Mathmatics 239 solutions to Homework for Chapter 7
35.4, 36.11, 36.15, 37.3, 36.14 (valued as five questions), E-primes

§35.4 a. Suppose a < b. Then a mod b = a because a is a good remainder. On the other
hand, b mod a < a by the definition of remainder. This contradicts them being equal. The
same happens when b < a by switching letters.

b. Suppose a < b. Then a div b = 0 because a is already a good remainder, positive and
less than b. On the other hand b div @ > 1 because 0 < b— a, so we can subtract at least one
copy of a. This contradicts them being equal. The same happens when b < a by switching
letters.

EXTRA §35.6 Negative divisors. For normal division we require 0 < r < b. This makes
no sense if b < 0. We know and understand that division by zero has problems. There are
some choices for negative division, I will prove the following:

Let a,b € Z with b < 0. There exist unique integers ¢ and r such that a = ¢b + r and
0<r<|b.

follow along the proof of 35.1 Here we go . . .(please read along in the book)

Let a and b be integers with b < 0. The first goal is to show that the quotient and
remainder exist; that is there exist integers ¢ and r that satisfy the two conditions a = gb+r
and 0 < r < [b].

Let A={a—0bk| ke Z}

We want the remainder to be nonnegative, so we consider only the nonnegative elements
of A. Let B=ANN={a—-bk|k€Z,a—bk>0}

We want to select the least element of B. Note that the Well-Ordering Principle applies
to nonempty subsets of N. Thus we need to check that B # (). As long as k > ¢ (notice the
change of the inequality because b < 0), then a — kb € B, so it is nonempty. Since B # (), by
the Well-Ordering Principle, we can choose r = a — bq to be the least element in B. We may
rewrite to a = qb+r. Since r € B C N, we also know that » > 0. We still need to show that
r < |b]. To prove this, suppose, for the sake of contradiction, that » > |b|. This means we
can still add another b to r without making a negative result. We have r = a—qb > |b| = —b.
Let " =r+b=(a—qgb)+b>0,80" =(a—qgb)+b=a—-bg+b=a—(qg—1)b > 0.
Therefore ' € B and ' = r + b < r. This contradicts the fact that r is the smallest element
of B. Therefore r < |b| as desired.

Now to uniqueness.

Suppose, for the sake of contradiction, there are two different pairs of polynomials, (g,r)
and (¢, r") that satisfy the conditions of the theorem, that is,

a=¢gb+r with 0 <r < |b| and

a=qb +r" with 0 <" < |b|.

Combining the two equations on the left gives ¢b+r = ¢'b+ 1" sor — 1" = (¢’ — q)b This
means that 7 — 7’ is a multiple of b. But recall that r,7" < |b|. The difference of the two
numbers can be at most —b — 1. The only way r — r’ can be a multiple of b is if it is zero.
This says r—r' = 0,s0r =1"and (¢ — ¢ )b =0. Since b # 0,q— ¢ =0, so ¢ = ¢'. Therefore
the pairs are not different and we have a contradiction, thus proving uniqueness.

EXTRA §35.9 Prove that the sum of any three consecutive integers is divisible by 3.



This question seems strangely out of context, but we’ll try. Consecutive integers could
be a,a + 1,a + 2. Their sum is 3a + 3 = 3(a + 1), so is divisible by 3.

EXTRA §35.12 Polynomial division. Great preview for 301 for those secondary-ed stu-
dents.

(a) p| q if there exists a polynomial (with rational coefficients), d, such that pd = q.
See: (2z —6) (322 + 3) =2 — 322+ 32 -9

(b)2x —6|x—3andx—3|2x —6but z —3# 22 —6

(¢) Two polynomials that divide each other are constant rational multiples. Of interest,
as polynomials 6 | 2, even though as numbers it is not true that 6 | 2.

(d) - (e) follow along the proof of 35.1 Here we go again. . .(please read along in the
book, or above, if you prefer)

Let a and b be polynomials with b # 0. The (d) goal is to show that the quotient
and remainder exist; that is there exist polynomials ¢ and r that satisfy the two conditions
a = qb+r and degr < degb.

Let A = {a — bk | k a polynomial with rational coefficients}

Polynomials aren’t well ordered, but their degrees are so we also consider

B = {deg(a — bk) | k a polynomial with rational coefficients}

We want to find the £ that produces the minimal element of B. Note that B is a subset
of {—1} U N. It is nonempty because A is and polynomials all have degrees. —1U N is well
ordered because N is and we say —1 < n for all natural n. We can choose r = a — bq to
produce the least degree in B, where ¢ is a polynomial with rational coefficients. We may
rewrite to a = gb+r. We still need to show that degr < degb. To prove this, suppose, for the
sake of contradiction, that degr > degb. We think about what we would do if we had this
problem and we were doing long division. We multiply b by something like cx™ so that r and
cz™b have the same highest term. Then we subtract to get ' = r — cx™b which has canceled
the leading term. So, degr’ < degr. But v’ = r — ca™b = a — bq — cx™b = a — (¢ + cz™)b.
This says that r’ is in A, but it has smaller degree than r. This is a contradiction. Therefore
degr < degb as desired.

Now to (e) and uniqueness.

Suppose, for the sake of contradiction, there are two different pairs of polynomials, (g,7)
and (¢, r") that satisfy the conditions of the theorem, that is,

a = qb+ r with degr < degb and

a = qb + ' with degr’ < degb.

Combining the two equations on the left gives gb+r = ¢'b+ 1" so r —r' = (¢’ — q)b This
means that r — 7’ is a multiple of b. But recall that degr, degr’ < degb. The difference r — 1’
is a polynomial with degree less than or equal to that of both r and 7/, so deg(r — ') <
degr < degb. The only way a multiple of b can have lesser degree is if it is zero. This says
r—r'=0,sor=7"and (¢ —¢)b=0. Since b # 0,q — ¢ = 0, so ¢ = ¢’. Therefore the pairs
are not different and we have a contradiction, thus proving uniqueness.

§36.11 Prove that consecutive integers must be relatively prime.



Let x be the lower of two consecutive integers. Then the second is x + 1. Suppose that

= ged(x,xz + 1). By definition of greatest common divisor, d | z and d | x + 1, therefore

d|(x+1)—=x,ie d]|1. Weknow that 1 |z and 1|z + 1 and that d | 1. Therefore 1 is the
greatest common divisor. Hence, x and x + 1 are relatively prime.

§36.15 Suppose a and b are relatively prime and that a | ¢ and b | ¢. Prove that ab | c.

Assume a and b are relatively prime and that a | ¢ and b | ¢. Because a and b are
relatively prime, ged(a,b) = 1. Recall that we may write the ged as a linear combination of
the two numbers, therefore there are integers z,y such that ax + by = 1. Because a | ¢ we
have an integer p such that ap = ¢. Because b | ¢ we have an integer ¢ such that bq = c.
Consider ax + by = 1 again. Multiply both sides by ¢ to get cax + cby = c. Substitute ¢ = bq
for the first ¢ and ¢ = ap for the second c¢. This yields (bg)ax + (ap)by = ¢ Commuting
multiplication and factoring we get ab(qz + py) = c¢. Therefore ab | c.

EXTRA §36.21 13 and 8 are relatively prime, therefore there exist integers = and y such
that 13248y = 1. Either by inspection or the Euclidean algorithm we see 13(5)+8(—8) = 1.
So we may first fill 5 of the 13 ounce cups, and then remove 8 of the 8 ounce cups to get 1
ounce.

If a and b are relatively prime, we may duplicate this feat. The equation ax + by = 1
instructs us how to add and remove liquid. This condition is necessary because if we can
manipulate the cups in this way we can determine a number of each to add or remove, and
then find z and y such that ax 4+ by = 1 which implies that a and b are relatively prime.

§37.3 Solve the following equations for x.

(a) 2@ x =4 in Zo.

Review the multiplication table on p. 270. Look across the 2 row. See that 2® 2 = 4
and 2 ® 7 = 4. Therefore the solution is {2, 7}.

(b) 2®$:3 iIl ZIO-

Looking across the 2 row again, we notice there are no products equal to 3. Therefore
the solution is (.

Let’s derive a multiplication table for Zs (it seems a handy thing to do, though we only
need the 9 row for these questions)

®(0 1 2 34 5 6 7 89 10 11
0/ 6 000 0 0 0 0O0 0 O
10 1 2 34 5 6 7 89 10 11
2/0 2 4 6 8100 2 46 8 10
310 3 6 90 3 6 9 03 6 9
410 4 8 04 8 0 4 80 4 8
510 5 10 3 8 1 6 11 4 9 2 7
6/0 6 0 60 6 0 6 06 0 6
710 7 2 9411 6 1 8 3 10 5
810 8 4 08 4 0 8 40 8 4
990 9 6 30 9 6 3 09 6 3
10/0 10 8 6 4 2 0 10 8 6 4 2
1110 11 10 9 8 7 6 5 4 3 2 1




(C) 9 x=41in Zl2~
Looking across the 9 row, we notice there are no products equal to 4. Therefore the
solution is (.

(d) 9®x =06 1iIn ZIZ-
Looking across the 9 row again, we find that 9® 2 =6, 9® 6 = 6, and 9 ® 10 = 6.
Therefore the solution is {2, 6, 10}.

EXTRA §37.10 If p is prime, a ® b =0 if and only if a =0 or b = 0 in Z,,.

Suppose p is prime. Proving the simple direction first. Suppose a = 0, then 0 ® b = 0.
Suppose b = 0, then a ® b = 0. Therefore if a = 0 or b = 0, then a ® b = 0.

Conversely, suppose a ® b = 0 and for the sake of contradiction that a # 0 and b # 0.
Since p is prime, and a € Z,, we have a relatively prime to p, therefore a is invertible. We
will multiply both sides of a®@b = 0 by the inverse to produce b = 0, which is a contradiction.
Therefore a = 0 or b = 0, as desired.

§37.14 (a) For a € Z,, prove or disprove a’ = a® ™" Let n = 4,b = 5,a = 2.
A?=2"=2®2022=002®2=0.

On the other hand, @® medn = 25 mod4 — 9l — 9

Therefore we have that a® # a® ™°4 ", The statement is false in general.

(b) Find, in Zq, the value of 354

3% = 3(2°) = (((((3%)2)*)*)*)* = ((((91)»)*)?*)* = ((((BL)*)))? = (((61))*)* =
((21)%)? = (41)? = 81.

(c) Estimate how many multiplications are needed to calculate a” in Z,.

Roughly by looking at part (b) we estimate that it takes Iny b steps. This is not quite
correct, though. Perhaps this error was within their expectations of “estimate”, but to
me it seems closer to the sum of the base two logs of the non-zero place values when the
number is expressed as a binary numeral. Therefore while a5 takes 6 steps, a®® would take
5+4+4+ 342+ 1 =15 steps, naively (i.e. this is what I thought). But, if we record our
work along the way and remember our answers we don’t need to recompute them. Keeping
with a%. We take 5 multiplications to compute a?, a*, a®, a', and a¢*2. And now multiply
a'-a®-a*-a®-a'®- a3, This is 5 more mulitplications. So, it takes up to In, b multiplications
to compute all the pieces and up to In, b multiplications again to put them all togeher.
Using this technique we can reduce to 21Iny b computations. This is the best we can hope
for. Notice this has nothing to do with mod n, this is just how many multiplications need
to be done to exponentiate.

(d) Give a sensible definition for a° in Z,,. Just like with regular exponents, we like the
rule a" ® a™ = a"™™. Therefore we would want that a® ® a™ = a°™™ = a™. Therefore a°
should be the multiplicative identity, i.e. a® = 1.

(e) Give a sensible definition for a’ in Z, when b < 0.

Using the above rule we would like a? ® a™® = a?*(=?) = q° = 1. Therefore a~? should be
the multiplicative inverse of a? (if it has one). Therefore we have that a™? will be defined to
be (a?)~!, where the outer “-1” means inverse. We can also define, equivalently, a™" to be
(a=1)P, here where the inner “-1” means inverse. Should you be upset that a=! already has
a meaning? No, we should not, because we have sensibly defined these two to agree.



Supplemental questions: Let £ = {1,2,4,6,8,...}. In this set there are some numbers
that can only be written as a product of 1 and the number itself, but cannot be written
as the product of two other elements of the set. An element of E will be called E-prime
if it can only be expressed as a product of 1 and itself. For example, 6 is E-prime since
6=1-6;6=2-3, but 3is not in £. An even number will be called E-composite if it is not
E-prime. Note: 1 is not a F- prime.

a. Determine the first ten E-primes.

2, 6, 10, 14, 18, 22, 26, 30, 34, 38

There is something to be proven here, namely that these do not have another factorisation.
This proof is simple. Because they all have only one two in their prime factorisation

b. Can every E-composite number be factored into a product of E-primes? Justify your
reasoning.

Yes. The proof is almost identical to the proof we did in class for the fact that every
composite number can be factored into a product of primes.

The proof is by strong induction on n. We prove that for every E-composite number n,
it can be factored into a product of E-primes. In fact, we’ll prove more, because its easier to
do so (one of those tricky cases). We'll prove that every element of F can be factored into
FE-primes.

Base cases: 1 is the empty product of E-primes and every FE-prime is its own E-prime
factorisation.

Induction step: Suppose every F number k < n can be factored into E-primes.

Goal: Prove that the E number n can be factored into E-primes.

Because we’ve proven this already for all E-primes, n is E-composite. Therefore, it can
be factored into two elements of F, call them x and y, neither of which is 1. Because neither
of them are 1, both of them are less than n. Therefore the induction hypothesis applies
and each of them can be factored into E-primes. To find the factorisation of n, therefore,
multiply the factors of x and y together. The proof is complete.

c. List several even numbers that have only one factorization into E-primes.

4, 8,12, 16, 20, 24, 28, 32

Again, there is something to be proven here, namely that these do not have another
E-prime factorisation. This proof is equally simple. Considering their traditional unique
prime factorisation, we see that each of these numbers has at most one odd prime factor.
Because all the E-primes are even with one two in their prime factorisation, finding a FE-
prime factorisation of a number amounts to listing the twos to indicate the number of factors,
and then mulitplying the odd factors by the twos. If there is at most one odd factor, this
factorisation is hence unique up to order.

d. Find an even number whose E-prime factorization is not unique, that is, an even
number that can be factored into products of E-primes in at least two different ways.

Based on the above discussion about what made the unique ones unique, we can find
non- unique ones as well:

36=2-18=6-6

60=2-30=6-10



360=2-2-90=2-18-10=2-6-30=6-6-10 (and I'm not certain that’s all - 'll give
the first person an extra 4 points on this HW set to either show me another factorisation or
prove that that’s all).

Note: this is the point of the whole supplement. This is a system where prime factorisa-
tion exists, but is not unique. Of further interest, it is curious that while it is not unique,
the number of factors that a number has is uniquely determined.

e. Determine a test to decide whether an even number is E-prime.

We have one already in a., factor the number into primes and check the number of twos.
If there is one, then it is E-prime. If more, then not. Here’s two equivalent, easier, tests:
Divide the number by 2, if it is odd it is E-prime, if it is even it is not. This is the only
important part of the first test, not much to explain here (given the explantion in part a or
something like it). One more test. n =2 mod 4 iff n is E-prime. Not really very different
from the others. More concise to say. More fun with definitions to prove. Let’s do it:

Let’s do this direction first (ok, I admit, I'm unlikely to do the second direction - they
should be identical in reverse): If n
equiv2 mod 4 then n is E-prime.

Suppose n = 2 mod 4. Therefore 4 | 2 — n. So there is an integer k such that 2 —n =
4kn = —4k 4+ 2n2 = —2k + 1 = 2(—k) + 1 which is an odd number by definition.

Therefore by the second test, n is an E-prime.

More Extra Problems

1. Compute ged(3913,23177) First we’ll switch the order. Then division gives us the
following equations:
23177 =5 - 3913 + 3612

3913 = 1-3612 + 301
3612 =12 - 301

So, the greatest common divisor is 301. Working backwards we get
301 = 3913 — 3612

301 = 3913 — (23177 — 5- 3913
301 =6-3913 — 123177

A linear combination as desired. Big numbers but not so scary. Imagine finding all the
factors, though.

2. Suppose a and p are relatively prime. Before this, prove a lemma:
(x4+y)P=2P+9y” modp
for any z,y, and p prime (this is that which calculus students always hope is true). By the

binomial theorem, (z + y)? = >~} _, ( Z ) 2P~ RyF But, for k # 0 or p,p | ( Z > = @f’—]s)!m



because all terms in the denominator are less than p, so nothing will cancel the p in the

D
k

contribute mod p. So we are left with 2P 4+ y?, as claimed.

We will prove a?~! =1 mod p by induction on a.

Base case: 177! = 1, exactly, so also true mod p.

Induction step: Suppose k! =1 mod p. What is (k + 1)P? By the lemma it is kP + 17
and by the induction hypothesis (and this base case) this is £k +1 mod p, as desired.

numerator that begins p!. Because p | , the terms except £ = 0 and k£ = p will not

3. Prove that 15 | 11n® + 4n?. 1 will prove separately that 3 | 11n® + 4n* and that
5| 11n® + 4n*.

First working mod 3, 11n8 + 4n* = —n® + n* mod 3. Now we have two cases - either
n is relatively prime to 3 or it isn’t. If it isn’t n = 3k and clearly the entire side is divisible
by 3. If it is we can apply 2. For the case p = 3 this gives n?> = 1 mod 3 so we find
1Ind+4n* = —n®+n*=—-14+1=0 mod 3, as desired.

Now working mod 5, 11n® 4+ 4n* = n® —n* mod 5. Again, if n = 5k the result follows.
What if not? Then n* =1 mod 5 and we find 11n8 +4n* =n® —n*=1—-1=0 mod 5,
as desired.



