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Two types of sequences are particularly important: arithmetic sequences and
geometric sequences.

Arithmetic Sequences. A sequence is an arithmetic sequence if the next term
in the sequence is found by adding a fixed number d to the current term. Hence,
{xn }n=1 is an arithmetic sequence provided x,,+1 = x, + dforn = 1. Both x; (the
first term in the sequence) and d are given. Why do you think d is called the common
difference?

Classroom Discussion 1.1.1: Direct Formula for Arithmetic Sequences

1. Return to the sequences in Classroom Connection 1.1.2 and find a recursive
relation for each sequence. Determine which ones are arithmetic. Explain.

2. John asked Michelle, “Is there a way to compute any term in an arithmetic
sequence if you know the first term and the common difference?”” Michelle
answered “You can do that by adding to the first term a suitable multiple of
the common difference.” Do you agree with Michelle?

3. If the sequence {x,},=1 is an arithmetic sequence with common difference d,
explain how to obtain the formula

xp =x1 + (n — 1)dforecachn € N,

4. What does this formula give for each arithmetic sequence from Classroom
Connection 1.1.27 &

Geometric Sequences. A sequence is a geometric sequence if the next term in
the sequence is found by multiplying the current term by a fixed number r. Thus,
{xn}n=1 is a geometric sequence provided x,+1 = x, - 7 for n = 1. Both x; and r
are given. Of course, if x; = 0 or r = 0, then x,, = 0 for every n. Thus, it is typically
assumed that x; # 0 and r # 0, in which case x,, # 0 for every n. Why do you think
r is called the common ratio?
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Classroom Discussion 1.1.2: Direct Formula for Geometric Sequences

1. Return to the sequences in Classroom Connection 1.1.2 and determine which
ones are geometric. Explain.

2. Alice asked Bob, “Is there a way to compute any term in a geometric sequence
if you know the starting term and the common ratio?”” Bob answered “You
can do that by multiplying the starting term by the common ratio raised to a
suitable power.” Do you agree with Bob?

3. If {y,}n=1 is a geometric sequence with common ratio r, explain how to obtain
the formula

yn =y - P! foreachn € N.

4. What does this formula give for each geometric sequence from Classroom
Connection 1.1.27 &

Limits of Sequences. When analyzing sequences, we are often interested in
understanding what happens to the value of x,, as n gets larger and larger. As you
can imagine, the possibilities are numerous. However, sequences whose general
term x, gets closer and closer to some fixed number as n gets larger and larger
turn out to be particularly important. In order to better understand this idea, work
through the tasks in Classroom Discussion 1.1.3.

Classroom Discussion 1.1.3: The Circumference of a Circle and Perimeters of
Inscribed Polygons

1. Consider a circle of radius . What is the standard formula in terms of 7 and r
for its circumference L?

2. Take r = 4 inches and use the formula you determined from Problem 1 to find
an approximate value for L rounded to four decimal places.

3. Now analyze the following construction:

a, Drawacircle C of radius r = 4 and center O, and draw a square inscribed
in C. Denote the perimeter of this square by pq.
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b. Inscribe an octagon in the circle C whose vertices contain the square’s
vertices. Denote the octagon’s perimeter by pg.

¢. Continue this procedure of inscribing regular polygons in the circle C.
At each step, the polygon you construct should have twice as many sides
and should include all the vertices of the previous polygon. If a polygon
has n vertices, its perimeter is denoted by p,,. The following figure shows
the result of the first three steps of the procedure.
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Describe what you expect to happen to the inscribed polygons as the number
of sides increases.

4. Consider the general case of a regular n-gon inscribed in the circle C. Write a
formula for its perimeter p,. Your answer should depend on n. Hint: Look at
the following figure.
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5. Use your calculator to generate a table with columns n and p, for n =
3,4, 5,...,102. Create a scatter plot with the first forty values in the table. On
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the same graph, draw the line y = L, where L is the circumference of the circle
you computed in Problem 2.

6. Asthe number of sides n increases, use the table and the scatter plot to describe
what happens to the values of the perimeters of the regular n-gons inscribed
in the circle C. How do these values compare to the circle’s circumference? Is
your conclusion in line with the prediction you made in Problem 3?

7. What is the best approximation for the circumference of the circle you get
from the table in Problem 5? What would you suggest doing to get an even
better approximation? @

Convergent Sequences

Consider what would happen if you “forever” continued constructing inscribed
polygons with more and more sides. This nonstop process of letting n become larger
and larger is denoted by n — oo (n goes to infinity). The values p, of the perimeters
of the regular n-gons inscribed in the circle C would approach the circumference L of
the circle C. The larger n is, the better p, approximates L, the circle’s circumference.
Think of how the scatter plot looked in Problem 6. You can make p,, as close to L
as you want by choosing » sufficiently large. We say that the limit of the sequence
{pn}n as n goes to infinity is L., and we write ’1121100 pn = L. Alternatively, we say that

the sequence {p,}, converges to L.

Important Observation

Return to the scatter plot from Problem 6, that is, the plot of points (n,p,),
n=3,4,5,...,40. Imagine continuing to plot these points for all n = 41. Next,
choose an open interval on the y-axis containing the value y = I. = 8. We want to
know how many p,,’s will remain outside this interval. To do so, imagine drawing
the horizontal band containing all the points whose y coordinates are in the interval.
Given our plot, at most a finite number of the points (1, p, ) will be outside the band.
No matter how narrow the band you select, as long as it contains the line y = 8,
all the points (n,p,) will be in the band starting from some value n = Ng. Thus,
any open interval containing L will have all but a finite number of p,’s. This idea is
formalized in the following definition.

Definition 1.1.1 A sequence {x,}, is said to converge to a real number L
provided any open interval centered at L contains all but finitely many terms
of the sequence. In this case, L is called the limit of the sequence {x,},, and
we write

lim x, = L.

[ Rt ]

A sequence that converges to a real number L is called convergent; a sequence

that does not converge to any real number is called divergent.

Remarks

1. A sequence {x,}, with the property that x, < x,41 for all n is called
increasing. For example, the previous sequence {p,}, is increasing. If a
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Study this pattern;
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row 4:
Find the sum for cach row

Suppose the pattern continued. Write the expression that would be in row 5,
and find its sum.

What would be the sum of the expression in row 107 In row 207

Describe the pattern of sums in words and with an equation.

For which row docs the sum first exceed 0.9?

As the row number increases, the sum gets closer and closer to what number?

Celeste claims that the pattern is related to the pattern of the areas of the
batlots cut in Problem 4.1. She drew this picture to explain her thinking.

What relationship do you think Celeste has observed?

Growing, Growing, Growing

&

In the examples discussed so far, you wanted to define a sum of the type x; + x; +
x3 + -+ for various choices of the terms xi, x2, x3, .... In each case, you have
defined a new sequence {s,}, by computing partial sums of the infinite sum. This
is the same as looking at the sum of “more and more” x;’s. Since, in the end, you
wanted to add all the x;’s, i = 1, you should look at the behavior of the partial sums
5, as n — oo. Thus, the following definition is natural.
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Definition 1.2.1 An infinite series is an expression of the form
XX xy 2)

where the numbers x1, x2, . . ., are the terms of the series. The sequence {sy }»
of partial sums is

§1 = X1
Sg. = M T X9
S = X ar X2 T N3

ri
Sy = X1 txp+x3+ - +x,=3x foreachn=1.

If the sequence {s, }, converges to a real number L, thatis, lim s, = L, then
the series (2) is called convergent, and L is called the sum ofntzgo series. In this
case,wewritex; + xp + x3 + -+ = Lor DED x; = L. Otherwise, we say that
the series diverges. -

Classroom Discussion 1.2.2:

The Mysterious Series 1 — 1 + 1 -1 + 1 -1 + .-

Dan and John are trying to compute the infinite sum
1=-1+1-1+1-—1++ s

Dan writes

=0 =0 =0
and concludes that the sum of the series is zero. John writes
1+ (-1+H+(-1+1D+(-1+1)+- -
—— —— ——
=0 =0 =0

and concludes that the sum must be equal to 1. Who do you think is right?
Explain. &

Geometric Series. In the following discussion, we restrict our analysis to a
particular type of series whose terms form a geometric sequence of ratio . Such a
series is called geometric series of ratio r. It can be writtenasa + ar + ar? + ---,
where a is the first term of the series. The issue of the convergence of geometric
series is well understood. Use the following outline to derive the main results for
geometric series.
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ﬂXJ = tELf() g
P4 1{1: m ) —_1h_rp_lg = whenever xh_r)na gx) # 0.
P5 1}imf Mx) = nlxlima f(x) with the additional assumption that lim f(x) = 0 in
X—i x— X—a
the case where n is even.
P6 If f(x) < g(x) for all x in an open interval containing a, except possibly for
x = a, then xlim f(x) = lim g(x).
—a x—>a

Note that even if two functions f and g (for which lim f (x) and lim g(x) exist)

verify f(x) < g(x) for all x in an open interval contammg a, we cannot conclude
that hm f(x) < hm g(x) To see this, take f(x) = x% and g(x) = 2x* anda = 0.
P1 P6 are 1ntu1t1ve and can be proved using Definition 2.2.1, however, we
omit their proofs. The preceding statements remain true if hm is replaced by lim
X g R

or by hm The following application underscores the usefulness of P1-P6.
x> a

Classroom Discussion 2.2.3: Limit of Rational Functions

Let ¢ and a be arbitrary fixed real numbers.

1. Determine llm x and lim c.
=
2. Use the results in Problem 1 and use P1 and P3 to compute lim ¢ - x?
xX—a
lim ¢ - x3, and lim ¢ - x*.
X=ra

X—*a

3. Let n be a natural number. What is lim ¢ - x"?
xX—a

b

4. Use the resultin Problem 3 and use P1 to compute lim (2x> — gxz +x + %).
xX—a

5. Now let f(x) be a polynomial function of degree n, ie., f(x) = bpx" +
- + bix + bg for all x, where by, ... ,by, by are fixed real numbers. Using
Problem 3 and P1, compute xh_)ma f(x) and compare with f(a). Fill in the blank:

If f(x) is a polynomial function, then for any real number a,

lim f(x) =

x—>a
6. Let p(x) and g(x) be two polynomial functions and consider the rational
function ’i——; Suppose that g(a) # 0. Use Problem 5 and P4 to compute

lim Ex; Fill in the blank:

x—a gqx

If p(x) and g(x) are polynomial functions, then 11m L E g =
—aq(x

for any real number q satisfying g(a) # 0. &

Evaluate the limits using P1-P6 and the results from Classroom Discussion
22.3.
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1. lim (4x - x —3) 2. lim ~/3x — 1
x—>=2 xX=>
3. lim 25
x—s Le=3
Solutions

1. The function f(x) = 4x*> — x — 3 is a polynomial function. Applying the
results from Classroom Discussion 2.2.3, we obtain

lim (4x - x —3)=f(-2)=15.

x—>=2

2. Using P5, we have that lirn1 M3 - 1= llirnl (3x — 1). In addition, since
xX— x—=>
3x — 1isapolynomial function, we also have lim1 Bx-1)=3-1-1=2
ok =5
Thus, lim V3x — 1= 2.

3. The Iunctmns p(x) =x + 3andg{x) = 2x — dare polynomial functions, and
since (1) = —1 # 0, the results from Classroom Discussion 2.2.3 imply that
im X 3 _pQ) _
x>12x — 3 g(1)

=y E

Practice Problems

Evaluate the limits using P1-P6 and the results from Classroom Discussion 2.2.3.

1L lim (5x* + 2 — iy + 5) 2. lim v/1 + 6x — 5x?
y—w—T1 z x—0

3. lim 522
x—3x +2

Classroom Discussion 2.2.4: Limits and Intersecting Streets

This investigation’s goal is to provide a geometric interpretation of the definition of
the limit of a function at a point.

1. Return to the function / from Problem 1 in Classroom Discussion 2.2.1. Do
you agree with the following statement?

If we want a person’s height h(x) to be within 0.5 inches of 63.44,
it suffices to have that person’s femur length x within 0.21551724
inches of 17.

2. Does it suffice to choose x within 0.01 of 17 in order to get A(x) within 0.001 of
63.447

3. Determine 8 > Oso thatif [x — 17| < §withx # 17, then |a(x) — 63.44] <
0.001.

4. In general, let & > 0 be a small number. Determine & > 0 so that if
x — 17| < 8 with x # 17, then |h(x) — 63.44] < e.
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The computation in Problem 4 shows that we can get A(x) arbitrarily close to
63.44 by choosing x sufficiently close to 17; each time we decide how close to 63.44
we want /(x) to be, we can find an open interval containing 17 such that if x # 17 is
in that interval, then A(x) is as close as we want to 63.44. Geometrically, this is how
we can understand this statement.
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a. If h(x) is close to 63.44, that means A(x) is contained in an open interval [
centered at 63.44. The length of this interval is determined by how close A{x)
is to 63.44.

b. The horizontal band, whose intersection with the y-axis is /, cuts a portion of
the graph of 4.

¢. The portion of the graph of A cut by the horizontal band is projected onto the
X-axis.

d. Now the goal is to select an open interval J on the x-axis containing 17, J\ {17}
being contained in both the domain of /4 and the projection obtained in ¢, with
the following property: for all x € J, with x # 17, the points (x, £(x)) are in
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the portion of the graph of / cut by the horizontal band. Observe that this last
condition guarantees that A(x) will be in [ for all x in J.

If this construction can be completed for all intervals / of arbitrarily small
length, then “A(x) can be made arbitrarily close to 63.44 by taking x in the domain
of A sufficiently close but not equal to 17.”

5. Use this geometric interpretation to show that for the function g given by the
following graph, lirrll1 g(x) = 9 while Iim3g(x) # 6.
X = —

y =g

L 4

Definition 2.2.1 captures the essence of the notion of the limit of a function at
a point. However, the phrases ““as close as we want” and “sufficiently close’ are not
mathematically precise. A more rigorous definition follows.

Definition 2.2.3 Let f be a real valued function whose domain is a subset of

the real line. We say that a real number L is the limit of f as x approaches a; we

write lim f(x) = L if for every open interval I centered around L there exists
ke

an open interval J containing a, with /\ {a} contained in the domain of f, such
that for every x € J\ {a}, we have f(x) € I.

Use Definition 2.2.3 to show that lim f(x) = 8 where
o

il o ifx#2
L) =
) Lo ifx = 2,
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AVERAGE RATES OF CHANGE

Average rate of change of a function

What is a rate? How do we use rates in daily life? To address these issues, work in
groups and answer the following questions.

Classroom Discussion 3.1.1: Rates of Change in Real Life

1. What is a person’s heart rate? How do you compute it? What units of
measurement do you use for heart rate? Fill in the blanks:

heart rate = number of

time, measured in

2. A person’s painting rate is the ratio of the area the person paints to the time it
takes to paint that area. Two painters must paint a rectangular wooden fence
that is 15 yards long and 5 feet tall. The first painter paints at a rate of 25
square feet per minute. The second painter paints at a rate of 20 square feet
per minute. How long will it take for the two workers to finish painting both
sides of the wooden fence?

114
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3. A person’s walking rate is the distance the person walks divided by the time it
takes to walk that distance. In other words,

: distance
walking rate = — .
fime
What is Adrian’s walking rate if he covers 7 kilometers in 1.5 hours? Express
your answer in meters per second.

These examples describe how a given entity changes in relationship to another
entity. Consider Problem 3 again. To compute a person’s walking rate at different
times during a walk, look at the change in the distance the person has walked with
respect to the change in time: Sange M ASanNCe g0 660 that after 1 hour, Adrian has

change in time
walked 5 kilometers and after 2 hours he has walked 11 kilometers. His walking rate
for the second hour is # = 6 kilometers per hour.

In order to formalize rates of change, we use the function notation. In each
case, you computed the ratio between the change of a given function f(x) and the
change of x. This is why it is appropriate to define

the average rate of change of f(x) with respect to x as the ratio, M.
change in x

In particular, if a < b and x changes from a to b, then f(x) changes from f(a)
to f(b). This change of f is also referred to as the change of f over the interval
[a,b]. &

Definition 3.1.1 The average rate of change of a function f(x) with respect to
x over the interval [a, b] is
fb) - f(@).
b —a

Classroom Discussion 3.1.2: Rates of Change of Linear and Nonlinear
Functions

1. Water Levels
The following graph represents a lake’s water level over a 30-day period.

water level (meters)
1

y = fx)

I } t P i > x (days passed)
2 5 3 15 200 23 26 28 30




116 Chapter 3

Differentiation

Denote the water level by f(x), where x represents the number of days that
have passed. In a—c, compute the water level’s average rate of change over
the given time period. First write the formula for the rate of change using the
function notation, and then use the values of f given by the graph.

a. From the end of day 1 to the end of day 2
b. From the beginning of day 3 to the end of day 5

¢. From the end of day 8 to the end of day 15, and from the end of day 15
to the end of day 30

How do these average rates of change compare?

2. Walking Rates

Diana walks from home to school in 25 minutes. The distance d in meters she
has traveled after a r minute walk is given by d(¢) = 60z.

a. Compute Diana’s average walking rate over the following intervals of
time: [1,4], [6,7], [0,25]. What do you observe? Interpret the results.

b. Make a conjecture about how the average rates of change of d computed
over two arbitrary intervals compare. Prove your conjecture.

3. Linear Functions versus Nonlinear Functions

a. Let m and ¢ be arbitrary real numbers, and consider the linear function
g(x) = mx + c. Compute the average rate of change of g over the
interval [a, b]. What do you observe?

b. Consider a function g for which the average rate of change over any
interval [a, b] is constant and equal to a real number m. Prove that g is
linear.

Hint: Fix a point a and let x be arbitrary. What is the average rate of
change of g over the interval with endpoints @ and x?

Observation. Combine a and b to obtain the following result: A function
is linear if and only if the function’s average rate of change over any
interval is constant.

c. Recall the example in Problem 1. Is f a linear function? What did you
observe about the rates of change of f over different intervals?

d. The following graph shows the change in x and the change in f(x) over
the interval [a, b]. Use this sketch to fill in the blank:

The average rate of change of a function f over an interval {a, b]
is equal to the slope of

change in f(x)

EXERCISES 3.1
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f(b)

f(g)

.. = .: h

change in x
&

1. One criterion for judging a football team is the team’s winning percentage:

number of games won
number of games played

winning percentage =

‘T'he winning percentage is the rate of change of the number of games won wluh
respect to the number of games played. Whlm can you c::nwludf il ym! kn?wdi ';Hl
the winning percentage for a football team in a season was (.47 Can you Iurl1 [,]ﬁ
number of total games the team played that season if the team won eight games]
Altitudes and the Heart Rate, The human body is optimally cr.nnppcd Inrem::tem:j:
at an air pressure close to 760 millimeters of mercury (the air pressure ‘.n s«;:a
level) with an oxygen concentration of 21%. When the altitude increases, ln.
atmospheric pressure decreases, which in turn leads to a decrease in the _num‘m_ﬂ
of oxveen molecules per breath. Conseguently, the amount of oxygen uvmlah_ie, in
the body's blood and tissue decreases. Such a lack of oxygen can cause pmcnt.m]iy.
life-threatening iliness at high altitudes. The fg]!nwmg graph (from a _1'n:pgl|t by
Catherine M. Quinn) shows the results of stud1es' cpnducled at lhf: University of
Limerick. Subjects breathed into air bags containing qoncentratlons of 0?(ygen
that would be found at various altitudes. The relationship between the heart rate



120 Chapter 3 Differentiation

s P 4

To decide if a graph y = f(x) admits a tangent line at a point (a, f(a)), proceed
as follows. Consider another point (b,f(b)) on the graph and analyze the behavior
of the line passing through (a,f(a)) and (b,f(b)) as b — a. If there exists a line
L passing through (a,f(a)) such that the slope of the line passing through (a,f(a))
and (b, f(b)) approaches the slope of L as b — a, then L is by definition called the
tangent line to y = f(x) at (a, f(a)).

In particular, if we assume that:

i) the slope of the line passing through (a,f(a)) and (b,f(b)) approaches as
b — a~ the slope of a line L passing through (4, f(a)) and

i) the slope of the line passing through (a,f(a)) and (b,f(b)) approaches as
b —> a* the slope of a line L; passing through (a, f(a)),

then a tangent line to y = f(x) at (a,f(a)) exists if and only if L = L.
For example, the function f whose graph is sketched here does not have a
tangent line at (a, f(a)).

A

y =f(x)

N \ L -

Ly
(a, f(a))

?Iassroo;n Discussion 3.2.1: Instantaneous Rate of Change of the Function
(x) = x

1. Sketch the graph of f(x) = x? on a sheet of graph paper.

2. C.omputg the average rate of change of f(x) over the interval [1,1.1], draw the
line passing through the points (1,£(1)) and (1.1, £(1.1)).

3. Use your calculator to compute the average rates of change of f over the
intervals [1,1 + A] for h > 0, taking the values 10-1,1072, ..., 105 What
do you obgerve? Describe what you expect to happen to the line passing
through points (1,f(1)) and (1 + A,f(1 + h)) as h decreases.

4. Use your calculator to compute the average rates of change of f over the
intervals [1 + A,1] for 2~ < 0, taking the values —-10-1, -1072,..., .
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What do you observe? Describe what you expect to happen to the line passing
through points (1 + A,f(1 + R)) and (1,f(1)) as the absolute value of h
decreases.

5. Assuming that your calculator can be as precise as you want, what do you
expect to happen to the average rates of change of f over the intervals with
endpoints 1 and 1 + hash — 0? What is the connection with the tangent
line to the graph of f at the point (1, 1)?

6. Using calculus, you can verify the prediction you made in Problem 5. Write
the general formula for the average rate of change of f over the interval
with endpoints 1 and 1 + h, then simplify the expression you obtained under
the assumption that it # 0. Next, take the limit as i — 0 of your simplified
expression. What is the geometric interpretation of the value you obtained?

7. Why do you think the value you obtained in Problem 6 is called the instanta-
neous rate of change of f at 1, or simply the rate of change of f at 1?7

8. Fill in the blank:

The slope of the tangent line to the graph y = x? at the point (1,1}
isequalto

9. Consider now an arbitrary point (x,f(x)) on the graph of f. Compute the
average rate of change of f over the interval with endpoints x and x + A.
Simplify your expression and then take the limit as & — 0.

10. Fill in the blanks:

flth) (X)) The
fi ’
value of this limit coincides with the slope of the __ to the

graph y = f(x) at the point _ .

The instantaneous rate of change of [ at x is ,«Hmr
=0

In the preceding example, you constructed a new function, which associates to
each x the value of lim fﬂh}z_—f& This new function is called the derivative of f

h—

and is denoted by f'. You have proved that
if f(x) = x%, then f'(x) = 2x. (1)

In addition, you have seen that the slope of the tangent line to the graph of f
at a point (x, f(x)) is equal to f(x).
Determine the equation of the tangent line to the graph y = x? at the point
("_ 2? 4)

Solution The slope of the tangent line to the graph of the function f(x) = x? at the
point (—2,4) is m = f'(-2) = 2(—2) = —4. Thus, the equation of the tangent line
sy — 4= —4(x + 2),0r, equivalently,y = —4x — 4. |
Practice Problem

Determine the equation of the tangent line to the graph y = x% at the point (3,9).
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7. Explain why the following statement is true:

For a differentiable function f, the tangent line to the graph of f at
a point (c, f(c)) is horizontal if and only if f'(c) = 0. ®

You discovered that for a differentiable function f, being nondecreasing/
nonincreasing provides information about the sign of the derivative f”. Should we
expect the sign of f' to provide information about the behavior of f7 Intuitively,
this seems to be the case. For example, if f/ < 0 on an interval (a,b), then the
slopes of the tangent lines to the graph of f corresponding to points x € (a,b)
are negative. This suggests that f is decreasing on the interval (a,b). Similarly,
if f* > 0 on an interval (a,b), then the slopes of the tangent lines to the graph
of f corresponding to points x € (a,b) are positive, and we expect that f is
increasing on the interval (a,b). Transform this informal reasoning into a proof
by carefully using Definition 3.2.1. The section “More on the Connection between
the Sign of f' and the Behavior of f”” in Projects and Extensions 3.2 addresses this
issue. In many applications, we determine the sign of f' in order to identify the
intervals on which f is increasing/decreasing (as you will see in Chapter 4). The
following is a summary of the relationship between the behavior of a function
f and the sign of its derivative, including the results you proved in Classroom
Discussion 3.2.3.

The Relationship between a Function’s Behavior and the Sign of Its Derivative.
Let f be a differentiable function on an interval (a, b). Then the following hold.

1. fis nonincreasing on (a, b) if and only if f' = 0 on (a, b).

2. fis nondecreasing on (g, b) if and only if f' = 0 on (a, b).

3. If f/ < Oon (a,b), then f is decreasing on (a, b).

4. If f' > 0on (a,b), then f is increasing on (a, b).

5. The tangent line to the graph of f at a point (c,f(c)) (¢ € (a, b)) is horizontal
if and only if f'(c) = 0.

Classroom Discussion 3.2.4: Sketching Graphs of Derivatives

In each example here, sketch the graph of the derivative based on the graph of the
function. (Your sketch cannot be exact in some of these cases, but you can draw a
rough approximation for the graph of the derivative.) Describe what happens to the
derivative function as x increases. To do so, look at the graph from left to right and
answer the following questions:

. Where is the derivative positive?

. Where is the derivative negative?

. Where is the derivative zero?

. Are there any points (x,f(x)) where the graph does not have a tangent line?

& T
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9, ¥ 1), y

Classroom Discussion 3.2.5: Differentiability and Continuity

From Problem 4 in the previous Classroom Discussion, you can see that not all
continuous functions are differentiable. In particular, if the graph of a function
contains a corner at some point (a, f(a)), then the function does not have a tangent
line at that point, thus, the function is not differentiable at x = a. Hence, continuity
does not imply differentiability. How about the converse? Is it natural to expect
that differentiable functions are continuous? From a geometric point of view, the
question can be restated as follows: If a graph has a tangent line at every point, does
@t follow that the graph can be traced without lifting the pen? This discussion’s goal
18 to answer this question.

Suppose f is a function that is differentiable at x. By definition, f is continuous
at x provided ylgnx f(y) = f(x). In particular, if we denote by 4 the difference y — x,

then y =x + handy — xifandonlyif# — 0. Hence, f is continuous at x provided
hh_r)no f(x + h) = f(x). The following outline is structured around investigating the

validity of this equality. First, observe that the algebraic identity

foo+ by — o) =TT ’2 —f)

holds for any 2 # 0.

a. What can you say about }}i_n)qo f(i%}:&) and hli_r)no h?
b. Use a to compute }}iino[f(x + h) - f(x))].

¢. Use b to compute hﬁ-To f(x + h).

d. Fill in the blanks:

If f is differentiable at x, then /Hmo flx + h) = ; that is, f is
f=—> :
atx. @
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EXERCISES 3.2

In Exercises 1-4, compute the derivative of the given function.

L f(x) =x* + 2x 2 glx)=x2 — 3x

3. As) =22 + 5 — 2 4. f()= =2 + 3t = 10

5. Determine the equation of the tangent line to the curve y = 2x* — x + 10 at
the point (—1,13).

6. Determine the equation of the tangent line to the curve y = —3x% + 5x — 2at
the point (1,0).

7. Scientists have found that radioactive carbon-14 (C14) has a half-life of 5,730
years. This means that if the amount of C14 now is «, then the amount 5,730
years from now will be Lo, the amount 11,460 years from now will be :—n' and
so on. The amount of C14 remains constant in living organisms due to metabolic
processes but decreases once the organism dies. This is the idea behind carbon
dating.

a. Make a sketch of the amount A(r) of C14 in an organism ¢ years after it has
died, if the amount of C14 present while the organism was living is a. Is A
increasing, decreasing, or neither? Will A(r) ever be zero? As t — oo, what
value does A(t) approach?

b. Use the graph you have sketched in a to answer the following questions: Is A’
positive or negative? Will A’(r) ever be zero? Is A’ increasing, decreasing, or
neither? As t — co, what value does A’(¢) approach? Make a sketch of A’

8. Match each limit a—c with the corresponding derivative from i-iii.

a. lim L( g -l) i ()

fi—s0 otk T
. (xR -x e
b i S
L
e lim YEH=yE i, | 1
f—0) r X

9, Match each function a—c with the graph of its derivative i-iii.

y=fx
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b. Calculus Approach

Using calculus, compute the maximum value of f(x) = —3x2 + 6x + 2

when x takes values on the real line.

3. The General Case f(x) = ax?* + bx + ¢
Leta, b, c be arbitrary fixed real numbers, with a # 0.

a. Algebraic Approach

i. Show that after completing the square, the expression for f(x) =

ax?> + bx + ¢ becomes

flx) = {F(.r + 8 ) _ b — 4ac
2a, da

2
ii. What can you say about the values of <x + f) for values of x on
a

the real line?

iii. Assume a > 0. Use the conclusion in ii to decide if f(x) has a
maximum or minimum value for some value of x. How about if
a < 0?7

iv. For what value of x does f attain the corresponding minimum or
maximum? What is the value of that minimum or maximum?

b. Calculus Approach

Use calculus to optimize f(x) = ax? + bx + c on the real line. Make
sure you distinguish between the casesa < Qanda > 0. @

Classroom Discussion 4.1.4: Local Maximum/Minimum versus Absolute
Maximum/Minimum

The goal .in this discussion is to determine the largest and smallest values attained by
the function f(x) = 3x* — 4x3 — 12x? on the interval [—2,3]. Follow the outline
here.

1. Compute the critical points of f(x) and find the subintervals of [--2, 3] deter-
mined by the critical points.

2. Determine the sign of f'(x) on each subinterval from Problem 1. Explain why
the sign of £’ cannot change within these subintervals.

3. Decide whether f is increasing or decreasing on each subinterval from Prob-
lem 1. Compare your results with the following table.

x 2 =1 0 2 3

) = (0] + 1] - 0 +
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Observe that the function f(x) is decreasing to the left and increasing to the
right of both x = —1 and x = 2. In this case we say that f(x) has local minima
at x = -1 and x = 2. Since f(—1) = =5 > =32 = f(2), and the pattern is
decreasing-increasing-decreasing-increasing, the smallest value f(x) that takes
on the interval [ -2, 3] is —32. This is why —32 is called the absolute minimum
for f(x).

Similarly, because f(x) is increasing to the left of x = 0 and decreasing to
the right of x = 0, we say that f(x) has a local maximum at x = 0. The local
maximum value is £(0) = 0. Is this also the absolute maximum for f (i.e., is this
the largest value taken by f on the interval [—2,3])? To answer this question,
we look at the behavior of f. The decreasing-increasing-decreasing-increasing
pattern suggests that the values of f at the endpoints x = —2 and x = 3 must
be taken into account. A direct computation gives f(—2) = 32 and f(3) = 27,
so the absolute maximum of f is 32 = f(-2),not 0 = f(0).

4, Do critical points always yield local minima or local maxima? To answer this
question, analyze the critical points of the function f(x) = x> defined on the
real line. &

Summary of Main Steps in Optimization Problems

1. Select the variables and write the expression for the function f to be optimized.

2. Write the constraint and use it to express the function f in terms of one
variable.

3. Determine the domain of f.

. Find all critical points of f.

5. Determine the intervals where f' is positive and the intervals where f’ is
negative. Determine the intervals where f is increasing and the intervals where
f is decreasing.

=

6. Determine maxima and/or minima for f.
7. Interpret and check your solution.

EXERCISES 4.1

In Exercises 1-4, for each given function, determine the critical points, the subintervals
in the domain determined by the critical points, the sign of the derivative on each
subinterval, and whether the function is increasing or decreasing on each subinterval.

1. f(x) = 3x — 2, Domain = [—4,12]

2. f(x) = x* — 3x + 2, Domain = [1,8]

3 f(x) = %x3 — 9x, Domain = (—00,00)

4. f(x) = —x*> + 12x, Domain = (0,00)

5. For each function from 1-4, determine local maxima, local minima, absolute
maxima, and absolute minima, provided they exist.

6. Classroom Connection 4.1.1: Fenced In
The following exploration is from page 26 in the eighth-grade textbook Math-
Scape, Family Portraits.



166

12.

13.

14,

15.

16.
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A gardener is trying to decide what is the best time to harvest and sell his
cantaloupe crop. He estimates that there are approximately 200 pounds of ripe
cantaloupe in his garden. Each week an additional 60 pounds of cantaloupe
ripens, and 10 pounds go to waste. The cantaloupe’s market price is $1 per pound,
but it drops $0.10 per pound each week that passes. When should the gardener
sell his cantaloupe crop in order to maximize revenue? What is the maximum
revenue he can make?

Cable Lines: A house is built along a 1-mile wide river. On the river’s other side,
10 miles downstream, there is another building from which cable line will be
run to the new house. The underwater cable costs twice as much per foot as the
underground cable. How long should the cable line along the river be in order to
minimize the cost?

House to be built

Existing house

10 miles

Tod runs a chocolate store. He invests $4 for each pound of chocolate he makes.
He sells 500 pounds of chocolate each month for the price of $12 per pound. Tod
discovers that for every 10 cents he takes off the price, he sells 10 more pounds
of chocolate each month. What should he charge for 1 pound of chocolate in
order to maximize his profit? How many pounds of chocolate will Tod sell at that
price?

Inventory Costs: A retail appliance store sells 500 refrigerators each year. It costs
$50 to store one refrigerator for a year. At each reordering, there is a fixed $20
fee for the truck rental and an additional $5 handling fee for each refrigerator
ordered. How many times per year should the store place an order to minimize
the storage, truck rental, and handling costs, if the number of refrigerators per
order is constant? When modeling this problem, assume that at any time during
the year, the average number of refrigerators in stock is half the number x of
refrigerators ordered each time.

The following figure shows the graph of the derivative of a function f. Find all the
points where f has a local maximum or a local minimum.
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4.2 CURVE SKETCHING

Second derivative ¢ Concave up and concave down e Inflection points e
Sketching graphs

You saw in Section 3.2 that the sign of a function’s derivative yields substantial
information about the shape of the graph of the function. Take this principle one
step further and look at the derivative of f(x) to get information about f’(x). The
derivative of f'(x), also called the second derivative of f(x), is denoted by f"'(x).
Thus, f(x) = (f'(x))’, whenever this makes sense. For example, if we consider the
functions f(x) = 2x* — 4x + 7andg(x) = x> — 3x* + 100,thenf'(x) = 4x — 4,
'(x) = 4,g'(x) = 5x* — 1223, and g"(x) = 20x3> — 36x%. The goal is to determine
what information the second derivative f provides about the shape of the graph of f.

Classroom Discussion 4.2.1: Concavity and the Second Derivative

Let f be a function that is twice differentiable on an interval (a,b); that is, f is
differentiable on (a, b), and, in turn, f* is also differentiable on (a, b).

1. Recall the relationship between a function’s behavior and the function’s
derivative. Use this relationship to fill in the blanks:
f"is nondecreasing on (a, b) if and only if /' on (a,b).
f" is nonincreasing on (a, b) if and only if f”/ on (a, b).

2. The goal is to understand how a function’s behavior relates to the sign of the
function’s second derivative. Look at the following graphs. Decide in each case
whether the derivative is nondecreasing or nonincreasing.

3. Which are the graphs for which f” = 0?7
4. Which are the graphs for which f = 0?7 %
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In Problem 8, you had to join the plots corresponding to integer values of x to get a
“smooth curve.” Is there a particular curve passing through all the points you plotted
for integer values of x that would be best for our model? If yes, what function has
this “smooth curve’ as its graph? To answer these questions, return to Problem 7a
in Classroom Connection 4.3.1. The expression you found for the number of layers
in terms of x was y = 2*. The function f(x) = 2% is a great candidate. However,
the definition of 2% when x is an irrational number has not yet been provided. The
next discussion’s goal is to clarify the issue of how one can raise a given positive
number to an irrational power. First, recall how powers with rational exponents
were defined.

Rational Exponents. Fix areal number » > 0 and take m, n to be whole numbers.
Then, rational powers of b are defined as follows.

1. b =b - b---bis the product of m copies of b.
2, b7 = % is the reciprocal of b™.
3. bi = /b is the positive number whose nth power is b. The case n = 2 has

been discussed in the project “Computing /x for x a Real Positive Number”

in Section 1.1. The nth root can be defined similarly.
m
4. bn = /b is the number whose nth power is b™.
5. b~ w = — is the reciprocal of b .
b

Thus, for any rational number x, b* is meaningful. In addition, you can check that
for any x, y rational numbers, we have b= = i BT = BT, and (5°) = bW,
The goal is to extend this definition to the case when the exponent x is an irrational
number.

Classroom Discussion 4.3.1: Irrational Exponents

Fix an irrational number x. For example, take x = 7. Starting with its decimal
representation

7 = 3.14159265358979323846264338327950288419...,
you can construct sequences {yn }» and {z, }, of rational numbers:

Yo = 3,31 =31, y2 = 314, y3 = 3.141, y4 = 3.1415, y5 = 3.14159,
vg = 3.141592, ... and

720 =4,71 = 32,720 = 3.15, z3 = 3.142, z4 = 3.1416, z5 = 3.1416,
6 = 3.141593,. ..
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1. For each n, compare the values of y,, z, and 7.

2. What can you say about nlgnoo yn and ”1me 2,7 Explain.

3. According to the definition of rational exponents, the number 2*” is meaningful
for each n = 0. What happens to the values of 27 as n — o0?

4. Is the sequence {2}, convergent or divergent?

5. Similarly, for each n = 0, 2% is well defined since z, is rational. What happens
to the values of {2}, as n — c0?

6. Is the sequence {2%"}, convergent or divergent?

7. Intuitively, it is expected thatfora > 0, nlLInoo %/a = 1. Use this fact to compute

lim (2% — 2¥).

n—>00
8. What does the preceding construction suggest as a definition for 27?

Take now the general case. Let x be an arbitrary irrational number. Then,
there exist two sequences {y, }» and {z, }, with the following properties:

a. yp and z, are rational numbers for each n,
b. i=yw=y=...andgy=zznn=23=...,
¢ yn = x = z,foreachn,
d. lim y, = lim z, = x
N0

L )

as seen in the project “Real Numbers as Limits of Sequences of Rational
Numbers” in Section 1.1.
9. How can you define 2%?
10. How can you define b* for b > 0, an arbitrary real number, and for x, an
arbitrary irrational number?

Foreachb > 0, the function f(x) = b* is now well defined on the set of real
numbers. This function is the exponential function with base b. Observe that,
due to the properties of powers with rational exponents, this construction also
yields b~ = %, bty = p*bY, and (b¥)Y = b" for all real numbers x,y. @

Classroom Discussion 4.3.2: Exponential versus Linear

Recall that a linear function is a function of the form g(x) = mx + n, where m and
n are real numbers. Fix b > 0 and consider the exponential function f(x) = b*.

1. Compute g(3) — g(2) and g(70) — g(69). What do you observe?

2. Whatis the value of g(x + 1) — g(x) for an arbitrary x?

3. Compute f6) ang (=9

f(4) f(=6)
4. What is the value of %?LT;) for an arbitrary x?
5. Explain the difference between exponential and linear functions. 4

What do you observe?
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Classroom Discussion 4.3.3: Graphs of Exponential Functions

1. Use a graphing calculator to trace the graphs of the functions f(x) = 2%,
g(x) = 3%, h(x) = 4*, and [(x) = 9*. Describe the differences and similarities
in the curves.

2. Use a graphing calculator to trace the graphs of the functions F(x) = (%)" 3
Gilx) = (lljl-‘. H(x) = {3}*. and L{x) = qllif]“. Describe the differences and
similarities in the curves.

3. Make a prediction about the shape of the graph of the exponential function
f(x) = b* for b > 0, depending on whether b < lorb > 1. *

Classroom Discussion 4.3.4: Derivatives of Exponential Functions
1. Let f(x) = 2* be defined for all real numbers x. Here is the graph of f(x):

b
i

y=2

a. For what values of x is f/(x) positive, negative, or zero?

b. What can you say about the values of f'(x) as x — coand as x —> —o0?

¢. On another set of coordinates, sketch roughly the graph of f'(x); use the
geometric interpretation of the derivative at a point x as the slope of the
tangent line to the graph of f at the point (x, f(x)).

d. Compare the graph of f with the graph of f’. What do you observe?

e. The two graphs look very similar. Is f'(x) an exponential function? To
answer this question, you must compute f'(x) using the definition of the
derivative. To do so, first write the average rate of change for the function
f(x) = 2¥ over the interval with endpoints x and x + A.

f. Check that for each i # 0,

21.._.1.- S _ o az.fj _ 1‘

1)
h fi ()
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; i ; M_1
g. Use your calculator to investigate lim S I'o do so, generate a table
h—=0) T

I . . 5
of values for zf with & # 0 and varying from —0.01 to 0.01 with step
3
size Ah = (0L.001, What do you observe? Does limﬂ v L exist? 1f yes, give
wi] ] &

h
an estimate for its value.

h. Return to (1). What can you conclude about f”(x)?
2. Use the outline in a—h to determine the derivative of the function g(x) = (%)“'.
3. Fixb > 0.

a. Prove the following statement:

b - 1

if F(x) = b*, then F'(x) = b*k, where k = }limo ,J
h— i

b. Use your calculator to estimate the values of k when b =02,b = 0.6,
b=1,b=15 b =2, and b = 5. What do you observe? How do the
values of k change as b increases? Compare k with 0 to fill in the blanks.

base b | constant k |
0<b<1l|k_ 0O

b=1 k0 _‘
|b>1 k0 |
¢. Is the preceding table consistent with the geometric interpretation of the

derivative? Think about how the shape of the graph of the exponential
function b* varies with the values of b > 0.

It turns out that as b takes all the real positive values, k also takes
all real values. Consequently, there is a value of b for which k = 1. This
is precisely the case when b is the irrational number e. An approximate
value for e is 2.71828. The number e arises naturally when modeling
investments (see “Compound Interest” in Projects and Extensions 4.3).
Using the formula you obtained in Problem 3a, you see that

(&) = ¢".

d. Compute (e~*)" using the formula for the derivative of reciprocals.

e. Suppose that f is a differentiable function. Use the chain rule to compute
@y, &
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Since the graph of the function is concave upward, Ty is an upper bound for
A; thatis, 4 = Ty =~ 0.94361.

Similarly, the area Ty may be obtained by applying directly the formula (1) as
follows:

koo 4 | 4
Tty 2s £ 9 cngegn X
? 15( 9

.,.2..’.. ;.2.1+2-L+2-—% 1 ]—)EU_FGQSS.
9 49 16 81 25

For the same reason, T3 =~ 0.83953 is also an upper bound for A.

1322523724925
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2,

n T, n T,
10 0.82568 110 0.80023
20 0.80656 120 0.80018
30 0.80293 130 0.80016
40 0.80165 140 0.80013
50 0.80106 150 0.80012
fi) 0.80073 160 0.80010
10 0.80054 170 0.80009
80 0.80041 180 0.80008
) 0.80033 190 0.80007
L] 0.80026 200 0.80006

3. By analyzing the table in the preceding problem, it seems reasonable to
conjecture that the approximation A =~ 0.800 generates an error of magnitude
less than 10~3; that is, 0.799 < A4 < 0.801.

In Section 6.3, you will learn how to compute the exact value of the area .4, and thus
you will have the opportunity to check whether your conjecture is true or false. M

Classroom Discussion 6.2.2. The Rectangular Methods

This Classroom Discussion’s goal is to approximate the region in the plane that is
under the graph of a continuous nonnegative function with appropriate rectangular
tiles instead of trapezoidal tiles in order to find approximate values for its area. Pick
n — 1 arbitrary points Py, Pa,... ,P,_1 on the curved path between the endpoints
(a,f(a)) and (b, f(b)) (in the figure n = 5). Then, think about how you can use the
points that are lying on the curved path to form rectangular tiles to approximate the
irregular shape.

(b, f(b))
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Let x1,x,...

Applications of Integration to Area

,Xyn—1 be the x-coordinates of points Py, P;,...,P,_1. For

convenience, set a = xp and b = x,,.

(D)

1. The Left Rectangular Method: Guided by the following problems, discuss this
first variant of the rectangular method in small groups.

a.

b.

Foreachl = i = n, the ith rectangle is defined by three vertices (x; .1, 0),
(#,0), and (x; -1, f(x;—1)). Draw the first, the ith and the nth rectangles.

Find the area of each rectangular tile.

¢. Write down the Riemann sums for f on the interval [a, b] corresponding

=

to your rectangular tiles.

Assume Pq,P;,...,P,_1 are selected such that the coordinates
X0,X1,... ,%, are equally spaced. Show that in this case, the Riemann
sums are given by the formula

L, =28 g o, 2)
i=1

n

Analyze what happens as n — co. Then, write down a formula for the
area A of the irregular shape.

For which functions are the areas L, necessarily lower bounds for the
areas of the resulting irregular shapes? (Hint: Think about the shape of
their graphs.)

For which functions are the areas L, necessarily upper bounds for the
areas of the resulting irregular shapes?

Write a calculator program for computing the areas L,. Set up your
program to provide the value of L,, once you enter the given information
on f,a,b, and n.

2. The Right Rectangular Method

a.

Describe the right rectangular method by analogy with the left one,
following similar steps. (Denote by R, the Riemann sum corresponding
to the right rectangular method with » rectangular tiles.)

Is there a link between the trapezoidal method and the left and right
rectangular methods? Explain.

As n becomes very large, which approximate values for the area do you
think become more accurate, 7y, L,, or R,?

3. The Midpoint Rectangular Method: Describe this method by analogy with the
left and right rectangular methods, following similar steps. (Denote by M,
the Riemann sum corresponding to the midpoint rectangular method with n
rectangular tiles.)
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4. Generalization

a. How can you describe simultaneously the left, the right, and the midpoint
methods? Your description should include all three methods as particular
cases.

b. Based on this generalization, describe what needs to be done in order for
the Riemann sums to be lower/upper bounds for the area of the irregular
shape. For instance, how should the heights of the rectangular tiles be
chosen? @

Let A be the area of the plane region bounded by the graph of f(x) = 1/x2,
the x-axis, and the vertical lines x = 1 and x = 5; let L,, and R,, be the areas of
the polygonal regions with n rectangular tiles as described in the left and right
rectangular methods, respectively.

1. Compute by hand L4 and Lg. How do these values compare to the (unknown)
value of the area A4?

- 2. Compute by hand R4 and Rg. How do these values compare to the area A?
<I> 3. Using your calculator program from Classroom Discussion 6.2.2, compute L,

and R, for n = 10,20,...,200. Tabulate your results.

4. Among the integers n in your table, determine, if possible, the smallest one
that allows you to find an approximate value for A with an error of magnitude
less than 101,102, and 1073, respectively.

Solution

1. The area L4 is obtained by applying the formula (2) or by directly computing
the area of each of the rectangular tiles involved.

i = .5_t_'([ w4 l) = 1.42361,
4 4 9 16

y = 1/x2

A
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In Problem 2a, show that

Rn =) ll(ll" £+ 23 [ SR ”3)'
n

In Problem 2b, consider the identity (k + 1)* = k* + 4k*> + 6k* + 4k + 1and
use similar ideas to derive a simple expression for R,,.

3. For which other functions do you think a reasoning along the same lines would
work? Explain.

lil. Riemann Sums for Increasing and Decreasing Functions

Consider the plane region bounded by the graph y = f(x), the x-axis, and the
vertical linesx = aand x = b, where f is an increasing, continuous, and nonnegative
function defined on the interval [a, b].

M
i

i b

1. Sketch the rectangular tiles approximating the given region, as described in
the left rectangular method, with n = §.

2. Sketch the rectangular tiles approximating the given region, as described in
the right rectangular method, with n = 5.

3. Shade the gap that is between the region formed of all the rectangles obtained
in 1 and the one formed of all those obtained in 2. What does the area of this
gap represent?

4. Stack up all of the rectangles forming the shaded region. What are the height
and width of the resulting rectangle?

5. What would be the height and width of the resulting rectangle if n = 6,7,...?

6. What happens to the area of the rectangle in 4 as n - co?

7. Use your findings to convince your classmates that the limit of the Riemann
sums is indeed the area of the region below the graph y = f(x) and above the
X-axis.

8. Does this reasoning still work if the function f(x) is decreasing instead of
increasing?
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6.3 EXACT VALUE OF THE AREA OF AN IRREGULAR SHAPE

Fundamental Theorem of Calculus e Areas of regions bounded by graphs

Consider the graph y = f(x) where f(x) is a continuous function defined on the
interval [a,b]. Our task in this section is to find the exact value of the area A of
the region of the plane bounded by the graph of f, the x-axis, and the vertical lines
x=gandx = b.

Classroom Discussion 6.3.1: The Fundamental Theorem of Calculus

Throughout this Classroom Discussion, the function f is assumed to be nonnegative.
Fix a = x = b and denote by A(x) the area of the region in the plane bounded by
the graph of f, the x-axis, and the vertical lines passing through points (a,0) and
(x,0). The function A(x) is sometimes called the area-so-far function.

3
.

y=fm

In order to familiarize yourself with the function .A(x), answer the following
two questions.

1. What are the values of A(a), A(%), and A(b)?
2. Ts the function .A(x) increasing, decreasing, or neither? Explain.

fix + Ax)
&) b
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Let x increase by a small amount Ax; then the area A(x) increases by an amount
AA corresponding to the additional region.

3. If Ax is very small, which polygonal region would you suggest to approximate
this additional region?

4. Express the corresponding approximation for AA in terms of Ax, f(x), and
flx + Ax).

5. Use your findings from Problem 4 to approximate the average rate of change
LA

O
6. Evaluate Ahr_n)0 flx + Ax). Recall that f(x) is continuous over the interval
X
[a, b].
7. Show that lim LA filx).
Ax—0 Ax

8. What can you say about the derivative A'(x)?
9. Express A(x) as a definite integral.

10. Evaluate the area A of the plane region below the graph of f and above the
x-axis. @

Theorem 6.3.1 (The Fundamental Theorem of Calculus). Let f(x) be a nonnegative
and continuous function defined on the interval [a,b]. Denote by A(x) the area of
the plane region bounded by the graph of f, the x-axis, and the vertical lines through
points (a,f(a)) and (x, f(x)). Then,

A'(x) = f(x), forallxin|a,b]. (3
Therefore,

Ax) = f “f)di, forall xina, b]. (4)

In particular, the area of the plane region bounded by the graph of f, the x-axis, and
the vertical lines x = a and x = b is given by

o
Ab) = | f)dt. (5)

Recall that the Riemann sums for a nonnegative and continuous function f
defined on an interval [a, b] (when using a large number of tiles) provide approximate
values for the area A of the region that is below the graph of f and above the x-axis.
Their limit, as the number of tiles goes to oo, coincides with the area A. Using the
Fundamental Theorem of Calculus, you now see that the Riemann sums for f, when
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using a large number of tiles, provide approximate values for the definite integral
/ Hb f(x) dx. Their limit, as the number of tiles goes to oo, coincides with fab f(x)dx.

Historical Note: Sir Isaac Newton (1643-1727; from England)

While still under 25 years old, Newton made revolutionary advances in mathematics,
physics, optics, and astronomy. He laid the foundations for differential and integral
calculus several years before its independent discovery by Leibniz. Newton’s De
Methodis Serierum et Fluxionum (“On the Methods of Series and Fluxions™), the
first book on calculus, was written in 1671, but it did not appear in print until 1736.
His later work Principia is considered to be the greatest scientific book ever written.
In 1705, Newton was knighted by Queen Anne; he was the first scientist ever to
receive such an honor for his work.

Compute the area of the plane region bounded by the graph of f(x) = 3, the
x-axis, and the vertical lines x = 1 and x = 4, first using the Fundamental Theorem
of Calculus, and then using the area formulas obtained in Section 6.1.

||.l

- —— = ¥

| 4

Solution Using the Fundamental Theorem of Calculus, the area of the shaded
region is

4
/ 3de =3 = (12 - 3)=09.
Jy

On the other hand, the shaded region is a square whose sides each have
length 3. Using the formula for the area of a square, its area is 3% = 9. ]

Practice Problems

1. Compute the area of the plane region bounded by the graph of f(x) = 2x, the
x-axis, and the vertical line x = 2, first using the Fundamental Theorem of
Calculus, and then using the area formulas obtained in Section 6.1.
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For Questions 30-31, use 3.14 or the key on a calculator.

30 Try This as a Class Use your figure from Question 24
a. Use A =rr2 to write an expression that represents the exact '
area of the Circle.
b. Find the approximate area of the Circle. '

€. if you were planning to make a circle kite with a 4 cm radius
would you use your answer from part (a) or from part (b)
to order the material? Why?

'

d. How does the area of the circle from part (b) compare with
the estimated area of the figure in Question 26(a)?

31 m A centipede kite has 10 in. diameter circles. :

a. Find the exact area of one circle
b. Find the approximate area of one circle.

€. About how many square inches of silk were used to make all '
11 circles of the kite?

1 i+ See Exs. 16~23 on p. 407.

|V question 31 |

checks that you
can find the area of
a circle.

Sectlon 2 Square Roots, Surface Area, and Area of a Circle

Mam Dhate

Circle (Use with Question 24 on page 402.)

Directions
¢ Cut out the circle.

* Cut apart the eight sectors and arrange them to form the figure
shown below.

« Tape the figure to a sheet of paper.

’f,./-""
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Classroom Discussion 6.4.1: Approximating the Circle by Inscribed Regular
n-gons

To find the area of a disc, we use here the method of exhaustion, which was invented
by Eudoxus (similar ideas may be found in the project “Archimedes’s Computation
of 77> in Section 1.1). To see how the method works, use the following outline.

1. For each n = 3, let a, and p, denote the apothem and the perimeter of an
inscribed regular n-gon, respectively. How can you express the area A, inside
the n-gon in terms of a, and p,,?

/,,,; ;\?\ | Rl s
€ u |
N JA

2. What happens to the n-gons as n increases? What happens to the values of ay,
pn, and A, as n increases? What can you say about their limits as # —— 00?

3. Using your findings in Problems 1 and 2, find the area A of the disc.
4, Why do you think this method is called the method of exhaustion? &

Historical Note: Fudoxus of Cnidus (408-355 BC; from Asia Minor
[now Turkey])

FEudoxus, a contemporary of Plato, had a rich and varied academic background in
mathematics, music, medicine, astronomy, theology, and meteorology. Early in his
career, he developed a theory of proportion, which appears in Euclid’s Elements
and facilitated his early work on finding areas. Eudoxus introduced the method of
exhaustion, which led to important developments in calculus by Archimedes and
others; Eudoxus himself was the first to prove that a cone’s volume is one-third the
volume of a cylinder having the same base and equal height.

Classroom Discussion 6.4.2: Area of a Disc Using the Fundamental Theorem
of Calculus

The Fundamental Theorem of Calculus allows us to find the area of a region
bounded by the graph of a function and the x-axis. The disc is not such a region,
but since it has a reflectional symmetry about the x-axis, its area is twice that of the
upper semidisc. The upper semidisc is a region for which the Fundamental Theorem
of Calculus applies.
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1. Use the Pythagorean Theorem to find a relation between x and y for the point
(x,y) to lie on the circle centered at the origin with radius r.

2. What additional constraint must be placed on y for the point (x,y) to lie on
the upper semicircle?

3. Solve for y in your equation from Problem 1 to obtain the equation of the
upper semicircle.
4. Use the Fundamental Theorem of Calculus to express the disc’s area as a

definite integral
<-_r> 5. Compute the area A by using your ca‘lculator to evaluate the definite integral.

EXERCISES 6.4

1. Write a paragraph about the Fundamental Theorem of Calculus. In particular,
write about your understanding of this theorem, and why you think it is (or is not)
useful.

2. In Classroom Connection 6.4.1, we used the formula A; = 372 to estimate the area
A of a disc of radius 7. In the old Babylonian civilization, the formula 45 = %2—
was used for the area A inside a circle of circumference C.

a. Express A3 in terms of 7 using the classical formula for the circumference of a
circle.

b. Express the errors Ay — A and A, — A in terms of r using the formula
obtained for A in Section 6.4. Interpret the results.

¢. Evaluate the relative error in each estimate. The relative error, when estlmatlng

v
an exact value v with an approximate value vy, is the quantity (it g4
i
Yo

v
d. Evaluate the percentage error in each estimate. The percentage error in an
estimate is 100% times the relative error in the estimate.

Section 6.4 Area of a Disc from Different Points of View 257

The goal of the following problems is to use what you have already done in
the case of a disc to find the area of the region inside an ellipse.
3. What is an ellipse? Research its definition and its Cartesian equation.

4. Can the methods in Classroom Connection 6.4.2 and in Classroom Discussion
6.4.1 be adapted to ellipses? Why or why not? _

5. Adapt the method used in Classroom Connection 6.4.1 to the case of a region
inside an ellipse.

6. Use the Fundamental Theorem of Calculus to compute the area of the region
inside an ellipse. To do so, follow the same steps as in the case of a circle.

—at, 0

I

PROJECTS AND EXTENSIONS 6.4
I. History of Finding Areas

The problem of finding areas of plane regions has a rich and fascinating history,
which started with the early Greek philosophers and continued for thousands of
years afterward. Research the history of this problem and write a detailed report
describing, in chronological order, the main advances that were made on the
problem. Be sure to include biographical information about the mathematicians
responsible for these advances.

Il. Leibniz vs. Newton

The controversy over who discovered calculus, Leibniz or Newton, caused bitter
disputes among their followers for many years. Eventually, both mathematicians



316 Chapter 7

MName

Further Applications of Integration

Table of Volumes (Use with Questions 12—14 on page 423.)

Directions

¢ Find the height, the area of the base, and the volume of each
block prism in the table.

* The block pyramids have the same heights and bases as the
corresponding prisms. Complete the block pyramid portion

of the table.

* For each row, find the ratio of the volume of the block pyramid
to the volume of the prism. In the last column, write each answer

in decimal form and round to the nearest thousandth.

Block Prisms

Block Pyramids

| Volume Ratlo—l

Area of

Height Volume Height . Areaof | Volume Volume of
base | of prism base of block | block pyramid
h B V=B+h " B pyramid -
Volume of prism
a7} i 1 = 1 1 1+1=1.000
I
@ z 4 8 2 4 5 5+8=0.625

AW - ¥

L= T -
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3. Volumes of Pyramids Using Calculus

a. Explain why, when computing a pyramid’s volume, the pyramid can be assumed
to be right without loss of generality.

b. Using similarity, express the area Alx) of the cross-section corresponding to x
in terms of x, the height /, and the base’s area Ay.

¢. Use Theorem 7.3.1 to determine the volume of the given pyramid. Compare

this value with the volume of a prism that has the same base area and height
as the pyramid. &

Classroom Discussion 7.3.5: Volumes of Spheres

The goal is to find the volume of a sphere of radius r > (. We present three different
approaches: one for middle-school students based on comparing the volumes of
spheres and cylinders, one for high school students based on approximating the
sphere with tiny “pyramids,” and one for college students based on calculus.

1. Classroom Connection 7.3.4: Volumes of Spheres and Cylinders:

The following exploration is taken from pages 47-48 in the seventh-grade textbook
Connected Mathematics, Filling and Wrapping. Discuss it in small groups. @
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Although spheres may differ in size, they are all the same shape. We can describe a sphere
by giving its radius.

In this investigation, you will explore ways to determine the volume of cones and spheres

Comparing Spheres and Cylinders

In this problem, you will make a sphere and a cylinder
with the same radius and height and then compare their
volumes. (The “height” of a sphere is just its diameter.)
You can use the relationship you observe to help you
develop a method for finding the volume of a sphere.

Did you know?

e &

The Earth is nearly a sphere. You may have heard that, until Christopher
Columbus’s voyage in 1492, most people believed the Earth was flat. Actually, as
early as the fourth century n.c,, scientists in Greece and Egypt had figured out
that the Earth was round. They observed the shadow of the Earth as it passed
across the Moon during a hunar eclipse. It was clear that the shadow was

round. Combining this observation with evidence gathered from observing
constellations, these scientists concluded that the Earth was indeed spherical.

‘ In fact, in the third century B.c., Eratosthenes, a scientist from Alexandria, Egypt,
| was actually able to estimate the circumference of the Earth.

S ==

e — =

s s o=

Investigation 5: Cones and Spheres m

Section 7.3 Volumes of Solids

*  Using modeling dough, make a sphere with a diameter between 2 inches and
3.5 inches.

*  Using a strip of transparent plastic, make a cylinder with an open top and
bottom that fits snugly around your sphere. Trim the height of the cylinder to

n'la;ch the height of the sphere. Tape the cylinder together so that it remains
rigid.

* Now;, flatten the sphere so that it fits snugly in the bottom of the cylinder.
Mark the height of the flattened sphere on the cylinder.

i ~ | | heigheof
height of - -. SR
cylinder | height of

fattened sphere

A. Measure and record the height of the cylinder, the height of the embty space,
and the height of the flattened sphere.

B. What is the relationship between the volume of the sphere and the volume
of the cylinder?

Remove the modeling dough from the cylinder, and save the cylinder for the next
problem.

& Problem 5.1 Follow-Up
Compare your results with the results of 2 group that made a larger or smaller sphere.

Did the other group find the same relationship between the volume of the sphere and
the volume of the cylinder?

n__ﬂlgng and Wrapping
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2. Classroom Connection 7.3.5: Volume of a Sphere Using Tiny “Pyramids”

The following exploration is taken from pages 546-547 in the textbook Discovering
Geometry, third edition, by Michael Serra. In this exploration, the sphere’s volume
is known, and it is used to find its surface area. However, a similar reasoning works
to find the sphere’s volume if its surface area is known. Replace Steps 3 and 4 in the
exploration with Step 3 here, and discuss it in small groups.

Step 3: The sphere’s surface area is S = 4712, Use the equation in Step 2 to find the
sphere’s volume V. @

— U

Step 1
Step 2

Step 3

Step 4

Investigation
The Formula for the Surface Area of a Sphere

In this investigation you'll visualize a
sphere’s surface covered by tiny shapes
that are nearly flat. So the surface area, S,
of the sphere is the sum of the areas of all
the “nearly polygons”” If you imagine radii
connecting each of the vertices of the
“nearly polygons” to the center of the
sphere, you are mentally dividing the
volume of the sphere into many “nearly
pyramids” Each of the “nearly polygons”
is a base for a pyramid, and the radius, 1,
of the sphere is the height of the pyramid.
So the volume, V; of the sphere is the sum
of the volumes of all the pyramids. Now
get ready for some algebra.

Divide the surface of the sphere into
1000 “nearly polygons” with areas

B, By, By, . . 4 By Then you can
write the surface area, S, of the sphere
as the sum of the 1000 B’s:

S=B,+B,+ B+ ...+ By

The volume of the pyramid with base B, is %(Bl)(r), so the total volume of the
sphere, V, is the sum of the volumes of the 1000 pyramids:

=1 1 1 :
v =3(B)n + 3(B)) + ...+ 3(Biaa))
What common expression can you factor from each of the terms on the right
side? Rewrite the last equation showing your factoring.

But the volume of the sphere is V = %171’3. Rewrite your equation from Step 2 by
substituting 3777 for V and substituting for § the sum of the areas of all the
“neatly polygons.”

| Solve the equation from Step 3 for the surface area, S. You now have a formula
for finding the surface area of a sphere in terms of its radius. State this as your
next conjecture and add it to your conjecture list.

Sphere Surface Area Conjecture =l

The surface area, S, of a sphere with radius r is given by the formula .2 .

3. Volumes of Spheres Using Calculus

Section 7.3
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a. For each —r = x = r, describe the cross-section corresponding to x, then

express its area A(x) in terms of x and r.
b. Use Theorem 7.3.1 to determine the volume of the given sphere.

EXERCISES 7.3

*

1. A swimming pool is in the shape of a right prism as in the following figure. How
many cubic feet of water can this swimming pool hold?

4 ft

L

e

20

50 ft

201t

2. Classroom Connection 7.3.6: Revisiting Cylinders

101

The following exploration is taken from pages 502-503, page 7-56, and page
7-57 in the sixth-grade textbook Math Thematics, Book 1. Answer the questions

therein.

*
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Xy

LEARN HOW TO...

% recognize a
cylinder

+ find the volume of
a cylinder

As YOu...

+ explore the size
and shape of a
kiva

KEY TERM
+ cylinder

Further Applications of Integration

Ll
]
L

Volume ofa
Cylinder

' Work in a group of three. You will need:
Labsheets 5B and 5C « scissors « tape « rice « ruler

In the summer of 1891, Gustaf Nordenskidld of Sweden and his team
began to uncover the ruins at Mesa Verde. Part of their task was to
remove the layers of dust and rubbish that had piled up over the

centuries. After digging to a depth of 15 m at one location, they
began to see a kiva take shape.

12 How do you think Nordenskidld could have estimated the
amount of dust and rubbhish in the kiva without removing it?

A kiva is shaped like a circular cylinder. A
circular cylinder is a space figure that has two
circular bases that are parallel and congruent.

The bases are
parallel and
congruent.

13 use Labsheets 58 and 5C. Cut out the nets for the open-topped
Prism A, Prism B and Cylinder. Fold and tape each net.

14 How is the cylinder like a prism? How is it different?
19 Which has a larger volume, prism A or prism B? Explain.

16 which do you think holds more, the cylinder or prism A?
the cylinder or prism B? Explain your thinking in each case.

17 a F prism B with rice and then pour the rice into the cylinder.
Does the rice completely fill the cylinder, or is there too much
or not enough rice?

b. Fill the cylinder with rice and then pour the rice into prism A.
Does the rice completely fill prism A?

<. What can you conclude about the volume of the cylinder?

Module 7 Wonders of the World
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18 a. Mace the cylinder Inside the larger prism o :
Then place the smaller prism inside J “ylinder
the cylinder.

Lo inw

b. For each of the prisms and the cylinder,
find the area of a base and the height.
Make a table to record your results.

™ Prisim A, :

19 biscussion Add on to the table you completed in Question 18.
a. Find the volumes of prism A and prism B. Explain your method.

b. Use the same method you used in part (a) to find the volume
of the cylinder.

€. Use your models and your results with rice to decide whether
the volume you found for the cylinder is reasonable.

P You can find the volume V of a cylinder with height h and a base
with area Bin the same way you find the volume of a prism.

V=Bh, or V=nr2p, area of
circular base

Find the volume of the cylinder shown to 4em
the nearest cubic centimeter. Use 3.14 for TT.

SAMPLE RESPONSE

V=rr?h

=314 <4253 = 266,272 Volume is measured

The volume is about 266 ¢m3. in cubic units.

of the cylinder to the nearest 10m I

20 m Find the volume ‘q : m

...checks that you
can find the volume
of a cylinder.

cubic meter. Use 3.14 for . _U :
9 I . ) Im 1'
< 1 Gustaf Nordenskitld reported that one of the kivas he uncovered |
had walls 2 m high with a diameter of 4.3 m. If this kiva was :
completely full of dust and rubbish, about how much material :
did Nordenski6ld have to remove? :

ruwniﬂhﬁﬁiikiyi“

See Exs. 14-22 on p. 504

Section 5 Circles and Cylinders



