Name:

Group #: ____

1. Find the derivative of the following using Leibniz Notation: $y = \frac{1}{\sqrt{1+x^5}}$

2. Find the derivative of the following using Prime Notation: $f(x) = \sin^{-1}(5x^3)$

3. Suppose f(3) = 2 and f'(3) = 8. Let $g(x) = x^2 f(3x)$. Find the equation of the line tangent to g(x) at x = 1.

4. Use the chain and product rules to prove the quotient rule. In other words, show that if $y = \frac{f(x)}{g(x)}$, then $\frac{dy}{dx} = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$.

5. Find the derivatives of the following functions. Simplify as much as possible by combining like terms and canceling common factors.

(a)
$$y = 2^{\sec(5x)}$$

(b)
$$f(x) = \log_3(x^2 e^x)$$

(c)
$$f(x) = \sqrt{x^2 + 1} \csc^{-1} x$$

(d)
$$h(x) = \ln\left(\frac{x^2 - x}{x^2 + 2x}\right)$$