln \left(6 x 10^{1} 0\right)-0.000122 t$ over $[0,20000] \times[0,25]$. We get a linear function decreasing. It is at $3.0 \times 10^{1} 0$ at $t \simeq 5700$. Notice that this is not half the height on your graph.
1.934 Correct problem but used $q=0.2$ instead. For $q=0.1, c_{t+1}=0.9\left(c_{t}+S\right)+$ $0.1(0.0004)$ Solve to find $c^{*}=9 S+0.0004$. If $c *=0.04$, then we can solve to get $S=0.0044$
1.9 46 And I think I was just wrong on this one. Let's try doing this step by step. My writing the work makes it more likely that I am correct, and easier for you to tell me if I'm not. All volume units are m^{3}. Concentrations don't have units. Suppose we start at a concentration c_{t} in the lake. The volume of salt before is then $3.3 \times 10^{7} c_{t}$. The water after inflow is 3.6×10^{7}. 3×10^{6} water of salt concentration 0.001 flows in, so we multiply to find that $3000=3 \times 10^{3}$ salt is added, leaving a total of $3.3 \times 10^{7} c_{t}+3 \times 10^{3}$ salt after inflow. The concentration after inflow is therefore $\frac{3.3 \times 10^{7} c_{t}+3 \times 10^{3}}{3.6 \times 10^{7}}$. The amount of salt that flows out is the volume of water that flows out times this concentration, i.e. $1.5 \times 10^{6}\left(\frac{3.3 \times 10^{7} c_{t}+3 \times 10^{3}}{3.6 \times 10^{7}}\right)$. So the amount of salt remaining is the amount after inflow with the outflow subtracted: $3.3 \times 10^{7} c_{t}+3 \times 10^{3}-1.5 \times 10^{6}\left(\frac{3.3 \times 10^{7} c_{t}+3 \times 10^{3}}{3.6 \times 10^{7}}\right)$, and the concentration at the end is this divided by the water at the end, which is back where it started, therefore $c_{t+1}=\frac{3.3 \times 10^{7} c_{t}+3 \times 10^{3}-1.5 \times 10^{6}\left(\frac{3.3 \times 10^{7} c_{t}+3 \times 10^{3}}{3.6 \times 10^{7}}\right)}{3.3 \times 10^{7}}$. That's a lot of numbers, but not a lot of algebra. It simplifies to $c_{t+1}=\frac{23}{24} c_{t}+0.000087$, which after all this work is quite simple to solve for an equilibrium of 0.00209 , or over twice the inflow concentration because of the evaporation.
1.10.45 Ok, on this one there's a typo in the book. Adler must mean $2 e^{-\frac{b_{t}}{1.0 \times 10^{6}}}$, but that's neither of our faults. So, using what is in the book $b_{t+1}=\left(2 e-\frac{b_{t}}{10^{6}}\right) b_{t}$ graph $r(t)$ on $\left[0,6 \times 10^{6}\right] \times[0,6]$ and the updating function over $\left[0,6 \times 10^{6}\right] \times\left[0,6 \times 10^{6}\right]$. In this setting the equilibrium is at $b^{*}=4.4 \times 10^{6}$ and is unstably oscillating, and the one at zero unstably increases. The derivative of the updating function is $2 e-\frac{2 b_{t}}{10^{6}}$. At 0 this is $2 e>1$, and at $b^{*}=4.4 \times 10^{6}$ this is $2 e-8.8<-1$.

