
Implicit Differentiation

Calculus I

Modeling Practices in Calculus

1 Implicit Differentiation

Usually the equations we work with are presented in the form y = f(x). An equation of this form is in
explicit form because it is explicitly solved for in terms of one variable. For example, the function

y = x2 + 2x+ 1

is in explicit form because y is explicitly defined as a function of one variable, x.

However, when we have equations like the following:

x2 + y2 = 1

x2y − 2 = 3y3

these exhibit an implicit relation between the variables. For equations of this form, implicit form, we
don’t have a straight-forward way to compute a y-value given an x-value. However, for equations in
implicit form, a value of x can determine one or more values of y.

For equations in implicit form, implicit differentiation is used to find the derivative.

Steps for Implicit Differentiation

Given an equation in implicit form, in terms of x and y, in order to find
dy

dx
:

1. Take the derivative of both sides of the equation with respect to x.

•
d

dx
[ ] =

d

dx
[ ]

2. Using the appropriate derivative rules, differentiate both sides of the equation. For the terms
involving y, apply the chain rule.

•
d

dx
[y] =

dy

dx

3. Using appropriate algebra, solve for
dy

dx
.

• This step usually involves putting all terms with
dy

dx
on one side of the equation and the

other terms on the other side.

• If needed, you can then factor out
dy

dx
in order to solve for it.
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1 IMPLICIT DIFFERENTIATION

Example 1: Find
dy

dx
for the implicitly defined curve x2 + y2 = 1.

We are trying to find
dy

dx
, or the derivative of y with respect to x. So, we start by taking the derivative

of both sides of the equation with respect to x:

d

dx

[
x2 + y2

]
=

d

dx
[1]

Now, we take the derivative (with respect to x) of each term, using appropriate rules and the chain rule
for terms that involve y.

d

dx
[x2] +

d

dx
[y2] =

d

dx
[1]

2x+ 2y
dy

dx
= 0

Using algebra, we finish by solving for the derivative,
dy

dx
:

2y
dy

dx
= −2x

dy

dx
=
−2x
2y

dy

dx
= −x

y

Example 2: Find
dy

dx
for x2y − 2 = 3y3.

d

dx
[x2y − 2] =

d

dx
[3y3]

*product rule→ 2x · y + dy

dx
· x2 − 0 = 9y2

dy

dx

2xy + x2 dy

dx
= 9y2

dy

dx

x2 dy

dx
− 9y2

dy

dx
= −2xy

dy

dx

(
x2 − 9y2

)
= −2xy

dy

dx
=

−2xy
x2 − 9y2
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1 IMPLICIT DIFFERENTIATION

Example 3: Find
dy

dx
for the following:

• x2 + cos(y) = 3x− 4y

• exy = x− y

Example 4: For x3 + x2y + 4y2 = 6, determine the equation of the tangent line at the point (1, 1).
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1.1 Higher-Order Implicit Differentiation 1 IMPLICIT DIFFERENTIATION

1.1 Higher-Order Implicit Differentiation

Similar to the way we found higher-order derivatives for explicitly defined functions, we can do the same
for implicitly defined curves. In this course, we are mainly only interested in the second derivative for
implicitly defined curves, so we’ll focus on that here.

Recall: If
dy

dx
represents the first derivative of y with respect to x, then we find the second derivative

by taking the derivative of the first derivative.

d

dx

[
dy

dx

]
=

d2y

dx2

When finding higher-order derivatives for implicitly-defined curves, we use similar steps to finding the
first derivative by using implicit differentiation.

Example 5: Find
d2y

dx2
for y2 − 2x = 1− 2y.

Let’s start by finding the first derivative,
dy

dx
:

d

dx
[y2 − 2x] =

d

dx
[1− 2y]

2y
dy

dx
− 2 = −2dy

dx

2y
dy

dx
+ 2

dy

dx
= 2

dy

dx
(2y + 2) = 2

dy

dx
=

2

2y + 2
dy

dx
=

1

y + 1

Now, we can find the second derivative by taking the derivative with respect to x of
dy

dx
:

d

dx

[
dy

dx

]
=

d

dx

[
1

y + 1

]
d2y

dx2
=

0 · (y + 1)− dy

dx
· 1

(y + 1)2
← quotient rule

=
−dy

dx
(y + 1)2

*Note: We want to express derivatives (of any order) in terms of the variables used to define the original
function or curve. So, for this example, we want the second derivative to be in terms of x and/or y

only. There is a straight-forward solution to this – simply replacing
dy

dx
with what we found it to be in
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1.1 Higher-Order Implicit Differentiation 1 IMPLICIT DIFFERENTIATION

the previous step.

d2y

dx2
=

−dy

dx
(y + 1)2

=
− 1

y+1

(y + 1)2

=
−1

(y + 1)3

Example 6: Find
d2y

dx2
for 2x3 − 3y2 = 8.
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1.2 Logarithmic Differentiation 1 IMPLICIT DIFFERENTIATION

1.2 Logarithmic Differentiation

For “complex” functions involving a combination of products, quotients, or powers, derivatives can
be taken with logarithmic differentiation by using properties of the natural logarithm and implicit
differentiation.

Steps for Logarithmic Differentiation

Given a function y = f(x), in order to find
dy

dx
:

1. Take the ln of both sides of the equation.

2. Simplify the result by using properties of the natural logarithm.

• ln(xy) = ln(x) + ln(y)

• ln

(
x

y

)
= ln(x)− ln(y)

• ln(xp) = p ln(x)

3. Take the derivative of both sides (with respect to x) using implicit differentiation.

4. Solve for the derivative,
dy

dx
.

5. Substitute y = f(x) back into the result.

Example 7: Find
dy

dx
for y =

x 3
√
2x− 7

(x3 + 1)4
.

To find the derivative of this function, it is possible to use a combination of the quotient, product, and
chain rules. However, that will make things pretty messy and complicated. So, we use logarithmic
differentiation in order to simplify the process.

1. Take the ln of both sides of the equation.

ln(y) = ln

(
x 3
√
2x− 7

(x3 + 1)4

)

2. Simplify the result by using properties of the natural logarithm.

ln(y) = ln

(
x 3
√
2x− 7

(x3 + 1)4

)
= ln

(
x 3
√
2x− 7

)
− ln

(
(x3 + 1)4

)
= ln(x) + ln

(
3
√
2x− 7

)
− ln

(
(x3 + 1)4

)
= ln(x) +

1

3
ln(2x− 7)− 4 ln(x3 + 1)
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1.2 Logarithmic Differentiation 1 IMPLICIT DIFFERENTIATION

3. Take the derivative of both sides using implicit differentiation.

d

dx
[ln(y)] =

d

dx

[
ln(x) +

1

3
ln(2x− 7)− 4 ln(x3 + 1)

]
1

y
· dy
dx

=
1

x
+

1

3
· 1

2x− 7
· 2− 4 · 1

x3 + 1
· 3x2

1

y

dy

dx
=

1

x
+

2

3(2x− 7)
− 12x2

x3 + 1

4. Solve for the derivative,
dy

dx
.

dy

dx
= y

(
1

x
+

2

3(2x− 7)
− 12x2

x3 + 1

)

5. Substitute y = f(x) back into the result.

dy

dx
=

x 3
√
2x− 7

(x3 + 1)4

(
1

x
+

2

3(2x− 7)
− 12x2

x3 + 1

)

Example 8: Find
dy

dx
for y =

√
(x2 + 1)(x− 1)2
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1.2 Logarithmic Differentiation 1 IMPLICIT DIFFERENTIATION

Note: Any function of the form y = f(x)g(x) (a function of x raised to another function of x) requires

logarithmic differentiation to find
dy

dx
.

Example 9: Find the derivative of the following functions.

• y = xx

ln(y) = ln (xx)← Step 1

= x ln(x)← Step 2

d

dx
[ln(y)] =

d

dx
[x ln(x)]← Step 3

1

y

dy

dx
= 1 · ln(x) + 1

x
· x

dy

dx
= y (ln(x) + 1)← Step 4

= xx(ln(x) + 1)← Step 5

• y = xcosx

• y = (sinx)x
2
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