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Recurrence Relations
Proposition 22.3 gives a formula for the sum of the squares of the natural numbers up to 7:

i (2n+ L 4+ 1)(n)
= : ;

P+ 124+2% -+ 4n

How did we derive this formula?

In Exercise 22.16d you were told that a sequence of numbers, do.di.dy, d5, ... satisfies
the conditions dg = 2, d1 = 5, and dy, = 5dn—1 — 6dn—2 and you were asked to prove that
d, = 2" 4+3". More dramatically, in the same problem, you were asked to prove the following
complicated expression for the a'" Fibonacci number:

() ()
V5

How did we create these formulas?
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The recurrence relations with which
we begin are called firsr order
because a;; can be expressed just in
terms of the immediate previous
element of the sequence, @, —1.

Because the first term of the
sequence is @, it is not meaningful
to speak of the term a_ . Therefore,
the recurrence relation holds only for
n > 1. The value of ag must be
given separately.

In this section we present methods for solving a recurrence relation: a formula that spec-
ifies how each term of a sequence is produced from earlier terms.
For example, consider a sequence ag,d;.daz, ... defined by

a, = 3ay—y +4ay—p, ag=23, a; =2,
We can now compute a- in terms of a¢ and a1, and then a3 in terms of a, and a1, and so on:

dr =3ay +4ag=3%x2+4x3 =18
a3 = 3a, +4a1 =3x184+4x2 =62
as = 3as +4a, =3 x62+4x 18 = 258.

Our goal is to have a simple method to convert the recurrence relation into an explicit formula
for the n™ term of the sequence. In this case, a, = 4”7 + 2 - (—1)",

First-Order Recurrence Relations

The simplest recurrence relation is ¢, = a,-;. Each term is exactly equal to the one before
it, so every term is equal to the initial term, ag.

Let’s try something only slightly more difficult. Consider the recurrence relation a, =
2a,_;. Here, every term is twice as large as the previous term. We also need to give the initial
term——say ag = 5. Then the sequence is 5, 10, 20, 40, 80, 160, .. .. It’s easy to write down a
formula for the n'™ term of this sequence: a, = 5 x 2",

More generally, if the recurrence relation is

Gy = Sap—1
then each term is just s times the previous term. Given ag, the n' term of this sequence is
an, = ags”.
Let’s consider a more complicated example. Suppose we define a sequence by
ayp =2a, 1 +3, agp=1.
When we calculate the first several terms of this, sequence we find the following values:
1, & 13 29, 61, 125 253, 509,

Because the recurrence relation involves doubling each term, we might suspect that powers of
2 are present in the formula. With this in mind, if we stare at the sequence of values, we might
realize that each term is 3 less than a power of 2. We can rewrite the sequence like this:

4—-3, 8-3, 16=—3, 32-3, 64-3, 128-=3, 256-—3, 512-3,

With this, we obtain a, = 4 .27 — 3.

Unfortunately, “stare and hope you recognize” is not a guaranteed procedure. Let’s try to
analyze this recurrence relation again in a more systematic fashion.

We begin with the recwrrence ¢, = 2a,—1 + 3 but leave the initial term @ unspecified
for the moment. We derive an expression for a; in terms of o using the recurrence relation:

ay = 2ag + 3.

Next, let’s find an expression for a,. We know that a» = 2a; + 3, and we have an expression
for a; in terms of a¢. Combining these, we get

a; =2a; +3=2Qag+3)+3=4ay+ 9.
Now that we have a,, we work out an expression for a3 in terms of ag:

a3 =2a; +3=204ag+9) + 3 = 8ap + 21.
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Here are the first several terms:

ag = do

a, =2ap+3
a, = 4ag +9
az = 8ag + 21
as = 16ag + 45
as = 32ap + 93

ag = 64ag + 189.

One part of this pattern is obvious: @, can be written as 2"ag plus something. It’s the “plus
something” that is still a mystery. We can try staring at the extra terms 0, 3, 9. 21. 45, 93,189,...
in the hope of finding a pattern, but we don’t want to resort to that. Instead, let’s trace out how
the term 4189 was created in ag. We calculated ag from as:

as = 2as +3 = 2(32a9 +93)+ 3

so the 4189 term comes from 2 x 93 + 3. Where did the 93 term come from? Let’s trace these
terms back to the beginning:

189 =2x93+3
=2x (2x454+3)4+3
=2x(2x2x214+3)+3)+3
=2x(2x2x2x94+3)+3)+3)+3
=2x(2x2x@2x2%x3+3)+3)+3)+3)+3.

Now let’s rewrite the last term as follows:

2x@2x2Xx2x@2x3+3)+3)+3)+3)+3
=25 x34+2%x3+23x3+22x34+2'x3+2%x3
=25+ 28+ 22 42242 +2%) %3
=(2°-1)x3=63x3=189

Based on what we have learned, we predict a7 to be
a7 = 128ag + (27 = 1) x 3 =27 (ao + 3) — 3 = 1284 + 381

and this is correct. .
We are now ready to conjecture the solution to the recurrence relation a, =

2a,-1 + 3. 1tis
an = (ag +3)2" — 3.

Once we have the formula in hand, it is easy to prove it is correct using induction. How-
ever, we don’t want to go through all that work every time we need to solve a recurrence
relation; we want a much simpler method. We seek a ready-made answer to a recurrence
relation of the form

ayp = Sap—1 t1

where s and ¢ are given numbers. Based on our experience with the recurrence
an, = 2dan—y + 3, we are in a position to guess that the formula for a, will be of the fol-

lowing form:

a, = (a number) x s” + (a number).
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Let’s see that this is correct by finding a, a-, etc., in terms of ¢q:

ap = ay

ay = sag +t

az = say +1 = s(sag +1t)+1 = s%a9+ (s + 1)t

az =saz +1 =5 (s%ap + (s + D)+t =sdag + (s + 5 + )t

ag =saz +1 =5 (ap + (s* + s+ Dt) = s*ag + (s> + 2 + 5 + 1)1,
Continuing with this pattern, we see that

an = s%ag + ("L 4 5"2 o4 s Dt

We can simplify this by noticing that s” ™! 4+ 5”2 4 ... 4 5 4 1 is a geomeltric series whose
sum is

=1

§=1
provided s # 1 (a case with which we will deal separately). We can now write

i =1
Oy = g¥" + | - !
§—1

or, collecting the s” terms, we have

— ! 1 f
ay = (10+S_1 s _.s~]' 31)

D?Spite the precise nature of Equation (31), [ prefer expressing the answer as in the
following result because it is easier to remember and just as useful.

Proposition 23.1

All solutions to the recurrence relation a, = sa,_q -+ ¢ where s # 1 have the form
ap = 15" + ¢

where ¢ and ¢; are specific numbers.

Let’s se¢ how to apply Proposition 23.1.

Example 23.2

Solve the recurrence a,, = 5a,-1 + 3 where gy = 1.
Solution: We have a,” = ¢;5" + ¢3. We need to find ¢; and ¢,. Note that

ao=1=cr+cz
a, =8 =5¢; + ¢,

Solving these equations, we find ¢; = % and ¢y = —%, and so

) o sn 2
J!—4 & 4.

We have a small bit of unfinished business: the case s = 1. Fortunately this case is easy.
The recurrence relation is of the form
an =dp—1 +1!

where 7 is some number. It’s easy to write down the first few terms of this sequence and see
the result:

ap = ap

a; =dg +t

ar=a;+t=(ag+1)+1t=uag+2¢

as=dax+1t = (ao+2t)+t=uay+ 3t

ag =az -+t =(ag+3t)+t =ag + 4t.

See the pattern? In retrospect, it’s pretly obvious.
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Proposition 23.3

In a second-order recurrence relation,
ay is specified in terms of @, —1 and
ap—2. Since the sequence begins
with ag, the recurrence relation is
valid for n > 2. The values of ag
and a1 must be given separately.

The solution to the recurrence relation a, = a,—1 + ¢ 1s

ay = ao + nt.

Second-Order Recurrence Relations

A second-order recurrence relation gives each term of a sequence in terms of the previous two
terms. Consider, for example, the recurrence

an = Sap—1 — 6ay—>. (32)

(This is the recurrence from Exercise 22.16d.) Let us ignore the fact that we already know a
solution to this recurrence and do some creative guesswork. A first-order recurrence, ¢, =
san—1 has a solution that’s just powers of s. Perhaps such a solution is available for Equa-
tion (32). We can try a, = 5" or perhaps a, = 6", but let’s hedge our bets and guess a
solution of the form a,, = r” for some number r. We’ll substitute this into Equation (32) and

hope for the best. Here goes:
(n = Sap—1 — 6Up—2 = pll 25071 gpn=2
Dividing this through by r"~2 gives
F2=5r—-6
a simple quadratic equation. We can solve this as follows:
> =5r—6 = 0=r>—5r+6=@—2)(r—-3) = r=2,3.

This suggests that both 27 and 3" are solutions to Equation (32). To see that this is correct, we
simply have to check whether 2" (or 3) works in the recurrence. That is, we have to check
whether 2" = 5.2""} —6.2"72 (and likewise for 3). Here are the proofs:
.08t _g.o" 2 —35.9"71_3.92.9n2
- 2)1—1 =9 2)1—1
— (5 - 3) . 271—1 —n

5.3771_ 6.3 2 =5.37"1_7.3.3"2
=5.30 9. 33
=(5-2)-3"1=3"

We have shown that 2 and 3" are solutions to Equation (32). Are there other solutions?

Here are two interesting observations.
First, if @, is a solution to Equation (32), so is ca, where ¢ is any specific number. To see

why, we calculate
cay = ¢ (Sap—1 — 6an—2) = S(can—1) — 6(can—2).

Since 2" is a solution to (32), so is 5 - 2",
Second, if a, and a), are both solutions to Equation (32), then so is a, + a,,. To see why,

we calculate:
ay + al, = (5an-1 — 6ap—3) + (5al,_; —6a},_3) = 5(an—1 + dp_y) = 6(@n—2 + ay_5).

Since 2" and 3" are solutions to Equation (32), so is 2" + 3".
Based on this analysis, any expression of the form ¢;2" + ¢23" is a solution to Equa-

tion (32). Are there any others? The answer is no; let’s see why.
We are given that a, = 5a,—1 — 6dn—2. Once we have set specific values for ap and a1,

do, a3, da,... are all determined. If we are given ap and ay, we can set up the equations

ag = C120 +C230 e )

a; = 6121 + 23 =2¢1 + 3¢
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There is a rough edge in this
calculation; since we are dividing by
=2 this analysis is faulty in the
case r = 0. However, this is not a
problem because we check our work
in a moment by a different method.

and solve these for c;. c; to get

cp = 3((0 —da)

cy = —2aqg + ay.
Thus, any solution to Equation (32) can be expressed as

an = (3ag —a,)2" + (—2ap +a;) 3".

Encouraged by this success, we are prepared to tackle the general problem
ap = S1dp—1 + S2dp—2 (33)

where 57 and s, are given numbers.
We guess a solution of the form ¢, = r", substitute into Equation (33), and hope for the
best:

apy = S1dp—1 + $2ap—2
= ¥ J_:J—I oE .-.-;r"_z

= re=sr+4+s

2

so the r we seek is a root of the quadratic equation x* — s;x — s, = 0. Let’s record this as a

proposition.

Proposition 23.4

Let 51, 52 be given numbers and suppose r is a root of the quadratic equation x% —s;x—s, = 0.
Then a, = r" is a solution to the recurrence relation a, = sja, 1 + s2ay_2.

Proof. Let r be aroot of x2 — s1x — s5 = 0 and observe

Sl’,n—l 4 Szl'n_2 — ’.n~2(s1r - 52)
= 22 because 12 = s1r + 55
=R
Therefore r” satisfies the recurrence a,, = S1n—-1 + S2d,—2. [ |

.

We’re now in a good position to derive the general solution to Equation (33). As we saw
with Equation (32), if a, is a solution to (33), then so is any constant multiple of a,-—that is,
cay. Also, if a, and a), are two solutions to (33), then so is their sum a, + a,.

Therefore, if r{ and r, are roots of the polynomial x2 — s;x — 5, = 0, then

a, =cyri +corl

is a solution to Equation (33).

Are these all the possible solutions? The answer is yes in most cases. Let’s see what
works and where we run into some trouble.

The expression ¢ 7} + 21§ gives all solutions to (33) provided it can produce a¢ and a1 ;
if we can choose ¢; and ¢, so that

.0 .
ag =17y +Czlg =¢1

L1 .1 . .
ay =ciry +cary =ricy +rae

then every possible sequence that satisfies (33) is of the form cyri + carf. So all we have to
do is solve those equations for ¢ and c;. When we do, we get this:

ap — doly —dy1 + dory
] = ——— and ¢y = —

[ " —1a
All is well unless r; = ry; we’ll deal with this difficulty in a moment. First, let’s write down
what we know so far.
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Theorem 23.5

2

Let 51,52 be numbers and let 7y, 12 be roots of the equation x* — s;x — 52 = 0. If 1y # 12,

then every solution to the recurrence
Ay = S1lp—1 + $2dn-—2
is of the form

n n
ap = C17] +C2ry.

Example 23.6  Find the solution to the recurrence relation
dy = 3ay—1 +4day—2. a9g=3, a =2.
Solution: Using Theorem 23.5, we find the roots of the quadratic equation x2=3x—-4=0.
This polynomial factors as x2 —3x —4 = (x — 4)(x + 1) so the roots of the equation are
r1 = 4 and r, = —1. Therefore a, has the form a, = 14" + c2(=1)".
To find ¢; and ¢, we note that
o :C140+C2(——1)0 = 3=c1+c
aq :Cl4l+C2(41)1 = 2=4c; —c2
Solving these gives
c1 = 1 and €y = 2.
Therefore a,, = 4" +2- (—1)".
Example 23.7  The Fibonacci numbers are defined by the recurrence relation F, = Fy—1 + Fn—2. Using
Theorem 23.5, we solve the quadratic equations x?2—x—1 =0 whoseroots are (1 + V5) /2.
Therefore there is a formula for F, of the form
_ 14+ v5)" |- J5)"
Fy =¢y '2 + 3 2— f
We can work out the values of ¢ and ¢, based on the given values of Fy and F7.
Example 23.8  Solve the recurrence relation

an = 2ap—1 — 20n—2 where ag = 1 and a; = 3.

Solution: The associated quadratic equation is x2 — 2x + 2 = 0, which, by the quadratic
formula, has two complex roots: 1 = 7. Do not panic. There is nothing in the work we did
that required the numbers involved to be real. We now just seek a formula of the form a, =
c1(1 +i)" + ¢p(1 —i)". Examining ao and a;, we have

ap=1=c1 4+
(1+i)ey 4+ (L —i)ca.

I

(l1=3

Solving these gives ¢ = %—r’ and oz = i',-+:'.'i'l1t‘n:l'¢:||'c.c.'” = [%—r'h.‘l -‘.—r"l-"+[%-|-f'}{| J”]"..

The Case of the Repeated Root

We now consider the recurrence relations in which the associated polynomial X2 —51x — 5
has a repeated root. We begin with the following recurrence relation:

an = 4ap—y — 4ay 2 (34)

with ag = 1 and a; = 3. The first few values of @, are 1, 3, 8, 20, 48, 112, 256, and 576. .
The quadratic equation associated with this recurrence relation is x2—4x+4 = 0, which
factors as (x — 2)(x — 2). So the only root is » = 2. We might hope that the formula for ay



156

Chapter 4 More Proof

takes the form a,, = ¢2", but this is incorrect, Consider the first two terms:

ag=1=¢2° and a;=3=c2'.
The first equation implies ¢ = | and the second implies ¢ = %
We need a new idea. We hope that 2" is involved in the formula, so we try a different
approach. Let us guess a formula of the form

ay = c(n)2"

where we can think of ¢(n) as a “changing” coefficient. Let’s work out the first few values of
c(n) based on the values of a;, we already calculated:

ag=1=c(02° = ¢@0)=1

a=3=c(1)2! = c(l):%
a, =8=c(2)2> = c(2)=2
a3 =20=c(3)2®) = ¢(3) = ;
4 =48 =c(4)2* = c(d) =4
ds =112 =¢(5)2° =s (5= z

The “changing” coefficient ¢ () works out to something simple: ¢(n) = 1+ %n. We therefore
conjecture that a, = (1 + 3n) 2".

Please note that the solution has the following form: a, = ¢12" 4 ¢2n2". Let’s show that
all sequences of this form satisfy the recurrence relation in (34):

4ap g —4ap-2 =4 (12" +ea(n — 12" =4 (12" + ca(n — 2)2"7?)
= [2¢12" — 12" + [2¢2n2" — con2"] + [—4- 2" 4+ 8. 2"72]
= 12" 4+ ¢on2" + 0 = q,.
So every sequence of the form a, = ¢12" + ¢on2" is a solution to Equation (34). Have
we found all-solutions? Yes we have, because we can choose ¢; and ¢ to match any initial
conditions ag and a; ; here’s how. We solve
ag =¢12°4+¢5-0-2°

01=C121+C2-1-21

which gives

Cc1 = dyp an &2 = —itp ,}m
Since the formulaa, = 2" + %112" is of the form ¢{2" + c,n2", we know it satisfies the
recurrence (34). Substituting # = 0 and n = [ in the formula gives the correct values of ag
and a; (namely, 1 and 3), it follows that we have found the solution to Equation (34).
Inspired by this success, we assert and prove the following statement. Notice the require-
ment that r # 0; we’ll treat the case r = 0 as a special case.

Theorem 23.9

2 — 51x — s = 0 has exactly one root,

Let 51, s2 be numbers so that the quadratic equation x
r # 0. Then every solution to the recurrence relation

an = S1dp—1 + S2an—2
is of the form

ay = ¢y’ 4+ coni™.

Proof. Since the quadratic equation has a single (repeated) root, it must be of the form
(x —r)(x —r) = x? — 2rx + r2. Thus the recurrence must be a, = 2rda,—; — r2a,_».

The difference operator A should not
be confused with the symmetric
difference operation, also denoted by
A. The difference operator converts
a sequence of numbers into a new
sequence of numbers, whereas the
symmetric difference operation takes
a pair of sets and returns another set.

Example 23.10

The degree of a polynomial
expression is the largest exponent
appearing in the expression. For
example, 3n° —n2 + 10isa
degree-5 polynomial in 7,
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To prove the result, we show that a, satisfies the recurrence and that ¢y, ¢, can be chosen

so as to produce all possible ag, a1.
To see that a,, satisfies the recurrence, we calculate as follows:

21_.“” i .r'zfll"_'_l_ — I :.“_H- | + ‘.1[” I]r.r|—1} . r.:‘ ':'l-r'" * 2 {'3':” r{}r_fl-?
)
Qerr™ —c1r™) + Qea(n — D" —cp(n = 2)r™)

=cir" +conr” = ay.

To see that we can choose ¢, ¢z to produce all possible ag. a1, we simply solve
ag = c1r0 +cz-0-r° =01
ay=cirt +ca-1-1 =r(c1 + ).

So long as r # 0, we can solve these. They yield
aogr —dy
c1 =y and €)= ——.
"

Finally, in case r = 0, the recurrence is simply ¢, = 0, which means that all terms are
zZero.

Sequences Generated by Polynomials

We began this section by recalling Proposition 22.3, which gives a formula for the sum of the
squares of the natural numbers up to #:

0412422 4o n? = Mﬂ_—f 1)()
1

Notice that the formula for the sum of the first n squares is a polynomial expression. In Exer-
cise 22.4b you were asked to show that the sum of the first n cubes is n?(n + 1)2/4, another
polynomial expression. Proving these by induction is relatively routine, but how can we figure
out the formulas in the first place?

Good news: We now present a simple method for detecting whether a sequences of num-
bers is generated by a polynomial expression and, if so, for determining the polynomial that
created the numbers.

The key is the difference operator. Let ag,a1,az, ... be a sequence of numbers. From
this sequence we form a new sequence

ay —apg, d—ap, dz—da.

in which each term is the difference of two consecutive terms of the original sequence. We
denote this new sequence as Aa. That is, Aa is the sequence whose n' term is Aa, =
an+1 — an. We call A the difference operator.

Let a be the sequence 0, 2,7, 15,26, 40, 57, .. .. The sequence Aais?2,5,8,11,14,17. Thisis
easier to see if we write the sequence a on one row and Aa on a second row with Aa, written

between a, and @, +1.
a: 4] 2 7 15 26 40 57
Aa: 2 5 8 11 14 17

If the sequence a, is given by a polynomial expression, then we can use that expression
to find a formula for Aa. For example, if a, = n3 —5n + 1, then
Aay = apy1 — dn
[(n + 13 =5m+ 1)+ 1] = [173 —5n + 1]
P32 43+ 1=5n—54+1—-n+5n—1
=3n% +3n—4.

Il

Notice that the difference operator converted a degree-3 polynomial formula, nd =541,
into a degree-2 polynomial.
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Proposition 23.11

Let a be a sequence of numbers in which a, is given by a degree-d polynomial in n where
d > 1. Then Aa is a sequence given by a polynomial of degree d — 1.

Proof. Suppose a, is given by a polynomial of degree . That is, we can write

ay = cdnd + ca;_llzd_1

+-t+an+co
where ¢y # 0and d > 1. We now calculate Ag,,:
Aty = apy1 —ay

[r':f[” } l:I"'I = g1 + Ill"r": e qin + 1)+ t':r]

-1

- [{.'r;r.'"r &g H R ST ;.'“I

= [Cd(n +1)7 - cdnd} + [cd_l(n e )8 cd_,u‘!‘l] /-

+ [cl(n 4+ 1) — can -+ [co — co].

Each term on the last line is of the form ¢;(n + 1)/ — c¢;n’/. We expand the (n + 1)/ term
using the Binomial Theorem (Theorem 17.8) to give

citn+ 1) —emd =¢ |iH-" +- (-j)“j_[ + (';)n"_l + e ({)nui| 1
A
=y J .lr‘r_]-l- 4 H'I_I+"'+ Jr
|_ 2 i

Notice that ¢;(n + 1)/ — c;n’ is a polynomial of degree j — 1. Thus, if we look at the
full expression for Aa,, we see that the first term cy(n + 1)? — c4n? is a polynomial of
degree d — 1 (because ¢y # 0) and none of the subsequent terms can cancel the 797! term
because they all have degree less than d — 1. Therefore Aa, is given by a polynomial of
degree d — 1. |

If a is given by a polynomial of degree d, then Aa is given by a polynomial of degree
d — 1. This implies that A(Aa) is given by a polynomial of degree d — 2, and so on. Instead
of A(Aa), we write A2a. In general, A¥a is A(A¥~'a) and Ala is just Aa.

What happens if we apply A repeatedly to a polynomially generated sequence? Each
subsequent sequence is a polynomial of one lower degree until we reach a polynomial of
degree zero—which is just a constant. If we apply A one more time, we arrive at the all-zero
sequence!

Corollary 23.12

If a sequence a is generated by a polynomial of degree d, then A?t14 is the all-zeros se-
quence.

Example 23.13

The sequence 0,2,7,15,26,40,57, ... from Example 23.10 is generated by a polynomial,
Repeatedly applying A to this sequence gives this:

a: 0 Z T 15 26 4 57
A 2 5 8 11 14 17
A%g: 3 3 3 3 3
Ada: () { 0 )

Corollary 23.12 tells us that if a, is given by a polynomial expression, then repeated
applications of A will reduce this sequence to all zeros. We now seck to prove the converse;
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that is, if there is a positive integer k such that A¥a, is the all-zeros sequence, then a, is
given by a polynomial formula. Furthermore, we develop a simple method for deducing the
polynomial that generates a,,.

Our first tool is the following simple proposition.

Proposition 23.14

For those who have studied linear
algebra. If we think of a sequence as
a vector (with infinitely many
components), then Proposition 23.14
says that A is a linear
transformation.

Not only can (’3') be expressed as a
polynomial in 7, but the same is true
for all (x) (where k is a positive
integer). Using Theorem 17.12, when
n > k, write (Z) as

nn—1Dn—-2)--(n—k+1)
k!
For the case 0 < n < k, observe that
both (}) and the polynomial evaluate
to zero. Thus for every positive
integer k, (2) can be written as a
polynomial of degree k.

Let a, b, and ¢ be sequences of numbers and let s be a number.

(1} If forallm, ¢, = a, + by, then Ac, = Aa, + Ab,.
{2y If, for all n, b, = say, then Ab, = sAay.

This proposition can be written more succinctly as follows: A(a, + by) = Aay + Aby
and A(say) = sAay.

Proof. Suppose first that for all n, ¢, = a, + b,. Then

Acy = Chy1—Cn
= (an+1 + bns1) — (@n + bn)
= (dng1 —an) + (buy1 = bn)
= Aa, + Ab,.

Next, suppose that b, = sa,. Then

Aby, = bpyy1 — by = sanyy1 — san = S (Apy1 — an) = sAay,. m

The next step is to understand how A treats some particular polynomial sequences. We
start with a specific example.
th A5 = = (™). For 1 :(5):10B
Let a be the sequence whose n' term is a, = (3). For example, as S . By
Theorem 17.12, we can write

A n\ _ n! _ nn—1)(n—=2)n =3 —4p-- (2N _ In:n—l)(n—2)
. 3 (n —3)13! (n—=3)(n—4)---(2)(1)-3! f

which is a polynomial. This formula is correct, but there is a minor error. The formula (Z) =
ﬁqr applies only when 0 < k < n. The first few terms of the sequence, ag, a1, a2,
are (), (3). and (2). All of these evaluate to zero, but Theorem 17.12 does not apply to them.
Fortunately, the polynomial expression én (n—1)(n—2) also evaluates to zero forn = 0, 1,2,
so the formulaa, = én (n — 1)(n — 2) is correct for all values of 7.

Now let’s calculate Aa,,, A%a,, and so on, until we reach the all-zeros sequence (which,
by Corollary 23.12, should be by A*ay).

an: D 4] ) | 4 L} 20 35 6
Adap: { () | 3 f 1) |5 21
A2a,: 0 I 2 3 4 5 fy
Aay: 1 | | | l |
A*a,: 0 0 i ] 0

Please note that every row of this table begins with a zero except for row A3ay,, which begins
with a one.
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Proposition 23.15

Since a, = (’3’) is a polynomial of degree 3, we know that Aa, is a polynomial of
degree 2. Let’s work this out algebraically:

n n+1 n
A = - =
1 1
8(” + D()(n—1)— 8”(” —D(n—2)
- (n® = n) = (3 =3n% +2n) B 3n? —3n

Il

4] G
l | i
= En[.rr — 1) = 5 )

Having discovered that A(g) = ('2’) we wonder whether there is an easier way to prove
this (there is) and whether this generalizes (it does).

We seek a quick way to prove that A(}}) = (}). This can be rewritten (";Ll) -3 =)
which can be rearranged to ('21) + ('3’) = ("Jarl). This follows directly from Pascal’s Identity
(Theorem 17.10),

) Seeingnthat A(g’) = ('21) it’s not a b(?Id leap o guess that A(Z,) = ('3’), or _in gen.eral
A(k) = (k—l)' The proof is essentially a direct application of Pascal’s Identity (with a bit of
care in the case n < k).

Let k be a positive integer and let a, = (}) forall n > 0. Then Aa, = (")

Proof. We need to show that A(Z) = (kﬁl) forall n > 0. This is equivalent to (njktl)_(z) =
(kﬁl) which in turn is the same as

[1)=6) )

By Pascal’s Identity (Theorem 17.10), Equation (35) holds whenever 0 < k < n + [, so we
need only concern ourselves with the case n + 1 < k (i.e,,n <k —1).
In the case n < k — 1, all three terms, ("%1), (Z) and (kﬁl)’ equal zero, so (35) holds.

Inthecasen = k—1L wehave ("F1) = (5) = 1. (1) = (}') = 0.and (2,) = (7)) =
I, and (35) reducesto 1 =0 + 1. |
Earlier we noted that for ¢, = (’3') we have that AJay = 0 for all J except j = 3,

and A%ag = 1. This generalizes. Let k be a positive integer and let ¢, = (Z) Because aj
is expressible as a degree-k polynomial, A¥*1g, = 0 for all n. Using Proposition 23.15, we
have that ag = Aag = A2%ap = --- = A¥1qy = 0 but A¥a, = 1; see Exercise 23.5.

Thus, for the sequence a, = (1), we know (1) that AR tlg, = 0 for all n, (2) the value
of ag, and (3) the value of A/ap for I < j < k. We claim that these three facts uniquely

determine the sequence a,. Here is a careful statement of that assertion.

Proposition 23.16

Let @ and b be sequences of numbers and let k be a positive integer. Suppose that

* Akg, and Akbn are zero for all n,
* oag= bg, and
* Alag=Abyforalll < <k.

Then a, = b, forall n.

Proof. The proofis by induction on k.

The basis case is when k = 1. In this case we are given that Aa, = Ab, = 0 for all n.
This means that a,+1 — a, = 0 for all n, which implies that a,4+1 = a, for all n. In other
words, all terms in a, are identical. Likewise for b,. Since we also are given that ¢g = by,
the two sequences are the same.

Theorem 23.17
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Now suppose (induction hypothesis) that the Proposition has been proved for the case
k = {. We seek to prove the result in the case k = £+ 1. To that end, let @ and b be sequences
such that

s AU = AL = 0 forall n,
* a9 = bg, and
* Aag=Albgforalll <j <+ 1.

Consider the sequences «), = Aay and b, = Ab,. By our hypotheses we see that
Abal, = A, = 0forall n, a) = b}, and Alajy = AJbj forall | < j < L. Therefore, by
induction, ¢’ and b’ are identical (i.e., a;, = by, for all n).

We now prove that a,, = b, for all n. Suppose, for the sake of contradiction, that ¢ and b
were different sequences. Choose 1 to be the smallest subscript so that ¢, # bp. Note that
m # 0 because we are given ag = bg; thus m > 0. Thus we know a1 = byp—1. We also
know that a,,_, = b;, _,; here is why:

“I:.'I-J = Ady—1 = tm — -1

= .'l-l:” = Aby_y =By —bm—|

ty — dm—1 = by — b1

tigr — b = am-1 —bm—1 =0
am =by =+

Thus a, = by, forall n. [ ]

We are now ready to present our main result about sequences generated by polynomial
expressions.

Let ag.ay.as, ... be a sequence of numbers. The terms a, can be expressed as polynomial
expressions in 7 if and only if there is a nonnegative integer k such that for all 7 > 0 we have
AK+1g, = 0. In this case,

dn = do (g) + (Aao) (’17) -~ (A2(lo) (;) NSy (Aka()) (Z)

Proof. One half of the if-and-only-if statement has already been proved: If @, is given by a
polynomial of degree d, then A4+, = 0 for all n (Corollary 23.12).

Suppose now that @ is a sequence of numbers and that there is a natural number & such
that for all n, AK*1a, = 0. We prove that a, is given by a polynomial expression by showing
that a,, is equal to

, " i WL
B ”“(::) + (Adg) (’I) + (A%ug) (}) S lsoes (“k”") (h—)'

To show that a, = b, for all n, we apply Proposition 23.16; that is, we need to prove

(1) Aktlg, = Ak+1p, = Oforalln,
(2) ao = bo, and
(3} Alag=A/byforalll <j <k,

We tackle each in turn,

To show (1), note that AK+1g,, = 0 for all n by hypothesis. Notice that b, is a polynomial
of degree k, and so A**1p, = 0 for all n as well (by Corollary 23.12).

It is easy to verify (2) by substituting 7 = 0 into the expression for b, ; every term except
the first evaluates to zero, and the first term is «g (g) = dy. .

Finally, we need to prove (3). The notation can become confusing as we calculate A/ b,
there will be too many As crawling around the page! To make our work easier to read, we
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lel
"= AR = AR
Co = @i €1 = Adg €2 = 4%@0: i o = O g

and so we can rewrite b, as

b — u+ u+ JI'+ p n
n—Coo Cll 6’22 Ckk-

Now, to calculate A/ b, we apply Proposition 23.14, Proposition 23.15, and Corollary 23.12:

3 X 1 It n i
A b, = A/ [Co(o) +Cl(l) +C2(2) +“‘+Ck(k)J
n fl f f
= plh! (“) +¢-ia-“(l) +n-ga’(2] o +ck,-:~.“(ﬂ)
i : 1 (N

04 v 04 oA A A/

i it N
SV Ey TR g el gy

We substitute 7 = 0 into this, which gives

Abg=c;+0+4+--+0=2A4q

and this completes the proof. ]

Example 23.18 We return to the sequence presented in Examples 23.10 and 23.13: 0,2,7, 15,26,40,57, . ...

We calculated successive differences and found this:

a: 0 2 7 15 26 410 57
Aa: p 5 8 11 [ 4 17
A2a: 3 3 3 3 3
Aa: ] 0 i i

By Theorem 23.17,

n n n iin — 1) ni(dn + 1)
o=a(2) 43f2) 12 ov stz s

Example 23.19 Let us derive the following formula from Proposition 22.3:

o T R . e i\

]
Leta, = 0% + 12 4 --- + n2. Computing successive differences, we have
an: 8 | 5 14 30 55 91 140
Aay: 1 o o 16 25 36 449
A%a,: 3 5 7 9 I 13
A3ay: 2 2 /] 2 2
Atay: 0 0 (0 0
Therefore
n n n n
=0 1 3 2
3 2
={+n+ E”M — 1)+ E”'" — LM —2)
24374 2n+ D+ D)
= 6 = f g
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Recap

A recurrence relation for a sequence of numbers is an equation that expresses an element of the
sequence in terms of earlier elements. We analyzed first-order recurrence relations of the form
a, = say—1 + t and second-order recurrence relations of the form a, = s1a,;—1 + s2a,-2:

= Therecurrence @, = sa,—; -+t has the following solution: If s # 1, thena, = c¢;s* +¢;
where ¢, ¢ are specific numbers.

* The solution to the recurrence a, = sja,—1 + S2a,—2 depends on the roots ry, 1y of
the quadratic equation X% —s1x —s5 = 0.1f rq # ry, then a, = cyrf + corf but if
ri =ry =r,thena, = ¢ 1" + conr™,

We introduced the difference operator, Aa, = a,+1 — a,. The sequence of numbers a,
is generated by a polynomial expression of degree d if and only if A4 ¥4, is zero for all n.
In this case we can write a, = ao () + (Aao)(]) + (A%ao)(5) + -+ + (Adao)(c'}).

23 Exercises

23.1. For each of the following recurrence relations, calculate the first six terms of the se-
quence (that is, ag through ¢s). You do not need to find a formula for a,.
an = 2ay—1 +2,a9 = 1.
ay = ap—1 + 3,a9 = 5.
ap = Qp—1 + 2ap—2, a0 =0,a; = 1.
an = 3a,,_1 = Sa,,_z, ag = 0, tay = 0.
ap = ap—1 + dp— + 1l,a9 = a; = 1.
. 4y = ap—1 + 1,09 = 1.
23.2. Solve each of the following recurrence relations by giving an explicit formula for a,.
For each, please calculate ag.
i, Sy = %n‘,,.. 1o fg=d,
b. a, = 10a,_-1, ag = 3.
C. dp = —Ay—1,dg = 5.
d. a, = 1.2a,-1,a9 = 0.
e ay =3a,—1 —1,a9 = 10.
f. an = 4 —2an_1, dg = 0.
g dn, =day—1 +3,a9 =0.
h. a, =2a,-1 +2,a9 =0.
i ayp =8ay_1 —15an_9,a0 = 1,a; = 4.
jo an = an—1 +6an—,a90 =4,a, =4.
k
1.
m.
n.
0.
p-
E

o Roe Fs

. ap =4ay—1 —~3an-—2,a0 =1,a; = 2.
ap = —6a,,_1 — 9an_2, ag = 3, ay = 6.
ap = 2(1,,_1 —dp-2,09 = 5, a) = 1.
dp = —Zanﬁl —dp—2,d0 = 5, a) = 1.
an = 2ap_1 + 2a,,a9 = 3,a; = 3.
ap = 2(1"71 — San_z, dog = 2, a; = 3.
ach of the following sequences is generated by a polynomial expression. For each,
nd the polynomial expression that gives a,.
. 1,6,17,34, 57,86, 121, 162, 209, 262, ...
. 6,5,6,9,14,21,30,41,54,69, ...
c. 4,4,10,28, 64,124,214, 340, 508,724, ...
d. 5,16,41, 116, 301, 680, 1361, 2476, 4181, 6656, ...
23.4. Explain why the notation Aa, has implicit parentheses (Aa), and why A(a,) is not
correct.
23.5. Let k be a positive integer and let @, = (Z) Prove that ag = Aag = A2aqg = -+ =
A*1go = 0 and that A¥gy = 1.
23.6. Suppose that the sequence « satisfies the recurrence a, = a, | -+ 12a, » and that
ap = 6 and as = 4877. Find an expression for a,.
23.7. Find a polynomial formula for 14 + 2% + 3% + ... + n*.
23.8. Let ¢ be a positive integer. Prove that 1° + 2/ + 3" + ... + n’ can be written as a
polynomial expression.

23.3.

fi
a
b
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23.9.

23.12.
23.13.
23.14.

23.15.

23.16.

Some so-called intelligence tests often include problems in which a series of numbers is
presented and the subject is required to find the next term of the sequence. For example,
the sequence might begin 1, 2, 4, 8. No doubt the examiner is looking for 16 as the next
term.

Show how to “outsmart” the intelligence test by finding a polynomial expression
(of degree 3) for a, suchthatay = 1, a1 =2,a, = 4, a3 = 8, butay = 15.
Let s be a real number with s % 0. Find a sequence a so that a, = sAa, and ag = 1.
For a natural number 1, the n-cube is a figure created by the following recipe. The
0-cube is simply a point. For n > 0, we construct an n-cube by taking two disjoint
copies of an (n — 1)-cube and then joining corresponding points in the two cubes by
line segments. Thus, a 1-cube is simply a line segment and a 2-cube is a quadrilateral.
The figure shows the construction of a 4-cube from two copies of a 3-cube. Note that
an n-cube has twice as many points as an (n — 1)-cube; therefore, an #-cube has 2"
points. The question is, how many line segments does an n-cube have? Let a, denote
the number of line segments in an n-cube. We have ap = 0,41 = 1, a2 = 4, a3 = 12,
and a4 = 32.
a. Calculate as.
b. Find a formula for a, in terms of a, ;.
¢. Find a formula for @, just in terms of n (and not in terms of a,_;) and use part (b)

to prove that your formula is correct.

Solve the equation A%a, = —a, withag = a; = 2.
Find two different sequences a and b for which Aa,, = Ab, for all n.
The second-order recurrence relations we solved were of the form a, = s1a,-1 +

Sa(y—o. In this problem we extend this to relations of the form a, = s1a,—1 +s2ap—2+
t. Typically (but not always) the solution to such a relation is of the form a, = cyr{ +
cary + ¢3 where c1, c2, ¢3 are specific numbers, and ry, rp are roots of the associated
quadratic equation x2 — sy x —s, = 0. However, if one of these roots is 1, or if the roots
are equal to each other, another form of solution is required.

Please solve the following recurrence relations. In the cases where the standard
form does not apply, try to work out an appropriate alternative form, but if you get
stuck, please consult the Hints (Appendix A).
an, = Sap_1 —6an— +2,a0 = 1,a, = 2.
ap = 4a,—1 + S0y +4,a90 =2,a; =3.
ap =2ap—1 +4ay, 2+ 6,a0 =a; =4.

y = 3ap-1 — 2dp—n + 5,a0 = a1 =3,

an = 6ap—1 —%a,-» —2,a0 = —1,a;, = 4.

. Ay =201 —Ap—p + 2,09 = 4,a; = P

Extrapolate from Theorems 23.5 and 23.9 to solve the following third-order recurrence
relations,

a. dy = 461”71 —dp—2 — 6(!,,43, ag = 8, a) = 3, and ay = 27.

b. a, = 2d,-1 + 2ap— —4ay—3,a0 = 11,a; = 10, and a, = 32.

C. Uy = —Up-1 + 8an—n + 12a,3, a9 = 6,a; = 19,and a, = 25.

d. a, = 6a,_1 — 12a,_» + 8ay_3,a9 = 3,a, = 2, and a, = 36.

Suppose you wish to generate elements of a recurrence relation using a computer pro-
gram. It is tempting to write such a program recursively.

For example, consider the recurrence a, = 3a,—1 — 2dp—2, a0 = 1,a; = 5. Here
is a program to calculate the values a,:
procedure get_term(n)

if (n < 0)

print ’Illegal argument’

e RO TP

exit
end

if (n == 0)
return 1
end

if (n == 1)
return 5
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end

return 3*xget_term(n-1) - 2*get_term(n-2)
end
Although this program is easy to understand, it is extremely inefficient. Explain
why.
In particular, let b, be the number of times this routine is called when it calculates
ay. Find a recurrence—and solve it!—for b,,.

23.17. There are many types of recurrence relations that are of different forms from those

presented in this section. Try your hand at finding a formula for @, for these:
. 4y = Ndp—1,dp = 1.
a3
Ll =y il =2
ap = ao+ay +az + -+ ay—1,a9 = 1.
.y =nag+ @ —Day +m—2)az + -+ 2ay-2 + lay—1, a0 = 1.

iy = 3985 {l —8lg—1), 6tp = 11

T e T

23.18. The Catalan numbers are a sequence defined by the following recurrence relation:

]
-
co =1 and Ciley = }..,Ckcn—k'
k=0

Please do the following:
a. Calculate the first several Catalan numbers, say up to cg.
b. Find a formula for ¢,,.
Part (b) is quite difficult, so here is a bit of magic to get you to an answer. The
On-Line Encyclopedia of Integer Sequences is a tool into which you can type a list of
integers to determine if the sequence has been studied and what is known about the
sequence. It is available on the web here: http://oeis.org/
¢. Use Theorem 23.17 to find a formula for this sequence of numbers: 0, 1, 5, 12, 22,
35,51,70,92,117, 145, 176, 210. Please simplify your answer.

d. Use the On-Line Encyclopedia to find the name of the sequence in part (c).

e. Finally (just for fun) consider this sequence: 1, 2, 3,4,5,6,7, 8,9, 10, 11, 12, 14,
15,16, 17, 18, 19, 20, 21, 22, 23, 24.... Try to identify this sequence on your own
before going to the On-Line Encyclopedia for the answer. . —
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. Prove that the equation x2 + 1 = 0 does not have any real solutions.

. Prove that there is no integer x such that x2 = 2.

. Prove that the sum of any four consecutive integers is not divisible by 4.
. Let a and b be positive integers. Prove: If a|b and b|a, thena = b.

. Which of the following sets are well-ordered?

=]

. The set of all even integers.
. The set of all primes.

=

c. {—100.-99,-98,....98,99, 100}.
d. 9.
e. The negative integers.
f. {m, 7% 73, n*, ...} where 7 is the familiar real number 3.14159. . ..
. Let n be a positive integer. Prove that
I +4+ T+ (3n—=2)= i 1_ 2

. Let n be a natural number. Prove that

O+ +21 - +nl<(n+ DL

. Suppose ap = 1 and 4, = 4a,—1 — 1 when n > 1. Prove that for all natural numbers n,

we havea, = (2-4" 4+ 1)/3.

. Prove by induction: If n € N, then n < 2",




