CHAPTER 2.8
Differential Systems

of capacity 100 gallons, each filled with

ks are connected by pipes as shown in
h tank is kept uniform by

ExaMpPLE 1. We are given two tanks
a mixture of salt and water. The tan
Fig. 2.52 and at all times the mixture in eac

stirring. y
The mixture from tank I flows into tank II through a pipe at 10 gal /min,
he mixture flows into tank I from tank II

and in the reverse direction, t
1/min. Also, the mixture leaves tank II

through a second pipe at 5 ga
through a third pipe at 5 gal/min, while fresh water flows into tank I

through another pipe at 5 gal /min.
Denote by x(?) the amount of salt (in Ibs) in tank I at time ¢, and by y(7)

the corresponding amount in tank II. Suppose, at time ¢ = 0, there are X,
1bs of salt in tar}k I, and 0 Ibs of salt in tank II. Find expressions for x(?)

and y(?) in terms of ¢.

Consider the time interval
interval, each gallon flowing into
of salt, while each gallon flowing
1bs of salt. Hence, the net change o
time interval is

from time ! to time ¢ + Az During that time
tank I from tank II contains »(1)/100 lbs
from tank I to tank II contains x(¢)/100
f the amount of salt in tank I during the

5p(n)Ar - 10x(1)At
*="q00 100 ’

while the corresponding change for tank II is

A 10x (¢)At 10y (1)At
Y= "700 100
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Dividing both equations by At and letting Ar— 0, we get

Figure 2.52

e 10
drt ([) 100 y(t) - mx(t)’
dy .10 10 ®
7 (D= 700* ~ 700 ¥ (-
In addition, we know that
x(0)=x, p(0)=0. : @

The functions = x(¢ .
and (2). x(1), 1= y(7) must be determined from conditions (1)

A system of equations i i
ns involvin :
has the form g two unknown functions x and y which

= ax + by,

dx
dt
G 3)
dt

=cx + dy,

where a, b, c, d are gi i

v byc, given constants, is called a differenti

Thus (1) is a differential system with a=fj—r— iy
d= — J&. The condition

x(O) =X,

A0 = &
100 » b——loo, c= _11(?0’
Y(0) = yo,

Where X, i ]lSta t i ed 4 condition 1()] tlle Sysle]“
O,yoale glven CO nts, 1s Call an niti jti
! &b ) nit al



98 Linear Algebra Through Geometry

f 1. A vector-valued
xq(t
1( )) Thus,

function X() assigns to each number ¢ a vector X(7) =(x 0
2
2
X(t) = ( i ) and X(?) = (COSt)
2+ 1 sin ¢

x,(t
are vector-valued functions. If X(?) =( l(ti)’ then ¢ — x,(¢) and 1~ x5(2)
X2

d functions. We define the derivative of the function

We shall use the notion of a vector-valued function o

are scalar-value

1> X(1) =(i‘§g) by
dx _ dx,/dt
dr dx,/dt)

2
Thus, if X(2) =( f ) then dX/dt =( 2t ) while if X(2) =(C9S’), then
P41 342 sin ¢

dX/dt =( —sir;t)' Note that X/ dt is again a vector-valued function.
cos

Exercise 1. Fix a vector Y. Define a vector-valued function ¢— Y(¢) by setting

Y(t) = t"Y. Show that
dY 1— 1
ay _ n-ly.
dt 24

Now let the scalar-valued functions 7= x(1), t> y(t) be a solution of the

differential system (3). In vector form, we can write

(dx/dt)___(ax+by) @)
. dy/dt ex+dy)

. . x(f) ’
We define the vector-valued function t—>X(t) by X(?) = i) . Then the

left-hand side of (4) is dX/dr, and the right-hand side of 4) is

ax + b a b\[x a b
(cx+dy)=( d)( )=( d)(x(t))‘
y ¢ B4 ¢
Thus (4) may be written in the form
X _(a b 5
X _(a b)x@) ©)
How shall we solve Eq. (5) for X(7)? Recall that letting a matrix ‘; d)

act on a vector X to give the vector b )X is analogous to multiplying a

r x by a scalar a to give the number ax. So Eq. (5) is analogous {0

numbe
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the equation

dx _
i ax, (6)

where x is now a scalar-valued function of ¢ and a is a given scalar. We
know how to solve Eq. (6). The solutions have the form

x(t) = Ce”,
where C is a constant. Setting ¢ = 0, we get x(0) = C, so
x(t)= x(0)e” = e"(x(0)),
where we have changed the order of multiplication with malice afore-

thought. Let us look for a solution to Eq. (5) by looki
. e sl g. (5) by looking for an analogue of

X(1)=e™(X(0)),  with m=(ccl 2) ™

. First we n}ust define the exponential of a matrix. In §1 we shall define
given a matrix m, a matrix to be denoted e” or exp(m) and to be called thé
exponential of m.

Applying the matrix e” to a fixed vector X(0), we then obtain a vector
for each 7, and thus we get the vector-valued function #— X(7) defined in
(7). We shall then show that X() solves (5).

In what follows we shall use the symbol I for.the matrix ( l O) which is
0 1/

properly denoted m([/). This simplifies the f
confusion. p e formulas, and should cause no

§1. The Exponential of a Matrix

L sfogb s '
et m ( . d) be a matrix. Since we have defined addition and multipli-

&a}tio.n of matriges, we can write expressions such as m* or m* —3m + [
e interpret m> — 3m + I as the result of i i )
W applying the polynomial

= x> —3x + 1 to the matrix m: ¢ polynomial £

P(m) = m> —3m+ 1.
More generally, if Q(x) is the polynomial
Q(x)=cx"+ ¢, x" '+ Fox+ g,
where c,,c,_1, . . ., C1,Co are scalars, we set
Q(m)y=c,m"+c,_ym" '+ - +cym+ col,

and we regard i i ;
. matrixgn:_ Q(m) as the matrix obtained by applying the polynomial Q to
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We now replace the polynomial Q by the exponential function exp(x). We

know that exp(x) is given by an infinite series

"+... (8)

exp(x)—1+x+§|—+ -+;!— ,
where the series converges for every number x. We wish to apply the
function exp(x) to the matrix m. We define

exp(m)—1+m+2'+ +—n‘—+ )

An infinite series is understood as a limit. Thus, Eq. (8) means that the

sequence of numbers

n

5
x X
1,1+x,1+x+—2— 1+x+2‘ --+——n',...

xp(x) as n—> 0. Similarly, we interpret Eq. (9) to

converges to the limit e
d as the limit of the sequence of matrices

say that exp(m) is define

n

2
m m
I,I+m,1+m+—2—'—, I+m+'7‘+ +n!,....

Of course, exp(m) is then itself a matrix.

ExAMPLE 2. Let m be the diagonal matrix

(3 )
0 ¢

where s, ¢ are scalar. What is exp(m)? Recall the formula for (8 (t))"

found in Chapter 2.7.

n

l+m+§|—+--+n
(1 0\, (s O} 1 _1_30._'_1_5"0
(1) G4l 285 2
-0 9+ 20 )
0 1 0 0o /2

+(s3/3! 0 )+__'+(s"/n! 0 )
0 /3 0o t"/n!

=(1+s+s2/2!+s3/3!+---+s"/n! 0

0 14+ ¢4 2/20+82/31+ -

Letting n—> o0, we find that

. 2 m"
exp(m)=nll)nc}0 (1+m+—2—'—+ -+ n!)

nlgrgo(1+s+ - +s"/n!) 0 es 0
- lim (1414 +e/n)| |0 €

0
n—>oo

+ t"/n!)'
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Thus,
—T O) =(e‘ 0)'
p{(o z] 0 e

ExampLE 3. Find exp[(o I”

0 0
(o 1)2=(0 1)(0 1)=(0 0
00 0 0/\0 O 0 0)'
Hence,(O 1)": -
0 0 Oforn=23,....50

0 1\[_(1 O 0 1 1
[0 o)]=(o 0)+(0 0)=(5 1
[ 00 0 1 00 0 1/
Let A be a linear transformation. We define exp(A) as the linear

transformation whose matrix is exp[m(4)].

EXAMPLE 4. Let R, , be rotation by 7 /2. Find exp(R, /).

Set m = m(R =(0 _1)
( 77/2) 1 0 .
m2=(0 —l)(O —1)= -1 0
1 o1 o 0 1)=(_1)I'
Hence, for every positive integer k,
-k = (-1’1,

#= (=D =

and so
Y s e e ((_ l)kl)m =(-1)m
So
S
m*=(=lm, m'=1 m=m, m=(-1I, m'=(-lm

and so on. Hence,

°Xp<m>=1+m+%(—1>1+ (—1)m+ oy

1

= _1 1 1
=(l-=+-——-= _ 1 1
( 24 6'+ )I+(l 3!+—5!—%+~'~)m.

We can simplify this formula by recalling that

cosx:]—x_ x___x_
TR T TH
and
3 5 q
X X X
SInx = X —_ = - = “
TS5t
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SO
_q_ 1 1 1
cosl=1 Q_!+Z'_ 6!+ ;
and
T | 1 1 .
sml—l §—|+—§- -,7!—+
So

exp(m =(cosl)1+(sin1m=(cos1) 1 0) 4 (sin 1)(© — 1
) ) g 1)y T

= (cos 1 —sinl )
sinl  cosl
So exp(R, ) is the linear transformation whose matrix is

(cosl - sinl)'
sin 1 cosl

Exercise 2. Fix a scalar ¢ and consider the matrix (? —Ot) Show that

0 —t cost —sint :
= ) 1
exp{(t 0 )] (sint cost ) e

Exercise 3. Set m =( } } )

(i) Calculate m* for k=2,3,4,... .
(ii) Calculate exp(m) and simplify.

; 31
E 4. Set m = .
xercise et m ( 0 3)

(i) Calculate m* for k=2,3,4,... .
(ii) Calculate exp(m) and simplify.

g eigenval-

Xz). We

In Chapter 2.7, we considered a linear transformation 4 havin

: . X
ues 1,, t, with 7, % ¢, and eigenvectors X =(y') and X2=(y
1 2

defined linear transformations P and D with

Py = X, X, DY = t, 0
m )—()’1 )’2)’ P )_(0 tz),

and we showed, in formula (5) of Chapter 2.7, that

(m(A))"=m(P)(t(‘: t(zn)m(P’l), =158 50 «
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It follows that

exp(m(A)) = 1+ m(A) + 5y (m(A)*+

t, 0 oom(P)( 0 -
=1+m(P)(0' )m(P e (0’ 2 m(P~)+
2 2
n 0\, 1 (1 0
=mP)I1+|" |+ + o m(P7!
e (0 tz) 2!(0 t%) =
(where we have used that m(P) - m(P h=1)
1+, + 1208+ - 0
= m(P) 1+ ( )i m(P ")
0 l+6+1/20)g+ -+
=m(P e" O)mP".
(e 0 Jmer
Thus, we have shown:
Theorem 2.14.
f
exp(m() = m(P)(& © Jm2 (1)
eZ

ExAMPLE 5. Calculate exp[( i 43)}.

Here

So

(25} e (25 i)
By (11), we have
w3 )-GO 1
(020G )

_[ @/5)e+ (1/5)e™> (2/5)e’— (2/5)e™>
( (2/5)e° = (2/5)e™ (1/5 ;§5+ §4;5 ge”s)'

EXAMPLE 6. Calculate exp[ ((1) 8) ]
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1 (—) g Ot =2 — 1= 1(t— 1), the cigenvalues are t, =1, 1, =0.

The corresponding eigenvectors are X, = ((1)), X, = ((1)) So m(P)=

Since

((1) (1)) = 1, and then m(P ~") = 1. Hence, by (11),
1 0 e O e 0
exp[(o 0)] (0 1) (0 1)

Exercise 5.

(a) Compute ((1) 8)” forn=1,2,3,....

(b) Compute exp[((l) 8)] directly from the definition and compare your answer
with the result of Example 6.

Exercise 6. Using Theorem 2.14, calculate exp[(; _3 i ) ]
Exercise 7. Calculate exp[ (i (2))]

Exercise 8. Calculate exp[( } %) ]

Recall Eq. (5): dX/dt = m(X(?)), where m =(a Z,) We fix a vector X

C
and define X(7) = exp(tm)(X,). In §2, we shall show that X(¢) solves (5) and
satisfies the initial condition X(0) = X, and we shall study examples and

applications.

§2. Solutions of Differential Systems

We fix a matrix m and a vector X,.

2 3ue3
exp(tm)=1+tm+%?m2+t;’!1 P

SO
(exp(tm))(Xo) = Xo + tm(Xo) + 5—2, m*(Xo) + g—i m(Xg) + -

Both sides of the last equation are vector-valued functions of 7. It can be
shown that the derivative of the sum of the infinite series is obtained by

differentiating the series term by term. In other words,

4 {(exp(em)) (X)) = 4 (m(X0) + Lo (Xg))+ - (12)
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The right-hand side of (12) is equal to

m(Xo) + %mz(xo) + 33—’!2m3(x0) + ‘L—’!Sm“(xo) 3w
= m(X,) + tm*(Xo) + -gnﬂ(xo) + é—jm“(xo) + o
= m(X,) + m(1m(Xp)) + m(é—jm%xo)) + m( ;—jm3(X0)) + e
= m{x0 + m(Xo) + é—z!mz(xo) i ;—jm3(Xo) 5 wan }

= m{(exp(tm))(Xo)}-
So (12) gives us

L { (exp(1m))(Xo)) = m{(exp(1m))(Xo) ). (13)
We define X(7) = (exp(tm))(Xy)). Then (13) states that
X (1) = m(X(1)) (14)

In other Words, we have shown that X(7) solves our original equation (5).
Also, setting ¢ = 0 in the definition of X(7), we find that

X(0) = 1(Xo) = Xy (15)
since exp(0)=I+0+ 0+ -+ = 1. So we have proved:

Theorem 2.15. Let m be a matrix. Fix a vector X,. Set X
2 . L) =
for all t. Then, - o- Set X(#) = (exp(tm))(Xo)

%‘ = XL (16)
and
X(0) =X,. (17)

ExamPLE 7. Solve the differential system

dx _ _

a0

dy (18)
a7

with the initial condition: x(0) = 1, y(0) = 0.

In vector form, with X(t) = ( *(1) , we have
y()

a0 9w

@
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s _(0 -1 _(1 t
with initial condition X(0) =((1)) Set m = (1 0 ), Xo (0) and se
X(1) = exp(itm)(Xo)-

By Exercise 2 in this chapter,
—exol (© —t) ___(cost —sint)'
explim) = exp t 0 sint  cost
So
_ (cost —sint)(l)=(cgst).
X(1) (sint cost /\0 sin ¢
B i = = sint. Inserting these
Since X(f) = ) , we obtain x(f) = cost, y(t) = sint.
t

functions in (18), we see that it checks. Also, x(0)=1, y(0)=0, so the

initial condition checks also.

ExaMPLE 8. Solve the differential system (18) with initial condition x(0)

= x0, y(0) = yo-
X
We take X, = ( y(:)) and set

xo = (o0 5 o= (S oot )(52)

S0
(cost)xo — (sin t)yo)
A= ((sin 1)Xo + (cosf)yo )

So
x(t) = (cost)xo— (sin?) yo, y(t) = (sint)x, + (cos ) yo-

We check that these functions satisfy (18) and that x(0) = x,, y(0) = yo.

Exercise 9. Calculate exp[(i; —4’3t) ], where 7 is a given number.

Exercise 10. Using the result of Exercise 9, solve the system

dx 0)=1
=2 =3x+4y x(0)

j’ with , (19)
Y —4x-3 (0)=0

ar X =2y Y

: 4 _(1
by using Theorem 2.15 with m =(i B 3) and X, —(0).

Exercise 11. Solve the system (19) with x(0) = s, y(0) = s5.
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C
‘ i(t)
R
L
Figure 2.53
Exercise 12. Solve the system

%’E=2x+4y x(0)=1
d’ with : (20)
Z=txtey »(0)=0

Exercise 13. Solve the system (1) (at the beginning of this chapter) with initial
condition (2).

ExaMPLE 9. Consider an electric circuit consisting of a condenser of
capacitance C connected to a resistance of R ohms and an inductance of L
henries. A switch is inserted in the circuit (see Fig. 2.53). The condenser is
charged with a charge of Q, coulombs, with the switch open. At time ¢ = 0,
the switch is closed and the condenser begins to discharge, causing a
current to flow in the circuit. Denote by i(¢) the current flowing at time ¢
and by Q(7) the charge on the condenser at time ¢. The laws of electricity
tell us the following: the voltage drop at time 7 equals (1/C)Q(¢) across the
condenser, while the voltage drop across the resistance is Ri(¢) and the
voltage drop across the inductance is L(di/dr). The sum of all the voltage
drops equals O at every time ¢ > 0, since the circuit is closed. Thus, we have

£ Q)+ Ri(n) + 14— o
or

di _ 1 R .

o = — =000 — i)

€
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Also, the current at time ¢ equals the negative of dQ/dt or i(1)=

— dQ/dt. So the two functions: ¢ —> i(f) and ¢ —> Q(¢) satisfy
di _ 4i+ b,
dt 21)
@ __, (
a "

—1/LC. So to calculate the current flowing in the

where a= —R/L, b=
lve the differential system (21) with initial

circuit at any time ¢, we must SO
condition Q(0) = Qo i(0) =0.

ExampLE 10. Let ¢, ¢, be two scalars. We wish to solve the second-order

differential equation

d*x dx _

—6-1?—+C|—;1,7+C2X—0 (22)
by a function t—> x(7) defined for all ¢, and we want to satisfy the initial
conditions

d
x(0)=x0. G (=)o (23)
We shall reduce the problem (22) to a first-order differential system of the
form (3). To this end we define y(t) = (dx /d)(1). Then (22) can be written:
dy/dt+c y+cx=0o0r

a
71}ti= —CyX — €1 )

So x and y satisfy the differential system

dx

=

y (24)
7);= — X — C ).

4

ExaMpLE 11. We study the equation

e - dx 0y =
P +x=0, x(0) = X, i ©0)=yo- (25)
Setting y = dx /dt, (25) turns into
dx _
a7
0 x(0) = X0, 2(0)=Jo- (26)
P

Exercise 14. Fix a scalar 7. Show that

0 1 cost sint
t = i
exp[ (—l O)] (—sint cost)
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}l;;xe?cziss;a 15. Using the result of Exercise 14, solve first the equations (26) and then
q. .

In Theorem 2.15, we showed that the problem dX/dt = mX(z), X(0)
=X, h.as. X(#) = (exp(tm)(X,)) as a solution for all . We shall now show
that this is the only solution, or, in other words, we shall prove uniqueness
of solutions.

Suppose X, Y are two solutions. Then dX/dt =

) : = mX(¢), X(0) =X, and
dY/dt = mY(r), Y(0) = X,. Set Z(t) = X im i 5
5 0 = X(#) — Y(¢). Our ai t
Z(t) = 0 for all z. We have W EIE o

dZ

dt dt dt
= m(X(t) — Y()) = mZL(t). (27)
Also
Z(0) =X(0) - Y(0) =X, — X, =0. (28)

We now shall use (27) and (28) to show that Z .
t)=0forall . W
by f(¢) the squared length of Z(¢), i.e., ® ora & denate

f(y=1z(P.
t— f(¢) is a scalar-valued function. It satisfies

f(#)>0  forallr and f(0)=0.

Exercise 16. If A(z), B(¢) are two vector-valued functions, then

d
AW B =AM - LB +B(n) - A

It follows from Exercise 16 that

df —d
7 = i B0 20) =20 L+ 1) 4 =25y 4L
; dt dt i
Using (27), this gives

d
XJ;(’) = 2Z(1) - mZ(?)- (29)

W —(a b :
e set m (c d)' Fix ¢ and set Z(¢) = Z =(2) Then
2Zt-mZt=2(Z‘)- a byiz
() () 22 G d 22
=2(z|)_ az, + bz,
Z czy + dz,

- 2
=2(azi + bz\zy + czyz, + dz%).

€
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Let K be a constant greater than |al, |b], |cl, |d|. Then
21y - m2(r)| < 2(lalz} + 1Bl 2122l + Ie] |2l |21] + 1412217
S 2K(|Z||2 +2|z)| 22| + |22|2)-

Also,
2|z |z,| < |2112 + ‘Zzlz-

So
[2Z(1) - mZ(t)| < 21<(2|z,|2 +2|z,/%) = 41<(|z1|2 + |z,%)

= 4K|Z[* = 4Kf(?).
By (29), setting M = 4K, this gives
d
4 1y < My (30)

Consider the derivative

4 ( ﬁg) _ Mg/~ fyMe™” _ (/) ~ M)

dt 2Mt eM

By (30), the numerator of the right-hand term < 0 for all ¢. So

g(ﬂ’l)@,

dt\ eM

eM e

so f(t)/e™" is a decreasing function of 7. Also, f(£)/e"" >0 and = 0 at
¢ = 0. But a decreasing function of ¢, defined on ¢ > 0 which is > 0 for all ¢

and =0atr=0,is identically O.
So f(r)/e™" = 0 for all ¢. Thus |Z(1)|* = f(1) = 0, and s0 Z(t) =0, and so

X(7) = Y() for all 7.
We have proved:

Uniqueness Property. The only solution of the problem considered in Theorem
2.15 is X(¥) = (exp(tm))(Xo)-




