Names:

Group #: ____

1. Imagine the function f(x) bounds four different regions whose **areas** are indicated below.

Determine the following definite integrals given $A_1 = 5$, $A_2 = 8$, $A_3 = 9$, and $A_4 = 6$.

(a)
$$\int_{a}^{c} f(x)dx$$

(c)
$$\int_a^d f(x)dx$$

(b)
$$\int_{c}^{d} \frac{1}{3} f(x) dx$$

(d)
$$\int_{b}^{e} -2f(x)dx$$

2. Use the graph below to evaluate the following:

- (a) **Using geometry**, compute the net area between the function f(x) = 2x 8 and the x-axis on the interval [2, 7].
- (b) Confirm your previous answer by evaluating the definite integral $\int_2^7 (2x-8)dx$.

3. Compute the net area of the following function on the given interval.

$$f(x) = x^2 - 4; [-2, 2]$$

4. Evaluate the following definite integrals. If substitution is used, be sure to clearly indicate u and du.

(a)
$$\int_{1}^{2} \frac{2}{x^2} dx$$

(b)
$$\int_0^3 \frac{1}{5x+1} dx$$

(c)
$$\int_{1}^{3} \left(3x^2 - \frac{1}{4}x^3\right) dx$$

(d)
$$\int_0^{\pi/4} \tan(\theta) \sec^2(\theta) d\theta$$

(e)
$$\int_{-2}^{-1} x \sqrt[4]{x+2} dx$$

(f)
$$\int_{1}^{3} \frac{e^{1/x}}{x^2} dx$$