Here are some comments from me, before others' work:
3. This was mostly good. We had anticipated starting with $\mathrm{GM}=4 \times 10^{\wedge 14}$ for the earth and using 15% of that. I checked current reported values and they seem to indicate that Mars is actually closer to 10.8% of the Earth, not 15%. Please do not use this for planning your mission to Mars.
4. - 5. were mostly good also. To be clear, I checked data here also. The mean radius of the Earth is about $6.371 \times 10^{\wedge} 6 \mathrm{~m}$. Rounding that to 6.4 and adding 300 km gives the book number of $6.7 \times 10^{\wedge} 6 \mathrm{~m}$ for distance from the centre of the Earth for the rocket.
8. This was the trickiest one. Most importantly, this is a mathematics class so I need a mathematical justification for your answer. Quoting physics formulae or saying "make this negative" or "use the other value" does not suffice. Both rocket-firings, the beginning and the second should actually increase the speed. So, v1 <7785 and v2 $<$ 7560. (It is true that we could have computed these circular speeds from the given information. I did, and they checked.) Please read the exemplar and see how the steps follow. A summary is: use apogee and perigee to solve for eccentricity and gamma. From gamma, find K. Once you know K, you can easily find v from r, since at apogee and perigee r and v are perpendicular.
7. There needs to be comprehensible work for computing your line integrals. I like to see pullbacks, but that isn't needed. I do think actual integration _is_ needed, because it isn't a constant form.
16. The best way is demonstrated in the exemplar, there are others. Notice the question says "where along this segment". A t-value doesn't answer that, we need ranges of points on the segment itself.
3.4
(3)

$$
r=3300 \mathrm{kn}, \quad A A_{\mu}=0.15 \mathrm{me}
$$

$$
G M_{e}=4 \cdot 10^{114} \mathrm{~m}^{3} \mathrm{~s}^{2} \rightarrow G M_{M}=6-10^{13} \mathrm{~m}^{3} / \mathrm{s}^{2}
$$

Using work done from pages $70-71$,

$$
\begin{aligned}
& |\varepsilon|>1 \\
& \varepsilon^{2}=\sin ^{2} \phi\left(1-\frac{v^{2}}{6 m}\right)+\cos ^{2} \phi \\
& V_{s} \geqslant \sqrt{\frac{26 m}{r}} \rightarrow \text { independent of } \phi, " \text { escape speed" } \\
& V_{s}>\sqrt{\frac{1.2 \cdot b^{111}}{3 \cdot 1 \cdot 109}} \\
& V_{s} \geqslant 16030.23 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Consider a rocket fired 300 km above earth's surface $6.7 \times 10^{6} \mathrm{~m}$ from the center.
4.) What velocity must it attained if it is to remain in a circular orbit at this height? What is the period of this orbit?
$V_{0}=\sqrt{\frac{G M}{R}}$ where R is the Radius of orbit

$$
\begin{aligned}
& \text { Let } G M=4 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2} \quad R=6.7 \times 10^{6}=7.00 \\
& V=\sqrt{\frac{4 \times 10^{10}}{6.7 \times 10^{6}}}=77726.67 \mathrm{~m} / \mathrm{s} \\
& \text { Period }=\frac{2 \pi\left(6.710^{\circ}\right)}{7726.67}=5448.31 \text { seconds }=90 \text { minutes and } 48 \text { seconds }
\end{aligned}
$$

\#5. speed is $9000 \mathrm{~m} / \mathrm{s}$ and $\varnothing=\pi / 2$. What are the values of the apace and the pengee?

Since we know the angle blew $\vec{r}: \vec{v}$ is denoted by \varnothing_{1}, then $k=r v \sin \phi$

We know $r=6.7 E 6$ thus, $K=(6.7 E 6)(9000) \sin (\pi / 2)=6.03 E 10$

By equation (3.41) $\quad y=\frac{K^{2}}{G M}=\frac{(6.63 E 10 .)^{2}}{(4 E 14)}=9.09 E 6$
Finding ε by using cav $(3,54)$

$$
\varepsilon=\frac{r V^{2}}{G M}-1=\frac{(6.7 E 6)(9000)^{2}}{(4 E 14)}-1=0.35675
$$

thus

$$
\begin{aligned}
& \text { apogee }=\frac{y}{1-|\varepsilon|}=\frac{9.09 E 6}{1-.35675}=1.413 E 7 \\
& \text { perigee }=\frac{y}{1+|\varepsilon|}=\frac{9.09 E 6}{1+.35675}=6.6998 E 6 \\
& \text { period }=\frac{2 \pi}{\sqrt{G M}} a^{3 / 2}=\frac{2 \pi(1.041 E 7)^{3 / 2}}{\sqrt{(-4 E 14})}=10560.3 \\
& a=\frac{\gamma}{1-\varepsilon^{2}}=\frac{9.09 E 6}{1-(.35675)^{2}}=1.041 E 7
\end{aligned}
$$

8)

$$
\begin{aligned}
& r_{1}=6.6 \times 10^{6} \quad v_{1}=7785 \\
& \text { perigee }=6.6 \times 10^{6} \\
& =7.0 \times 10^{6} \quad v_{1}=? \\
& \text { apogee }=7 \times 10^{6} \quad v_{2}=\text { ? } \\
& r_{f}=7.0 \times 100 \quad v_{f}=7560 \\
& 6.6 \times 10^{6}(1+\varepsilon)=\gamma \\
& K=r v \sin \phi \\
& 7 \times 10^{6}(1-\varepsilon)=\gamma \\
& 5.21 \times 10^{10}=6.6 \times 10^{6} \mathrm{v}(\sin \pi / 2) \\
& 6.6 \times 10^{6}(1+\varepsilon)=7 \times 10^{6}(1-\varepsilon) \\
& 1+\varepsilon=35 / 33(1-\varepsilon) \\
& 1+\varepsilon=35 / 33-(35 / 33) \varepsilon \\
& v_{1}=7893.94 \mathrm{~m} / \mathrm{s} \\
& k=r v \sin \phi \\
& 1+(68 / 33) \varepsilon=35 / 33 \\
& (68 / 33) \varepsilon=2 / 33 \\
& 5.21 \times 10^{10}=7 \times 10^{6} v\left(\sin ^{\pi / 2}\right) \\
& v_{2}=7442.86 \\
& \varepsilon=.0294 \\
& \gamma=6.6 \times 10^{6}(1.0294) \\
& v_{1}=7893.94 \mathrm{~m} / \mathrm{s} \\
& =6794040 \\
& v_{2}=7442.86 \mathrm{~m} / \mathrm{s} \\
& \gamma=\frac{K^{2}}{G M} \\
& 6794040=\frac{k^{2}}{4 \times 10^{14}} \\
& K=5.21 \times 10^{10}
\end{aligned}
$$

Step 5

1) find $\vec{r}(t)$
2) (compute r^{*} (differential Arm) Loreplace $x y z$ from $\vec{r}(t)$
4.3 \#7) $y d x+z d y+x d z$
a) from $\left(0, \frac{2}{\vec{a}}-1\right)$ to $\left(\frac{3,0,1)}{\vec{b}}\right.$
$\vec{r}^{-1}(b)$
(I)
$\int_{-1}^{-1} \vec{x}^{x}(y d x+z d y+x d z)$

$$
\begin{aligned}
& \left.\vec{r}^{*}(y) d x=(2-2 t) \cdot 3 d t \quad r^{*}(z) d y=-1+2 t(-2 d t)\right\} \text { combine } \\
& r^{*}(x) d z=3 t \cdot 2 d t
\end{aligned}
$$

pullback
3) Solve

$$
\begin{aligned}
\vec{r}(t) & =\vec{a}+t(\vec{b}-\vec{a}) \\
& =(0,2,-1)+t(3,-2,2) \\
& =(\underbrace{3 t}_{x}, \underbrace{2-2 t}_{y}, \underbrace{-1+2 t}_{z})
\end{aligned}
$$

$\vec{r}^{-1}(\bar{a})$

$$
\begin{aligned}
& \int_{0}^{1} 6-6 t+2-4 t+6 t d t \\
& =\int_{0}^{1} 8-4 t d t \\
& 1
\end{aligned}
$$

$$
=8 t-2 t^{2}=8-2=6
$$

b) $\operatorname{from}\left(3, \frac{0}{a}, 1\right)+0\left(\frac{0}{\vec{b}}, 2,-1\right)$
step

$$
\begin{array}{ll}
\vec{r}(t)= & 3,0,1)+t(-3,2,-2) \\
= & =(3-3 t, 2 t, 1-2 t) \rightarrow \begin{array}{l}
x=3-3 t \\
y=2 t
\end{array} \\
z=1-2 t
\end{array}
$$

Step 2

$$
\begin{array}{l|l}
\text { step } & \int_{0}^{1} r^{*}(y d x+2 d y+x d z) \\
& r^{*}(y) d x=2 t \cdot-3 d t \\
& r^{*}(z) d y=(1-2 t) \cdot 2 d t \\
r^{*}(x) d z=(3-3 t)-2 d t & z=1-2 t \\
\begin{array}{c}
\text { step } \\
3
\end{array}=\int_{0}^{1}-6 t+2-4 t-6+6 t \\
& =\int_{0}^{1}-4-4 t d t \\
& =-4 t-2 t^{2} \mid=-4-2=-6
\end{array}
$$

c) from $(3,1,2)^{0}$ to $\left(-\frac{1}{b}, 1,1\right)$

$$
\begin{array}{rlrl}
\vec{r}(t) & =(3,1,2)+t(-4,0,-1) & & x=3-4 t \\
& =(3-4 t, 1,2-t) & & =1 \\
1 & =2-t
\end{array}
$$

5 cep 2

$$
\int_{0}^{*}(y d x+z d y+x d z)
$$

$$
\int_{1}^{0} r^{*}(y) d x=10-4 d t r^{*}(z) d y=(2-t) \cdot 0 d t, r^{*}(x) d z=(3-4 t) \cdot-1 d t
$$

Step $\left\{\left\{-4-3+4 t d t \rightarrow \int-7+4 t d t \rightarrow-7 t+2 t^{2} \mid=-7+2=-5\right.\right.$

Td) $\begin{aligned} & \text { from: } y d x+z d y+x d z \\ & \text { from }\left(01^{2},-1\right)+0(1,3,2) \\ & \vec{b}\end{aligned}$
3 kp

$$
\begin{aligned}
& \vec{r}(t)=(0,2,-1)+t(1,1,3) y=t \\
&=(t, 2+t,-1+3 t) y=2+t \\
& z=-1+3 t
\end{aligned}
$$

dep 2 $\int_{0}^{1} r^{*}(y d x+z a y+x d z)$
step $3=\int_{1}^{1} 2+t-1+3 t+3 t d t$

$$
=\int_{0}^{1} 7 t+1 d t \rightarrow 3.5 t^{2}+\left.t\right|_{0} ^{1}=3.5+1=4.5
$$

c) $\frac{\operatorname{com}}{\vec{a}} \frac{(1,3,2)+0(3,0,1)}{\vec{b}}$
step

$$
\begin{array}{rlrl}
\vec{r}(t) & =(1,3,2)+t(2,-3,-1) & x=1+2 t \\
& =(1+2 t, 3-3 t, 2-t) & y=3-3 t \\
z & =2-t
\end{array}
$$

sep $2 \iint r^{x}(d y d x+z d y+x d z)$
$(y) d x=(3-3 t) 2 d t r^{*}(z) d y=(2-t)-3 d t r^{*}(x) d z=(1+2 t)$
step 3

$$
\left\{\begin{array}{l}
\{6-6 t-15 t-1-2 t d t, \\
1-1-5 t d t \rightarrow-t-2.5 t^{2}{ }_{0}^{1}=-1-2.5=-3.5
\end{array}\right.
$$

16. Fluid flow: $\left(y-y^{2}\right) d x+(x y-x) d y$

$$
\begin{gathered}
\vec{a}=(2,-2) \quad \vec{b}=(2,4) \quad U_{\text {sing }}(x, y)=\vec{a}+t(\vec{b}-\vec{a}) \\
x=2 \quad d x=0 \\
y=-2+6 t \quad d y=6 d t \\
\left(y-y^{2}\right) d x=\left[(-2+6 t)-\left(4-12 t+36 t^{2}\right)\right](0)=0 \\
(x y-x) d y=(-4+12 t-2) 6 d t \\
\int_{0}^{1}(-36+72 t) d t=-36 t+\left.36 t^{2}\right|_{0} ^{1}=0
\end{gathered}
$$

