
Infinite Limits & Limits at Infinity

Calculus I

Modeling Practices in Calculus

1 Infinite Limits

An infinite limit occurs when as the independent variable approaches a value, the dependent variable
becomes arbitrarily large in magnitude. So, the function values increase or decrease without bound
near a point.

Infinite limits are denoted by:

lim
x→a

f(x) = ∞ or lim
x→a

f(x) = −∞

In the case of one-sided infinite limits:

lim
x→a−

f(x) = ∞ or lim
x→a−

f(x) = −∞

lim
x→a+

f(x) = ∞ or lim
x→a+

f(x) = −∞

Note: In the event of an infinite limit, the limit does not exist since as x approaches some number,
the function values become increasingly large in magnitude, never approaching a single, unique value.
However, we don’t use the notation of “DNE” to express this since we have a formal way to describe
this occurrence.

Example 1: Evaluate the following limits using the graph of g(x) given below.

• lim
x→2−

g(x)

• lim
x→2+

g(x)

• lim
x→2

g(x)

• lim
x→4−

g(x)

• lim
x→4+

g(x)

• lim
x→4

g(x)
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1.1 Finding Infinite Limits Analytically 1 INFINITE LIMITS

1.1 Finding Infinite Limits Analytically

Many infinite limits are analyzed using a common arithmetic property:

The fraction
a

b
grows arbitrarily large in magnitude if the denominator, b, approaches 0 while

the numerator, a, remains nonzero and relatively constant. In other words, lim
b→0

a

b
= ±∞.

Let’s take the following limits for example:

lim
x→0+

1

x
lim
x→0−

1

x
lim
x→0

1

x

In all three cases, direct substitution does not work because we would be dividing a nonzero number
by zero. So, let’s observe what happens as we let x approach zero from either side. In the tables below,

we can approach this numerically and by using the graph of f(x) =
1

x
, we can observe what happens

graphically.

x approaches 0 from the right:

x 1 0.1 0.01 0.001 0.0001 0.00001
1
x

1 10 100 1, 000 10, 000 100, 000

x approaches 0 from the left:

x −1 −0.1 −0.01 −0.001 −0.0001 −0.00001
1
x

−1 −10 −100 −1, 000 −10, 000 −100, 000

We see, as x approaches zero from the right and left, the function values grow larger in magnitude.
Specifically, as x approaches zero from the right, the function values grow more and more positive,
while as x approaches zero from the left, the function values grow more and more negative. So, we
can draw the following conclusions for each limit:

lim
x→0+

1

x
= ∞ lim

x→0−

1

x
= −∞ lim

x→0

1

x
DNE
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1.1 Finding Infinite Limits Analytically 1 INFINITE LIMITS

Let’s look at the left-hand limit

(
lim
x→0−

1

x

)
and solve it analytically (by figuring out how the function

behaves without actually plugging in several values or without having to look at its graph).

• Since x is approaching zero from the left, this means that the x-values will be less than zero. So,
they will be negative.

• In the numerator, what x is approaching does not matter since 1 is a constant. [Recall the first
of our common limits in techniques for computing limits.]

• For the denominator, x is getting closer to zero and is negative.

• So, overall, we have a positive constant being divided by an increasingly small negative number.
The result of this fraction will be an increasingly large negative number.

This gives us the following:

lim
x→0−

approaches 1︷︸︸︷
1

x︸︷︷︸
approaches 0, negative

= −∞

Example 2: Evaluate each of the following limits:

• lim
x→1+

→−2︷︸︸︷
−2

x− 1︸ ︷︷ ︸
→0,+

= −∞

Since we are approaching 1 from the right, this means that x > 1. This implies x − 1 > 0.
So, x − 1 will get closer to zero and will be positive as x → 1+. Therefore, we have a negative
constant being divided by an increasingly small positive number. The result will be a number
which gets larger in magnitude and negative. So, the limit will be −∞.

• lim
x→1−

−2

x− 1

• lim
x→2−

x+ 1

(x− 2)2
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1.2 Vertical Asymptotes

For any given function f(x) if any of the following limits are true, then f(x) will have a vertical
asymptote at x = a.

lim
x→a−

f(x) = ±∞ lim
x→a+

f(x) = ±∞ lim
x→a

f(x) = ±∞

Only one of the above limits has to occur in order for a function to have a vertical asymptote at x = a.

Example 3: Let’s revisit the function f(x) =
1

x
.

In previous work, we found the following:

lim
x→0+

1

x
= ∞ and lim

x→0−

1

x
= −∞

From this we are able to draw the conclusion that the function f(x) =
1

x
has a vertical asymptote at

x = 0.

Finding Vertical Asymptotes of Rational Functions

Given a rational function,
p(x)

q(x)
, we can determine the vertical asymptotes, if any, with the following

steps.

• Find the x-values where the denominator is zero, but the numerator is NOT zero.

– Find x = a such that q(a) = 0, but p(a) ̸= 0

• Using the value(s) identified in the previous step, take one-sided limits of the function.

– Find lim
x→a+

p(x)

q(x)
and/or lim

x→a−

p(x)

q(x)

• If either of the above limits go to ±∞, then your function has a vertical asymptote at x = a.

Example 4: Identify any vertical asymptotes of f(x) =
x2 + x− 2

x2 − 4x+ 3
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2 Limits at Infinity

A limit at infinity occurs when the independent variable increases or decreases without bound. So,
limits at infinity tell us how a function is behaving as its x-values get increasingly more positive or
negative.

Limits at infinity are denoted by

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

Example 5: Evaluate lim
x→∞

1

x
and lim

x→−∞

1

x

We note that direct substitution is not a valid approach for evaluating these limits since we can’t
simply plug in the values of ±∞. So, there are a couple of other approaches we can take.

• Graphically: Let’s look at the graph of f(x) =
1

x
and observe what happens as the x-values

grow larger in magnitude.

From the graph, we see that as x increases and decreases more and more, the function values get
smaller and smaller in magnitude, approaching the value of zero. So, we are able to conclude:

lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0

• Analytically: Similar to analyzing infinite limits, we can analyze limits at infinity using an
arithmetic property:

The fraction
a

b
grows arbitrarily small in magnitude if the denominator, b, grows arbitrarily

large in magnitude while the numerator, a, remains nonzero and relatively constant. In

other words, lim
b→±∞

a

b
= 0.

For f(x) =
1

x
, as x → ∞ the numerator stays constant at 1 and the denominator grows larger in

magnitude and positive. Therefore we have a positive constant being divided by an increasingly
large positive number. The result of this fraction will be an increasingly small, positive number.

Therefore, lim
x→∞

1

x
= 0.

©Modeling Practices in Calculus Project
Shared under Creative Commons BY-NC-SA 4.0 license

5
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Now, as x → −∞, again the numerator stays constant at 1, but the denominator grows larger in
magnitude and negative. So, we have a positive constant being divided by an increasingly large
negative number. The result of this fraction will be an increasingly small, negative number. This

means we have lim
x→−∞

1

x
= 0.

2.1 Horizontal Asymptotes

For any given function f(x) if either of the following limits exists, then f(x) will have a horizontal
asymptote at y = L.

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

Note: A horizontal asymptote can only occur when the limit at infinity yields a finite number.

Example 6: Let’s again revisit the function of f(x) =
1

x
.

We just found that lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0. From this we are able to conclude that f(x) =

1

x
has

a horizontal asymptote at y = 0.

Example 7: Find the horizontal asymptotes of the following functions. [Hint: Consider the limit
laws.]

• f(x) =
−2

x

• f(x) =
3

x
+ 5

2.2 Infinite Limits at Infinity

If a function f(x) increases or decreases without bound as x increases or decreases without bound,
then we have an infinite limit at infinity. These are denoted by:

lim
x→∞

f(x) = ±∞ or lim
x→−∞

f(x) = ±∞

Here are some examples of infinite limits at infinity:

• lim
x→∞

x = ∞

• lim
x→−∞

x2 = ∞

• lim
x→∞

ex = ∞

• lim
x→−∞

x3 = −∞

Note: In the case of infinite limits at infinity there exists no horizontal asymptotes.
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2.3 Limits at Infinity of Powers and Polynomials

Let n be a positive integer and let p be the polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x

1 + a0

where an ̸= 0.

• If n is even: lim
x→±∞

xn = ∞

• If n is odd: lim
x→∞

xn = ∞ and lim
x→−∞

xn = −∞

• lim
x→±∞

1

xn
= 0

• lim
x→±∞

p(x) = ∞ or −∞, depending on the degree (odd or even?) of the polynomial and the sign

of the leading coefficient an (positive or negative).

– lim
x→±∞

p(x) = lim
x→±∞

anx
n = an · lim

x→±∞
xn

Example 8: Evaluate the following:

• lim
x→−∞

(7x5 − 4x3 + 2x− 9) = lim
x→−∞

7x5 = 7 · lim
x→−∞

x5 = 7 · −∞ = −∞

• lim
x→∞

(8x2 + 3x− 5x3)

• lim
x→−∞

(17x3 − 4x9 − 5x+ 1)

• lim
x→−∞

−2

x3

• lim
x→∞

18
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2.4 Limits at Infinity for Rational Functions

In general, for rational functions, we can evaluate limits at infinity by dividing each term in the
expression by the highest power of x in the denominator, simplifying, and then evaluating the
limit (for each term).

Example 9: Evaluate lim
x→∞

3x+ 2

x2 − 1

Since this is a limit at infinity, direct substitution is not a valid approach. However, given this is a
rational function, we can divide each term by the highest power in the denominator. For this function,
the highest power in the denominator is x2. So, we have the following:

lim
x→∞

3x+ 2

x2 − 1
= lim

x→∞

3x
x2 +

2
x2

x2

x2 − 1
x2

= lim
x→∞

3
x
+ 2

x2

1− 1
x2

=
lim
x→∞

3

x
+ lim

x→∞

2

x2

lim
x→∞

1− lim
x→∞

1

x2

=
0 + 0

1− 0
= 0

For the example, since we found that a limit at infinity led to a finite value, we are able to say

f(x) =
3x+ 2

x2 − 1
has a horizontal asymptote at y = 0.

Example 10: Evaluate lim
x→∞

x+ x3 − 8x4

2x4 + x2 − 1

Example 11: Evaluate lim
x→−∞

x5 + 4x2 − 5

x3 + 6x
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