Problem set 5 exemplars and comments.
You might have missed it, but somewhere along the way this course became geometric and visual. You cannot ignore that aspect. Calc III was heavily geometric and there are ways that our course is moreso. It is important to be able to reason both visually and also with equations. The first two problems on this problem set require visual reasoning. You need to not be averse to drawing pictures.
10.3.7 is about how paths fit together. Remember that lomega is not defined at the origin in this problem. You need to find a region not containing the origin that is contractible where it is defined. That is the basic idea - cutting the region into pieces that work nicely.
10.3.8 is for any two points. It is important to start with the two points and _then_ two paths connecting them, and finally that makes a curve to which the given can be applied.
10.3.14 is rather straightforward - differentiate omega and set the result equal to zero. Each term must be zero, so gather them together to get three equations. Reasons matter.
10.3.19 show closed by differentiating and then integrate by different variables. Do *NOT* add the results. Smoosh them together, or see how they are combined on pp. 292-293.
10.5.5 is rather straightforward - please get in the habit of using the FTC by differentiating, not by remembering ugly formulae. Remember changing order of integration is allowed as always in Calc III, it is not a sign change by changing orientation.
10.5.9 translate _first_ (as the directions say) so that there are no more triangles in your work. Then look at each side and see that they are related by the FTC (i.e. take the derivative of the 1 -form and see that it equals the 2 -form). Be careful _always_ each step on the way to match the dimensions of your integration location to the order of the form.
10.5.14 the torus here is produced by rotating the circle $(x-4)^{\wedge} 2+z^{\wedge} 2=1$ around the $z-$ axis. The derivative of the 2 -form is $3 d x d y d z$, so this is, in the end, merely finding 3 times the volume of this particular torus. There is a parametrisation (including bounds) in the back. It is your job to find the Jacobian, either from a determinant of a matrix or by multiplying $d x d y$ and $d z$ in exterior algebra. The rho-theta-phi orientation works fine here. In this case because you are finding 3 times the volume, if you get a negative final answer, you know it is incorrect.

On both of these last problems (and always) you are required to follow directions. If it doesn't say how to do a problem, you are free to choose your own way. If it says "Use Gauß's theorem" and you don't, you have not done the problem.

Remember you have a quizam on this material coming soon (open 30 April-1 May).

1003 7) let $\omega:$ closed 1 -form in $\mathbb{R}^{2} w /$ ore singularity $Q(0,0)$
Show that if $C_{1} \& C_{2}$ ar any pair of closed curves encircling (samedircction) the origin, then

$$
\oint_{c_{1}} \omega=\oint_{c_{7}} \omega
$$

o note Pg 2933 "if no arrow is given, it is assumed that the [loop] curvere is following the counter dockwise direction"

- Poincare's Lemma: if ω is closed ion a contractible region, then w is exact in that region
consider the line L crossing through $(0,0)$, dividing \mathbb{R}^{2} into two contractible subsets A and BeGone of the sets contain L)。 Then ω is exact over A and exact over B.
let $C_{1 a}$ of $C_{2 a}$ be the segments of loops C_{1}, C_{2} in A, ard let
$C_{1 b}, C_{2} b$ be the segments of C_{1}, c_{2} in B, and L_{1}, L_{2} be the segments
 now, consider the closed loops $c_{1 a} \cup L_{1} \cup-c_{2 a} \cup L_{200}$ Because ω is exact and $c_{1 a} U_{L_{1}} U-C_{2 a} U_{L_{2}}$ is closed,

$$
\int_{C_{1 G U L,} U_{-C_{2 G}} U_{L 2}}=\int_{\phi} d \omega=0
$$

On the other side, we have an opposite oriented loop (cia is oriantad ccwise)

$$
\int_{C_{1}} U_{L_{2}} U \cdot C_{20} U_{-L}=\int_{\phi} d \omega=0
$$

composing our to loops cancels: the contribution alloy L_{1}, ans $L_{?}$

$$
\int_{C l a} \omega+\int_{L_{1}} \omega+\int_{-C_{2 a}} \omega+\int_{L_{2}} \omega \cdot \int_{C_{1} b} \omega+\int_{-L_{2}} \omega+\int_{-c_{2} b} \omega+\int_{-L_{1}} \omega=0
$$

Grouping like terms:

$$
\begin{gathered}
\left(\int_{C_{1 a}} \omega+\int_{C_{i} b} \omega\right)+\left(\int_{C_{2 a} \omega} \omega+\int_{-2 b} \omega\right)+\left(\int_{L_{1}} \omega+\int_{\left.-L_{1} \omega\right)}+\left(\int_{L_{2}} \omega+\int_{-L_{2}} \omega\right)=0\right. \\
\oint_{C_{1}} \omega+0+0+0=0 \\
\oint_{C_{1}} \omega-\oint_{C_{2}} \omega=0 \quad \square
\end{gathered}
$$

8 shaw that if w is a differention 1 - town in R^{2} for whin the integral oread any closed curve is 0 then the integral of w between any two points is independent of the perth
we know any integral w over a closed curve

$$
\oint_{c} w d_{w}=0
$$

now assume we have two points a and b that
are on a closed path C
let C_{1} ard C^{2} be two path inside R that both start
let C be the corves abtaines by talking. The \vec{a} path from \vec{a} to \vec{b} and the gain from \vec{b} to at clang C_{2} in the rename dovector
Since the curve C is closed that means

$$
o=\oint_{c} w=\int_{c_{1}} w \int_{c_{2}} w w=\int_{c_{2}} w
$$

therefore the integry at W between any wo point is irdeprotes cat the pout
(14)

$$
\begin{aligned}
& \text { Ton a lased 1-formen of the form } \\
& \text { Ce }=6 d x+y d y+h d y) \text { find tho } \\
& \text { nantill defferental equation } \\
& \text { that musthole for de }(0)=0 \text { ta } \\
& \text { be true. }
\end{aligned}
$$

$$
\begin{aligned}
& W=f d x+y d y+h d z \\
& d \omega=\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial y} d y\right) d x \\
& +\left(\frac{\partial y}{\partial x} d x+\frac{\partial g}{\partial y} d y+\frac{\partial y}{\partial y} d y\right) d y \\
& +\left(\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y+\frac{\partial h}{\partial z} d y\right) d z=0 \\
& =\frac{\partial f}{\partial \partial} d y d x+\frac{\partial f}{\partial z} d z d x+\frac{\partial y}{\partial x} d x d y+\frac{\partial y}{\partial z} d y d y \\
& +\frac{\partial h}{\partial x} d x d y+\frac{\partial h}{\partial y} d y d z \\
& =\left(\frac{\partial y}{\partial x}-\frac{\partial k}{\partial y}\right) d x d y+\left(\frac{\partial y}{\partial z}-\frac{\partial h}{\partial x}\right) d y d x \\
& +\left(\frac{\partial h}{\partial y}-\frac{\partial z}{\partial z}\right) d y d y=0 \\
& \therefore \text { tho follacering pores holdi } \\
& \frac{\partial z}{\partial x}=\frac{\partial h}{\partial y}, \frac{\partial l}{\partial z}=\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}=\frac{\partial z}{\partial z}
\end{aligned}
$$

Problem 10.3.19:

1. Let $\omega=(2 x+y) d x+(x+z t) d y+(y t-t) d z+(y z-z) d t$. For a differential form to be closed, we must satisfy $d \omega=0$. Taking the differential of the 1-form,

$$
\begin{aligned}
d \omega & =d((2 x+y) d x+(x+z t) d y+(y t-t) d z+(y z-z) d t) \\
& =(2 d x+d y) d x+(d x+t d z+z d t) d y+(t d y+y d t-d t) d z+(z d y+y d z-d z) d t \\
& =d y d x+d x d y+t d z d y+z d t d y+t d y d z+y d t d z-d t d z+z d y d t+y d z d t-d z d t \\
& =0
\end{aligned}
$$

Therefore, ω is closed and as a result, a scalar field F exists that satisfies $\omega=d F$.

Finding $d F$ calls for integrating each individual "component" of the 1-form ω :

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =2 x+y \longrightarrow \int \frac{\partial F}{\partial x} d x=\int 2 x+y d x \\
& \Longrightarrow F(x, y, z, t)=x^{2}+x y+f(y, z, t) \\
\frac{\partial F}{\partial y} & =x+z t \longrightarrow \int \frac{\partial F}{\partial y} d y=\int x+z t d y \\
& \Longrightarrow F(x, y, z, t)=x y+y z t+g(x, z, t) \\
\frac{\partial F}{\partial z} & =y t-t \longrightarrow \int \frac{\partial F}{\partial z} d z=\int y t-t d z \\
& \Longrightarrow F(x, y, z, t)=y z t-z t+h(x, y, t) \\
\frac{\partial F}{\partial t} & =y z-z \longrightarrow \int \frac{\partial F}{\partial t} d t=\int y z-z d t \\
& \Longrightarrow F(x, y, z, t)=y z t-z t+j(x, y, z)
\end{aligned}
$$

Thus by inspection, the scalar field should take the form

$$
F(x, y, z, t)=x^{2}+x y+y z t-z t
$$

\#5. Use areeris theorem to evaluate

$$
\oint_{c} y d x+x^{2} d y
$$

where C follows the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$ and then returns on the straight line from $(1,1)$ to $(-1,1)$

Green's Theorem vs $\int_{C} P d x+Q d y=+\iint_{0}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$

$$
\begin{aligned}
& \oint_{c} y d x+x^{2} d y=\int_{-1}^{1} \int_{x^{2}}^{1} 2 x-1 d y d x=\int_{-1}^{1}[2 x y-y]_{x^{2}}^{1} d x \\
& \left.=\int_{-1}^{1}[2 x-1)-\left(2 x^{3}-x^{2}\right)\right] d x=\int_{-1}^{1} 2 x-1-2 x^{3}+x^{2} d x \\
& =\left[\frac{2 x^{2}}{2}-x-\frac{2 x^{4}}{4}+\frac{x^{3}}{3}\right]_{-1}^{1}=\left(x-x-\frac{1}{2}+\frac{1}{3}\right)-\left(1+1-\frac{1}{2}-\frac{1}{3}\right)=-4 / 3
\end{aligned}
$$

9)

$$
\begin{aligned}
& \text { a) } \oint_{\partial R} \frac{\partial g}{\partial n} d s=\oint_{\partial R} \nabla g \cdot \vec{n} d s=\oint_{\partial R}-\frac{2 g}{\partial y} d x+\frac{\partial g}{\partial x} d y \\
& \int_{R} \nabla^{2} g d x d y=\int_{K}\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} q}{\partial y^{2}}\right) d x d y
\end{aligned}
$$

By the fundamental theorem of calculus, we know that $\oint_{\partial m} \omega=\int d \omega$ if we let $\omega=\frac{-\partial g}{\partial y} d x+\frac{\partial 9}{\partial x} d y$, then

$$
\begin{aligned}
& \oint_{\partial a} \omega=\int_{d \omega} d \omega=d\left(-\frac{\partial g}{\partial v} d x+\frac{\partial g}{\partial x} d y\right)=d\left(-\frac{\partial g}{\partial y}\right) d x+d\left(\frac{\partial g}{\partial x}\right) d y=\left(d x-\frac{\partial^{2} g}{\partial y} d y\right) d x \\
& \left.+\frac{\partial \partial^{2}}{\partial x^{2}} d x+d y\right) d y=-\frac{\partial a}{\partial y^{2}} d y d x+\frac{\partial^{2}}{\partial y^{2} x} d x d y=\left(\frac{\partial a}{\partial y^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right) d x d y \text { Thus, } \\
& \oint_{\partial R} \frac{\partial g}{\partial n} d s=\oint_{\partial R}-\frac{\partial g}{\partial y} d x+\frac{\partial g}{\partial x} d y=\int_{R}\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}\right) d x d y=\int_{R} \nabla^{2} g d x d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \oint_{\partial R} f \frac{\partial g}{\partial \partial} d s=\oint_{\partial R} f \nabla g \cdot \vec{n} d s=\oint_{\partial R}-f \frac{\partial g}{\partial y} d x+f \frac{\partial g}{\partial x} d y \\
& \int_{R}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d x d y=\int_{R}\left(\frac{\partial \partial g}{\partial x^{2}}+f \frac{\partial^{2}}{\partial y^{2}}\right)+\left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial y}\right) d x d y
\end{aligned}
$$

$$
\text { If we let } w=-f \frac{\partial g}{\partial y} d x+f \frac{\partial g}{\partial x} d y \text {, then } d w=d\left(-f \frac{\partial g}{\partial y}\right) d x+d\left(f \frac{\partial g}{\partial x}\right) d y
$$

$$
\frac{\partial g}{\partial x} d y
$$

$$
=\left(f \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial y}+f \frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial f}{\partial x} \frac{\partial g}{\partial x}\right) d x d y \text {. Thus, by the }
$$

fundamental theorem of calculus

$$
\begin{aligned}
& \oint_{\partial R} f \frac{\partial g}{\partial n} d s=\oint_{\partial R}-f \frac{\partial g}{\partial y} d x+f \frac{\partial g}{\partial x} d y=\int_{R}\left(f \frac{\partial^{2} g}{\partial x^{2}}+f \frac{\partial^{2} g}{\partial y^{2}}+\frac{\partial f}{\partial x} \frac{\partial g}{\partial x}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial y}\right) d x d y \\
& =\int_{R}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d x d y, \text { as desired }
\end{aligned}
$$

use parametrization $x=(4+\rho \cos \varphi) \cos \theta$
$\begin{array}{ll}0 \leq p \leq 1 \\ 0 \leq \theta \leq 2 n\end{array} \quad 0 \leq \phi \leq 2 n \quad y=(4+p \cos \varphi) \sin \theta$
$0 \leq \theta \leq 2 n \quad 0 \leq q \leq 2 n$
$z=\rho \sin \varphi$
14) Sketch the toms given by the equation $(r-4)^{2}+z^{2}=1$, where $x=r \cos \theta$ and $y=r \sin \theta$. Use Gauss's Theorem to determine the rate@unich the flow deswibed by $x d y d z+y d z d x+z d x d y$ crosses the surface of
this toms.

$$
\begin{aligned}
& d x=\cos \varphi \cos \theta d \rho-(4+\rho \cos \varphi) \sin \theta d \theta-\rho \sin \varphi \cos \theta d \phi \\
& d y=\cos \int \sin \theta d \rho+(4+\rho \cos \varphi) \cos \theta d \theta-\rho \sin \varphi \sin \theta d \varphi . \\
& d z=\sin \varphi d \rho+0 d \theta+\rho \cos \varphi d \theta \\
& \omega=x d y d z+y d z d x+z d x d y \\
& d \omega=((1)+(1)+(1)) d x d y d z=3 d x d y d z \\
& d x d y=\cos \varphi \cos \theta d \rho(4+\cos \theta) \cos \theta d \theta-\cos \phi \theta \cos \theta \rho \sin \left(\phi \sin \theta d \rho d \varphi-(4+p \cos \varphi) \sin ^{2} d \cos \varphi d \theta d \rho\right. \\
& +\rho \sin \phi \sin ^{2} \theta(4+\rho \cos \varphi) d \theta d \varphi-\rho \sin \varphi \cos \theta \cos \varphi \sin \theta d \varphi d \rho-(4+\rho \cos \theta) \cos ^{2} \theta \rho \sin \theta d \rho d \theta \\
& \left.=\cos \theta \cos ^{2} \theta(4+\rho \cos \varphi) d \rho d \theta+(4+\rho \cos \varphi) \sin ^{2} \theta \cos \phi\right) d \rho d \theta-p \cos \theta \cos \theta \sin \theta \sin \theta d \rho d \theta \\
& +\rho \sin \varphi \cos \theta \cos \varphi \sin \theta d \rho d \varphi+\rho \sin \varphi \sin ^{2} \theta(\varphi+\cos \varphi) d \theta d \varphi+(4+\rho \cos \varphi) \cos ^{2} \theta \rho \sin \varphi d \theta d \varphi \\
& d x d y=\cos \varphi(4+\rho \cos \varphi) d \rho d \theta+\rho \sin \phi(4+\rho \cos \varphi) d \theta d \phi \\
& d x d y d z=\sin \varphi(\rho \sin \varphi)(4+\rho \cos \varphi) d \rho d \theta d \varphi+\rho \cos \varphi \cos \varphi(4+\rho \cos \varphi) d \varphi d \rho d \theta \\
& d x d y d z=\sin ^{2} \varphi \rho(4+p \cos \varphi) d \rho d \theta d \theta+\cos ^{2} \phi \rho(4+\rho \cos \varphi) d \rho d \theta d \varphi \\
& d x d y d z=\rho(4+\rho \cos \varphi) d \rho d \theta d \varphi \\
& \begin{aligned}
\iiint 3 d x d y d z & =\int_{0}^{2 \pi} \int_{0}^{2 n} \int_{0}^{1}(12 \rho+3 \rho \cos \psi) d \rho d \theta d \phi \\
& =\int \ln \int_{0}^{2 n}(12+3) \mid \theta
\end{aligned} \\
& =\int_{0}^{2 n} \int_{0}^{2 n}(12+3 \cos (\phi)) d \theta d \varphi \\
& =\int_{0}^{2 \pi} \pi(12+3 \cos (\varphi)) d \varphi \\
& =12 \pi \varphi+\left.3 \pi \sin (\phi)\right|_{0} ^{2 \pi}=24 \pi^{2}
\end{aligned}
$$

