Comments and student work for PS4

8.3 9. was mostly straightforward. Everyone did fine with it.

10-12 was the interesting part of the problem set. There are two errors in this sequence of problems in the book. One is conceptual and disturbs me more, and one is quantitative and maybe disturbs you more. The conceptual error is that the entire problem refers to an n-sphere. The 1 -sphere is a circle, the 2 -sphere is the surface of a beach ball. This is not what it intended. What is intended is an n-ball. The 2 -ball is the inside surface of a disc, the 3 -ball is a solid filled in ball like a billiard ball.

The quantitative error is in the clue in the back for 12 . The factor in front is the reciprocal of the correct factor. It should be $\frac{n-1}{n}$. This is easily verified by asking a machine to compute the integral for $n=3$. The integral for $n=1$ gives a value of 2 . If you multiply that by $3 / 2$ you get 3 , but the integral for $n=3$ is $4 / 3$. Notice multiplying 2 by $2 / 3$ gives the correct answer.
8.3.10 Explaining the pattern is important, as is showing that these coordinates satisfy the equation for an n-sphere (here I mean sphere) of radius ρ. The ball is the collection of all spheres from radius 0 to r. If you do not explain why we need to extend our coordinates each step in this way you have shown that the points are some of the points in a ball, but not necessarily all of them. It is interesting that you have known the equation for a n-sphere for a long time because you see how to generalise from the circle to the sphere.
8.3.11 This question is probably the hardest of this set. I have good news and promise to keep - I will have no more n-dimensional questions for the remainder of the course. Adding a multiple of a row to another does not change the determinant. The same is true for a column (because taking the transpose does not change the determinant).
8.3.12 This integral is greatly simplified because you are integrating over a box - all bounds for the integrals are numbers, and also because the variables are isolated in multiplication. Using the fact that $\int_{a}^{b} \int_{c}^{d} f(x) g(y) d y d x=\int_{a}^{b} f(x) d x \int_{c}^{d} g(y) d y$ greatly simplifies this computation.

Therefore $\int_{S(r)} d x_{1} d x_{2} \ldots d x_{n}=\int_{B} \rho^{n-1} \cos \phi_{1} \cos ^{2} \phi_{2} \ldots \cos ^{n-2} \phi_{n-2} d \rho d \theta d \phi_{1} d \phi_{2} \ldots d \phi_{n-2}$ $=\int_{0}^{r} \rho^{n-1} d \rho \int_{0}^{2 \pi} d \theta \int_{-\pi / 2}^{\pi / 2} \cos \phi_{1} d \phi_{1} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi_{2} d \phi_{2} \ldots \int_{-\pi / 2}^{\pi / 2} \cos ^{n-2} \phi_{n-2} d \phi_{n-2}$

Using the above clue, and the easy first two integrals, you can build the pattern given in the text.
8.6.5 Please remember you need a justification for orientation - how you know to pull the form back to $d \theta d z$ and not $d z d \theta$. This is done in the exemplar. Without it, your work is only a lucky guess.
8.6.11 Is merely computing $d \sigma$ using the definition $d \sigma=\left|\frac{\partial F}{\partial r} \times \frac{\partial F}{\partial \theta}\right| d r d \theta$. In this case, F is the function from (r, θ) to (x, y, z). There is no orientation check needed here because of the magnitude.
8.6.13 it seems the biggest challenge in a problem that was mostly routine was to understand that a torus is made by rotating a circle around another circle. Therefore the limits
for both angle variables need to include a full circle. Most likely this means both angles go from 0 to 2π, but any range that includes the full circle, e.g. $-\pi$ to π would suffice.
8.3

$$
\begin{aligned}
& \text { 9. } x=0 \cos \theta \cos \phi \\
& \begin{array}{l}
y=p \sin \theta \cos \phi \\
z=0 \sin \phi
\end{array} \\
& z=\rho \sin \phi \\
& J=\left|\begin{array}{ccc}
\frac{\partial x}{\partial p} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial p} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial p} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right|=\left\lvert\, \begin{array}{ccc}
\cos \theta \cos \phi & p \cos \delta s i n & -p \cos \operatorname{cosch} \theta \\
\sin \theta & \cos \phi & p \cos \theta \\
\sin \phi & 0 & 0
\end{array}\right. \\
& J=\cos t \cos (\phi)\left(\rho^{2} \cos ^{2}-\cos ^{2} \phi\right)+\rho \operatorname{tas} \phi \sin \theta\left(\rho \sin \theta \cos ^{2} \phi+\rho \sin \theta \sin ^{2} \phi\right) \\
& T p \cos b \sin \phi(0-p \cos \theta \cos \phi \sin \phi) \\
& =\rho^{2} \cos ^{2} \theta \cos ^{3} \phi+\rho^{2} \sin ^{2} \theta-\cos ^{2} \phi+p^{2} \cos ^{2} \phi \sin ^{2} \theta \theta^{2} \phi+p^{2} \cos ^{2} \theta \cdot \operatorname{cin}^{2} \phi \cos \phi \\
& \equiv p^{2} \cos ^{3} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+p^{2} \sin ^{2} \phi \cos \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =\rho^{2} \cos ^{3} \phi+\rho^{2}\left(1-\cos ^{2} \phi\right) \cos \phi=\rho^{2} \cos ^{3} \phi+\rho^{2} \cos ^{2} \phi \rho^{2} \cos ^{3} \phi \\
& =\rho^{2} \cos \phi
\end{aligned}
$$

10) We know that the parametrized coordinates of a $n=2$ dimensional circle with radius p are $x_{i} p \cos \theta$ and $x_{2}=p \sin \theta$ To compute the coordinates of a $n=3$ dimensional sphere,
((6) we multiply X_{1} by $\cos \theta_{1}, X_{2}$ by $\cos Q_{1}$, and add an $x_{n=3}$ coordinate to find $x_{1}=p \cos \rho \cos \phi_{1} x_{2}=p \sin \theta \cos \phi_{1}$, $x_{3}=\rho \sin \phi$. Similarly, to compute the coordinates of a $n=4$ dimensional sphere, we multiply x_{1}, x_{2}, and x_{3} $x_{1}=\cos \theta \cos \phi_{1}, \cos \phi_{2}, \quad x_{3}=\rho \sin \theta \cos \phi_{1} \cos \phi_{2}, x_{3}=p \sin \phi_{1} \cos \phi_{2}$ sphere, we multiply $x_{11} x_{2}, x_{3}, x_{4}$ by $\cos \phi_{3}$ and add an $x_{n}==\operatorname{coordinate}$ to find $x_{1}=P \cos \theta \cos \phi_{1} \cos \phi_{2} \cos \phi_{3}$,
$y_{2}=\rho \sin \theta \cos \phi_{1} \cos \theta_{2} \cos \theta_{2}, x_{2}=\rho \sin \theta_{1} \cos \theta_{2} \cos \theta_{3}$ $x_{4}^{2}=p \sin \phi_{2} \cos \phi_{3}, x_{5}=p \sin \phi_{3}$ converting back to Cartesian coordinates for our 5D sphere, our equation becomes $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=p^{2} \cos ^{2} \theta \cos ^{2} \phi_{1} \cos ^{2} \phi_{2} \cos ^{2} \phi_{3}+p^{2} \sin ^{2} \theta$
$\cos ^{2} \theta^{2} \cos ^{2} \phi_{2} \cos ^{2} \phi_{3}+p^{2} \sin ^{2} \theta_{1} \cos ^{2} \phi_{2} \cos ^{2} \theta_{2}+$ $p^{2} \sin ^{2} \Phi_{2} \cos ^{2} \theta_{3}+p^{2} \sin ^{2} \Phi_{3}=p^{2}$ as desired. Thus (dy) this parametrization holds.

Now consider the case of the 4 -sphere, with the given parametrization

$$
\begin{aligned}
& x_{1}=\rho \cos \theta \cos \phi_{1} \cos \phi_{2} \\
& x_{2}=\rho \sin \theta \cos \phi_{1} \cos \phi_{2} \\
& x_{3}=\rho \sin \phi_{1} \cos \phi_{2} \\
& x_{4}=\rho \sin \phi_{2}
\end{aligned}
$$

Here, the Jacobian matrix takes the form

$$
\frac{d\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{d\left(\rho, \theta, \phi_{1}, \phi_{2}\right)}=\left[\begin{array}{llll}
\frac{\partial x_{1}}{\partial \rho} & \frac{\partial x_{1}}{\partial \theta} & \frac{\partial x_{1}}{\partial \phi_{1}} & \frac{\partial x_{1}}{\partial \phi_{2}} \\
\frac{\partial x_{2}}{\partial \rho} & \frac{\partial x_{2}}{\partial \theta} & \frac{\partial x_{2}}{\partial \phi_{1}} & \frac{\partial x_{2}}{\partial \phi_{2}} \\
\frac{\partial x_{3}}{\partial \rho} & \frac{\partial x_{3}}{\partial \theta} & \frac{\partial x_{3}}{\partial \phi_{1}} & \frac{\partial x_{3}}{\partial \phi_{2}} \\
\frac{\partial x_{4}}{\partial \rho} & \frac{\partial x_{4}}{\partial \theta} & \frac{\partial x_{4}}{\partial \phi_{1}} & \frac{\partial x_{4}}{\partial \phi_{2}}
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\cos \theta \cos \phi_{1} \cos \phi_{2} & -\rho \cos \phi_{1} \cos \phi_{2} \sin \theta & -\rho \cos \theta \cos \phi_{2} \sin \phi_{1} & -\rho \cos \theta \cos \phi_{1} \sin \phi_{2} \\
\cos \phi_{1} \cos \phi_{2} \sin \theta & \rho \cos \theta \cos \phi_{1} \cos \phi_{2} & -\rho \cos \phi_{2} \sin \theta \sin \phi_{1} & -\rho \cos \phi_{1} \sin \theta \sin \phi_{2} \\
\cos \phi_{2} \sin \phi_{1} & 0 & \rho \cos \phi_{1} \cos \phi_{2} & -\rho \sin \phi_{1} \sin \phi_{2} \\
\sin \phi_{2} & 0 & 0 & \rho \cos \phi_{2}
\end{array}\right]
$$

We subtract the product of each element in the last column and the ratio of the first element in the first column to the first element in the last column from the first column of the Jacobian matrix, all elements but the first are effectively eliminated
from the first column. Similarly, by following a similar procedure for the second and third columns of the Jacobian Matrix, the first element in the second column and the first two elements in the third column become zeros:

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & -\rho \cos \theta \cos \phi_{1} \sin \phi_{2} \\
0 & \rho \sec \theta \cos \phi_{1} \cos \phi_{2} & 0 & -\rho \cos \phi_{1} \sin \theta \sin \phi_{2} \\
0 & \rho \cos \phi_{2} \sin \phi_{1} \tan \theta & \rho \sec \phi_{1} \cos \phi_{2} & -\rho \sin \phi_{1} \sin \phi_{2} \\
\csc \phi_{2} & -\rho \cos \phi_{2} \cot \phi_{2} \tan \theta & -\rho \cos \phi_{2} \cot \phi_{2} \phi_{1} & \rho \cos \phi_{2}
\end{array}\right]
$$

We can make this a lower triangular matrix by switching, once again, the first and fourth columns of the Jacobian matrix; a factor of -1 is multiplied to the determinant of this matrix, which is nothing more than the product of the elements along its main diagonal:

$$
\begin{aligned}
J & =\csc \phi_{2} \rho \sec \phi_{1} \cos \phi_{2} \rho \sec \theta \cos \phi_{1} \cos \phi_{2} \rho \cos \theta \cos \phi_{1} \sin \phi_{2} \\
& =\rho^{3} \cos \phi_{1} \cos ^{2} \phi_{2}
\end{aligned}
$$

Thus satisfying the sequence for $n=4$. Therefore, by induction, the Jacobian of the n -sphere is given by

$$
J=\rho^{n-1} \cos \phi_{1} \cos ^{2} \phi_{2} \ldots \cos ^{n-2} \phi_{n-2}
$$

12) Let $S(r)$ be the n-sphere of radius r. Integrate the pullback of $\int_{s(r)} d x_{1} d x_{2} \ldots d x_{n}$ and so prove that the volume of $S(r)$ is

$$
\begin{aligned}
& \frac{2^{n / 2} \pi^{n / 2} r^{n}}{2 \cdot 4 \cdot 6 \cdot \cdots n}=\frac{\pi^{1 / 2}}{(n / 2)!} r^{n}, n \text { is even } \\
& \frac{2^{(n+1) / 2} \pi^{(r-1)} r^{2}}{1 \cdot 3 \cdot 5 \cdot n}=\frac{[(n-1) / 2]!}{n!} 2^{n} \pi^{(n-1) / 2} r^{n}, n \text { odd }
\end{aligned}
$$

Integral for 3 -sphere $B=$ brick given by range of p, θ, ϕ, \ldots,

$$
\begin{aligned}
& \int_{S(r)} d x_{1} d x_{2} d x_{3} \rightarrow \int_{B} \quad \rho^{2} \cos \varphi_{1} d \rho d \theta d \varphi_{1} \\
& \int_{0}^{r} \rho^{2} d \rho \rightarrow \int_{0}^{r} \frac{\rho^{3}}{3} \rightarrow \frac{r^{3}}{3} \quad \int_{n_{0}}^{+2 \pi} \int_{0}^{2 n} \rho^{2} \cos \varphi_{1} d \rho d \theta d \phi_{1}=\left(\frac{r^{3}}{3}\right)(2 \pi)(2)=\frac{4}{3} \pi r^{3} \\
& \int_{0}^{2 \pi} d \theta=2 \pi \int_{-\pi / 2}^{\pi / 2} \cos \varphi_{1} d \varphi_{1}=2 \quad \frac{[(2) / 2]!}{3!}\left(2^{3}\right)\left(n^{2 / 2}\right) r^{3} \rightarrow \frac{8}{6} \pi r^{3}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

this matelus!
Integral for 4 -sphere

$$
\begin{aligned}
& \int_{S(r)} d x_{1} d x_{2} d x_{3} d x_{4} \rightarrow \int_{D}, \rho^{3} \cos \theta_{1} \cos ^{2} \theta_{2} d \rho d \theta d \phi_{1} d \theta_{2} \\
& \int_{0}^{r} \rho^{3}=\frac{r^{4}}{4} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi_{2} d \varphi_{2}=\frac{\pi}{2} \int_{2=\frac{\pi}{2}}^{\pi} \int_{0}^{\pi} \int_{0}^{2} \rho^{r} \cos ^{r} \phi_{1} \cos ^{2} \theta_{2} \phi d \theta d \phi_{1} d \phi_{2}=\left(\frac{r^{4}}{4}\right)(2 n)(2)\left(\frac{1}{2}\right) \\
& \text { even formula }=\frac{\pi^{4 / 2}}{(2!)} r^{4}=\frac{r^{4} \pi^{2}}{2} \quad=\frac{r^{4} \pi^{2}}{2}
\end{aligned}
$$

Integral for 5-sphere
$\int_{s(r)} d x_{1} d x_{2} d x_{3} d x_{1} d x_{3} \int_{B} \rho_{1}^{4} \cos \varphi_{1} \cos ^{2} \varphi_{2} \cos ^{3} \varphi_{3}^{\prime} \quad d \rho d \theta d \varphi_{1} d \phi_{2} d \theta_{3}$

$$
\begin{aligned}
& \int_{0}^{r} \rho^{4}=\frac{r^{5}}{3} \int_{-\pi / 2}^{\pi / 2} \cos ^{3} \varphi_{3}=\frac{4}{3} \rightarrow \int_{2}^{1} \iint_{2}^{\frac{\pi}{2}} \int_{0}^{\pi 2 \pi} \int_{0}^{r} \rho^{2} \cos ^{2} \varphi_{1} \cos ^{2} Q_{2} \cos ^{3} \varphi_{3}=\left(\frac{r^{5}}{5}\right)(2 \pi)(\lambda)\left(\frac{\pi}{2}\right)\left(\frac{4}{3}\right) \\
& \text { check w/ formula: } 2^{5} \pi^{(4 / 2)} r^{5}\left(\frac{2!}{5!}\right)=\frac{64}{120} \pi^{2} r^{5}=\frac{8}{15} \pi^{2} r^{5}=\frac{16 \pi^{2} r^{5}}{30}=\frac{8}{15} \pi^{2} r^{s}
\end{aligned}
$$

(2-sphere
$\left.\int \operatorname{sen}\right) d x_{1} d x_{1} d x_{1} d x_{4} d x_{3} d x_{6} \rightarrow \int_{B} P^{5} \cos _{1} \varphi_{1} \cos ^{2} \varphi_{2} \cos ^{3} \varphi_{3} \cos ^{4} \varphi_{4} d \rho d e d \varphi_{1} d \theta_{2} d \theta_{3} d \theta_{4}$
 $\int_{0}^{r} P^{n-1}$ is trivial, and there's a clear patton this e. When
multiplying the eld ($n-2$) volume by these new comenents we

occemts for our present

polar coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

\#5. Find the rate at which the flow

$$
\begin{aligned}
& \vec{v}=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}, \frac{z}{x^{2}+y^{2}}\right) \\
& v \text { cylindral surface }
\end{aligned}
$$

crosses the cylindral surface

$$
S^{\prime}=\left\{(x, y, z) \mid x^{2}+y^{2}=4 \quad 0 \leqslant z \leqslant 2\right\}
$$

oriented sothat the positive direction is away from the z axis.
Using the parametrization:

$$
\begin{array}{ll}
x=2 \cos \theta & 0<\theta<2 \pi \\
y=2 \sin \theta & 0 \leq z \leq 2 \\
z=z &
\end{array}
$$

Let $\vec{F}(\theta, z)=(x, y, z)$

$$
d F=\left[\begin{array}{cc}
x \\
z & -2 \sin \theta \\
2 \cos \theta & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \theta, z, \text { or } z, \theta_{B} ? \\
& {[(2,0,0),(0,2,0),(\sqrt{2}, \sqrt{2}, 2)]} \\
& \times, y z z, \\
& {[(0,0),(\pi / 2,0),(\langle\pi / 4,2)]}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}^{*}(d y d z)=2 \cos \theta d \theta d z \\
& F^{*}(d z d x)=2 \sin \theta d \theta d z
\end{aligned}
$$

$$
F^{*}(d x d y)=0
$$

$$
\int_{T} v_{1} d y d z+v_{2} a z d x+\bar{v}_{3} d x d y=\int_{0} \frac{x}{x^{2}+y^{2}} d y d z+\frac{y}{x^{2}+y^{2}} d z d x \leftarrow \frac{z}{x^{2}+y^{2}} d x d y
$$

$$
\int_{s}\left(\frac{\cos \theta}{2}\left(2 \cos \theta_{1}\right)+\frac{\sin \theta}{2}(2 \sin \theta)+\frac{z}{4}(0)\right) d \theta d z
$$

$$
=\int_{s}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta d z=\int_{0}^{2} \int_{0}^{2 \pi} d \theta d z=\int_{0}^{2} 2 \pi d z
$$

$$
\equiv 4 \pi
$$

Let $\frac{\partial f}{\partial r}=f_{r}$ and $\frac{\partial f}{\partial \theta}=f_{0}$
11.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \quad \text { WMS that } d \theta=\sqrt{1+\left(\frac{\partial f}{2 f}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}} r d r d \theta \\
& z=f(r, \theta)
\end{aligned}
$$

$$
\begin{aligned}
& d \sigma=\left|\frac{\partial \vec{F}}{\partial r} \times \frac{\partial \vec{F}}{\partial \theta}\right| d r d \theta \text { where } \vec{F}=(r \cos \theta, r \sin \theta, f(r, \theta)) \\
d \sigma= & \left|\left(-f_{r} r \cos \theta+f_{0} \sin \theta\right),\left(-f_{0} \cos \theta-f_{r} r \sin \theta\right),\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)\right| \\
= & \sqrt{\left(f_{0} \sin \theta-f_{r} r \cos \theta\right)^{2}+\left(-f_{\theta} \cos \theta-f_{r} r \sin \theta\right)^{2}+r^{2}} d r d \theta \\
= & {\left[f_{r}^{2} r^{2} \cos ^{2} \theta-2 f_{r} f_{0} r \cos \theta \sin \theta+f_{0} \sin ^{2} \theta+f_{0}^{2} \cos ^{2} \theta\right.} \\
& \left.+2 f_{r} f_{0} r \cos \theta \sin \theta+f_{r}^{2} r^{2} \sin ^{2} \theta+r^{2}\right]^{1 / 2} d r d \theta \\
= & \sqrt{f_{r}^{2} r^{2}+f_{\theta}^{2}+r^{2}} d r d \theta \\
= & \sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r}\left(\frac{\partial f}{\partial \theta}\right)^{2}} d r d \theta
\end{aligned}
$$

S8.6 Exercise 13
Given: $x=(a+b \cos \theta) \sin \phi \quad y=(a+b \cos \theta) \cos \phi \quad z=b \sin \theta$ for a tors where $(a>b)$

$$
0 \leq \varnothing, \theta \leq 2 \pi
$$

Parametrize:

$$
\vec{F}(\theta, \phi)=((a+b \cos \theta) \sin \phi,(a+b \cos \theta) \cos \theta, b \sin \theta)
$$

Surface area $S=\int_{S} d \sigma=\int_{R}\left|\frac{\partial \vec{F}}{\partial \theta} \times \frac{\partial \vec{F}}{\partial \phi}\right| d \theta d \varnothing$

$$
\begin{aligned}
& \Rightarrow \frac{\partial \vec{F}}{\partial \theta}=(-b \sin \theta \sin \theta,-b \sin \theta \cos \phi, b \cos \theta) \\
& \frac{\partial \vec{F}}{\partial \phi}=((a+b \cos \theta) \cos \phi,-(a+b \cos \theta) \sin \phi, 0) \\
& x
\end{aligned} c \begin{array}{ccc}
x & \text { y } \\
-b \sin \theta \sin \theta & -b \sin \theta \cos \phi & b \cos \theta \\
(a+b \cos \theta) \cos \phi & -(a+b \cos \theta) \sin \phi & 0
\end{array}\left|\left\lvert\, \begin{array}{cc}
& \frac{\partial \vec{F}}{\partial \theta} \times \frac{\partial \vec{F}}{\partial \phi}=\left|\begin{array}{cc}
\\
\hline
\end{array}\right| \\
\left.=(a+b \cos \theta) b \cos \theta \sin \phi,-(a+b \cos \theta) b \cos \theta \cos \phi,(a+b \cos \theta) b \sin \theta \sin ^{2} \phi+(a+b \cos \theta) b \sin \theta \cos ^{2} \phi\right) \\
=(a+b \cos \theta) b(\cos \theta \sin \phi,-\cos \theta \cos \phi, \sin \theta)
\end{array}\right.\right.
$$

Magnitude of the cross-product $\left|\frac{\partial \vec{F}}{\partial \theta} \times \frac{\partial \vec{F}}{\partial \phi}\right|$:

$$
\begin{aligned}
& (a+b \cos \theta) b \sqrt{\cos ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta}=b(a+b \cos \theta) \\
& \int_{S} d \sigma=\int_{R}\left|\frac{\partial \vec{F}}{\partial \theta} \times \frac{\partial \vec{F}}{\partial \phi}\right| d \theta d \phi=b \int_{0}^{2 \pi} \int_{0}^{2 \pi}(a+b \cos \theta) d \theta d \phi \\
& =b \int_{0}^{2 \pi} 2 \pi a+b \sin 12 \pi d \phi=4 \pi a b
\end{aligned}
$$

The surface area of the given toms is $4 \pi a b$

