Name: _____ Group #: ____

1. Prove the derivative rule of $f(x) = \cot(x)$

$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

by using the quotient rule.

Use derivative rules to find the derivatives of the following functions. Simplify by combining like terms and canceling common factors.

2.
$$f(t) = (7 + t^7) \left(\frac{3}{\sqrt[3]{t}} + 3t \right)$$

$$3. \ r(\theta) = \frac{\sin \theta}{1 + \csc \theta}$$

4. Find an equation of the line tangent to the function $g(x) = 2x \sin x$ at $x = \frac{3\pi}{2}$.

5. Suppose there exists a function, f(x), such that f(1) = 5 and f'(1) = 4. Let $h(x) = \frac{f(x)}{x+1}$. Find the equation of the tangent line to h(x) at x = 1.

6. Find the third derivative of $f(t) = 4t^3 - \frac{3}{t^5}$

7. Find the 42^{nd} and 55^{th} derivative of $f(x) = \cos x$.

8. Use this table to find the following:

x	2	3	4	5
f(x)	2	3	4	3
g(x)	7	3	-1	2
f'(x)	5	7	-1	-2
g'(x)	3	-2	1	8

(a)
$$\frac{d}{dx} \left[-2f(x) \right] \Big|_{x=5}$$

(b)
$$\frac{d}{dx} \left[x^2 f(x) \right] \Big|_{x=3}$$

(c) Find the equation of the tangent line to $y = \frac{g(x)}{f(x)}$ at x = 4.