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lution is chaotic when r =4. One property of and r = 2.0 in culture 2. Define discre?e-ti.me dyﬂamical‘tl Sys- 3 signal from the SA node,
e: gl?:ossoi;l t;(e)ﬁs;:ivce dependence on initial conditions. tems f; and f, to describe the dynamics in the two cultures. 0 m ety
5 . o i « P i identit . .
Compare a solution starting frgm x(l)1_th(23 ‘gﬁogffszgy a. Graph the f“gdk‘lo“;r{t ! ;\‘/‘:VJ; zluilsog% ::)lltﬂi(t;z 1st§?ti1n§ 2l (Figure 1.11.2). Whether the heart beats depends on the state of the AV node when
ing at xo=0.30001. Even r:dolla]egcomeycompletely b tunctlon._F(l)nozta:d A i 4 a signal arrives. If the potential V; is too high, the heart has not had enough time to
close, they soon sepgrate a = - from po = 0. ’0__ e = recover from the last beat, and the AV node ignores the signal. Otherwise, the AV node
f Why might this be a problem for a scientific ex words what each solution is doing and why. S : ! _ |
erent. L y mig ' y " 1r accepts the signal, tells the heart to beat, and increases its potential by u.
DA : b. Suppose you change the experiment. Pegsmlilt)i/htiz 1(r)1guzf Let V, be the threshold potential (Figure 1.11.3). If V, > V.., the heart is not ready
48. Consider the discrete-time dynamical system population with a fraction po of mutants. 5Sp pop to beat and
lation in half, and place one half in culture 1 and th}é other 0 ; . i X )
X1 =™ half in culture 2. Let the bacteria reproduce once in elilcll} 0 1 2 3 Vo=V, iftV,>V.
: i ix i i ince last beat
culture, and then mix them together. Split ﬂ}e IMix 1 ng Time since A
for the following values of the parameter cll.tUlse iofl:)l; ZOILE_ and repeat the process. The updating function is e If V, < V., the AV node responds and tells the heart to beat, and
s 00 - A1 A LA
pujstytojeraphithefunction:and the diagona |10, G0~ aHEL o) 0) i : - Vi =V, +u if V< V..
libria. Cobweb starting from xo = 1 in each case. F(p)= Ji\p) T J2A\P, The exponential decay of voltage
9 2 : between beats To translate this description into a discretAe—time dynamical system, we must write V;;
a: ja=0:3: ity il ad e iSRG this updating function along entirely in term§ of V,, eliminating the V, terms. Because V, = e *"V,, the two cases
by e =l with the identity function. Have your computer find the can be summarized as
c. a=1/e. equilibria and label them on your graph. Do they make = ey, ife=V, >V,
49. Consider the equation describing the dynamics of selection sense? ' 5 Vi = eV, 4y ife= TV, < V..
sp c. Use cobwebbing to figure out which equilibria are stable. = -
t i 3
Pt = e+ r( = po) 4. Find one solution starting from po = 0.001 and ano tther 1 | time 7 | :
. L th it does betterthan starting from po = 0.999. ‘Are. these re.sul.ts consis e;:t ?
but thh o cultgr.eszl atdvgi'lilntyge 3;2‘; t?étter In particular. with the stability of the equglbrna? Explain in words why !
in 4 D . 1 e va 2 :
eGP af d = 0.3 in culture 1 and that s = 0.6 the solutions do what they do. | A [ if V/ too big
suppose that s = 2.0 and r =0. | v, = Vi=ey, Vier =4 !
3 FIGURE 1.11.3 V, + u if V, sufficiently small
s b Schematic diagram of the potential of
S " Th H e SR the AV node Signal from SA node Next signal from SA node
An Excitable Systems: 1ne rie . :
L RO i |
i ibria to study a simplified model of the heart. Our ' : )
We can use cobwebzlllllg andi eq?:?ﬁ; 28 o t};ua parapmeters of a heart can produce = For convenience we substitute the new parameter ¢ for ¢e™**. A value of ¢ near
}gloal ;)S to urtlziersmnllec(l);&;csorg degreegblock With these syndromes, people’s hearts 3 1 means that the potential decays very little, and a value of ¢ near O means that the
eartbeat patterns ca 3 ; i ! ; : ¥ WL
either bealt) half as often as they should or beat normally for a while, skip a bea.t, and : : potential decays a great deal (Figure 1.11.4).
return to beating. These conditions are solutions for the same model that describes a e i 1e 1.11.1 T Relatior Betwesrié, & and s
normal heartbeat, but with different parameter values. " : ‘
4 Ift=1and @ =1n(3) = 1.099, then ¢ = ¢™*" = 1/3. The potential decays to 1/3 of its
s 3 initial value between beats.
1.11.1 A Simple Heart _
Figure 1.11.1 shows the basic apparatus for beating of the heart. The s.inoatrial ﬂ‘f\‘; ] Example 1.11.2 The Relation Between ¢, o, and t
(SA node) is the pacemaker, sending regular §ignals _tg the ?trloytzrll)tlrelcal node (AYV I | i == In(1.5) = 04D, thenie ¢4 =28, Themotential deenys.less, to 273
node). The AV node then tells the heart to beat if conditions are sui ! ol ) of i Snittal value betwesnibeats: becansadms smaller A
The AV node can be thought of as keeping track of the condltgop of the healh SA"" .
an electrical potential. Denote the potential after respo.ndmg tg a s1gna}1 from ttjv - - e i new mbHon.
node as V;. Two processes g0 into updating this potential. During the time © be ¥ _
; i3 i :al of the AV node decays exponentiatd: <V, ifcVi >V,
signals from the SA node, the electrical potential of the A D E Vi = -
at rate oo, Setting V, to be the potential of the AV node just before receiving t . E it |1 eV, +u ifeV, <V,
This updating function is graphed with u =1, ¢ =0.4 and V, = 1 in Figure 1.11.5.
E 5 This function, unlike those we have studied hitherto, has a jump (where ¢V, = V,).
0 : . This jump reflects the sharp response threshold. In the real heart, the threshold is not
Firel Beat! E | B b precise, and the two branches of the updating function are connected (Figure 1.11.6).
/ AV Node e - Ficurg We can use the graphical method for finding equilibria as intersections with the
Grapy L114 diagonal to study this discrete-time dynamical system. Each piece of the updating
Ph of the

Bt potential of the AV node function ‘is a line with slope ¢ < 1. There are two possible pictures. Either the upper
i cati branch of the updating function crosses the diagonal at an equilibrium (Figure 1.11.7a),

FIGURE 1.11.1
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The heart updating function with and i
without an equilibrium: # =1, V.=1.

or the diagonal sneaks through the gap between the two branches and there is no

ilibrium at all (Figure 1.11.7b). & ety _ s ]
equﬂ\;\/}r;ut does thi(s e%quilibrium mean? An equilibrium is a point where different pro

cesses balance. In the present case, an equilibrium represen@ a value »oftg;es?o;z?t(l:; ;
where the decay (by a factor of ¢) is exactly balanced by the response to g
increase of u). This means that the heart will begt .ste_adlly. .

What are the algebraic conditions for an equilibrium? An equll
V, that solves Vi1 = V,. The heart must proceed through the cycle

- deca
Vl dffiy Vt = CVr ‘_‘éy CV} +u= Vt

librium is a value of

; : 7l an solve
and end up where it started. Setting V* to be the equilibrium, we can s

V* = CV, “l“ u
to find . e : (1.11'1)_
i e ignal .
This equilibrium exists only if the heart is indeed ready to beat when the next sig
comes, or if ‘ 1
V=g < Ve. 112
1—c™ = ;

Example 1.11.3 Case Where Heart Beats with Every Signal .
Suppose that u = 1,V.=1,r=l,anda= In(3) = 1.099. We found in Example 1.1
that ¢ = e—*% = 1/3. The equilibrium is 3
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The behavior of a heart with an equilibrium

This equilibrium exists only if ¢ V* = 0.5 is less than V, = 1. Because it is, the heart will
beat every time, with voltage decaying from 1.5 to 0.5 between beats and increasing
back to 1.5 on the beat (Figure 1.11.8a).

Example 1.11.4 Case Where Heart Fails to Beat with Every Signal

What happens if «, the recovery rate, becomes smaller? We found ir{ Example 1.11.2
that with & = In(1.5) = 0.405, then ¢ = ¢™** = 2/3. The equilibrium is

—_— 1 —
T 1-2/3
This equilibrium exists only if ¢V* =2.0 is less than V, = 1.0. Because it is not, the
heart cannot beat every time. If « is too small, the AV node recovers too slowly from
one signal to be ready to respond to the next. Similarly, if the time t between beats
is decreased by too much, the heart might not have time to recover, and there will be
no equilibrium. The AV node cannot respond to every signal when signals from the

SA node arrive too frequently. The more complicated dynamics that result are our next
topic. A

*

3.0

1.11.2 Second-Degree Block

When the heart fails to beat in response to every signal from the SA node, the condition
is called second-degree block. In one type, called 2:1 AV block, the heart beats only
with every other stimulus. In another, called the Wenckebach phenomenon, the heart
beats normally for a while, skips a beat, and then resumes normal beating and repeats
the cycle. Our model of the heart can help us understand these two conditions.

Graphically, 2:1 AV block corresponds to the situation in Figure 1.11.9. There is
no equilibrium. The potential of the AV node alternates between a high value and a
low value. When high, the potential does not decay sufficiently to respond to the next
signal. After another cycle (time 7),.however, the potential has reached a low enough
value to respond.

To find the conditions for 2:1 AV block, we use techniques similar to those used
to find an equilibrium. Suppose the potential is V; just after beating (Figure 1.11.9). If
the node responds to the second signal but not the first

decay
V., —" ¢V,

signal ignored
t e c

decay , signal obeyed
> eV, —

AVi+u.  (L113)

If the potential after these two full cycles comes back exactly to where it started, the
heart beats with every other signal, producing 2:1 AV block. The updated potential after
two cycles matches the original potential if V; is equal to some value V that satisfies
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The dynamics of 2:1 AV block
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the following equations

AV 4u=V
cV >V, (1.11.4)
V<V,
ich has solution
i et (1.11.5)
1 1 ¥ C2 ’ g .
if the inequalities are satisfied. Note the similarity to the equation for an equilibrium

for this model (Equation 1.1 121y,

2:1 AV Block
i _ V.= 1.0 and ¢ =2/3, corresponding to the second
g L . ¢ is no equilibrium. Equation 11158

idered above. We have seen that the.r n 1.
?;Sgugzr;;t 7 = 1.8. We can follow the dynamics through a complete cycle, finding

i ignor decay , -
P18 V= ,signalignored o) o 2v =028
signal obeyed o 1 y=18.

Cobwebbing of 2:1 AV block Voltage after beating

2
1.8 n 5 + i
+
v 1.6
. Ny
> v 1.4
12 + + =+
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v 5y 6 8 10
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b ¢

The AV node does not respond to the first s'ig.nal becaus.e 12> V.=1.0,bu
to respond to the second and return to its original potential.

1.11.3 The Wenckebach Phenomenon

iti for
With the parameter values u = V. =1, we can compute the conditions on ¢

existence of an equilibrium. The equation for an equilibrium 18

. 1
Vo= 1—c 2
requiring that cV* = 1 (Equation 1.11.2). The equilibrium at V* exists only 1
il 3
1—c™
We can solve for ¢, finding
c<l—c
2c<1

c<0.5.
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The Wenckebach phenomenon
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The value ¢ = 1/3 that produced an equilibrium and normal beating (Figure 1.11.8) is
well below this value. The value ¢ =2/3 that produced 2:1 AV block (Figure 1.11.9)
is well above this value. What happens if ¢ is only slightly above 0.5 and the heart can
nearly recover? ,

Figure 1.11.10 shows the behavior of the system when ¢ =0.5001, a hair above
the threshold for existence of an equilibrium. The heart beats 12 times, building up to
a higher and higher potential. Eventually, the potential becomes too high, the AV node
cannot recover, and the heart fails to beat. After this rest, the potential drops, and the
process begins again. This is the Wenckebach phenomenon.

Actual measurements of the Wenckebach phenomenon correspond in part to this
model, but show that the heart beats a bit more slowly before missing a beat. Why
might this be the case? Our model assumes that the SA node sends out precise pulses
at precise times. If the signals from the SA node take a little while to build up, an AV
node at low potential will respond right at the beginning of a signal from the SA node.
An AV node close to the threshold will be slower and might respond near the end of the
signal from the SA node, delaying the heartbeat slightly. This slowing indicates that
the AV node will soon exceed the threshold and that the heart will miss a beat.

A simplified model of the heart includes two phases: decay of potential in the AV node
(recovery from the last beat) and response to a rhythmic signal from the SA node. We
derived conditions for the heart to beat properly with each signal and showed that if
the recovery time is not long enough, two types of second-degree block can result.
In the first, 2:1 AV block, the heart beats with every other signal. In the second, the
Wenckebach phenomenon, the heart misses a beat only occasionally.

Exercises

Applications
1-4 »

Sate whether the heart will beat.,

. Vc:

In the following circumstances, compute ¥, and V;; and

Ve=20.0mV, u = 100 mV, c=0.5, V, =30.0 mV.
Ve = 20.0 mV, u = 10.0 mV, ¢ =0.6, V, =30.0 mV.
8 Vc 2200 mV, u=10.0 mV’ C = 07, Vr =30.0 mV.

200mV, 1 =100mV, ¢=0.8, v, =30.0mV.

5-8 = Describe the long-term dynamics in each of the given cases.
Find which ones will beat every time, which display 2:1 AV block,
and which show some sort of Wenckebach phenomenon.

5. The case in Exercise 1.
6. The case in Exercise 2.
7. The case in Exercise 3.
8

The case in Exercise 4.
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912 Use the parameter values in Exercise 1 (except for the val-
ues of ¢), and state whether the heart would beat every time with
the given values of o and 7.

9. a=10,7=1.0.
10. «=1.0,7=05.
1. «=20,7=05.
12. «=05,7=05.
13-14= Consider the following continuous system that approxi-
mates the discontinuous model studied in this chapter.

Vi =cVi +uvy)

where
2(1-c¢)

1 + th
for the following values of n. Find the equilibria and their stability
as a function of ¢, and describe the dynamics.

13. Suppose n = 2. Show that V, = 1 is an equilibrium. Sketch a
graph and cobweb with ¢ = 1/4. Does the equilibrium seem
to be stable?

14. Suppose n = 4. Show that V, = 1 is an equilibrium. Sketch a
graph and cobweb with ¢ = 1/4. Does the equilibrium seem
to be stable?

15-18 = Population models with thresholds can also have unusual
behavior. Evaluate the following models where individuals emi-
grate when the population is overly crowded. In particular, suppose
h individuals leave if the population is larger than some critical
value N,

u(Vy) =

- Supplementary Problems

1. Suppose you have a culture of bacteria, where the density of
cach bacterium is 2.0 g/en’.
a. If each bacterium is 5pm X Spum X 20pm in size, find
the number of bacteria if their total mass is 30 grams.
Recall that 1m = 1076 meters.

b. Suppose that you learn that the sizes of bacteria range
from 4pum x 5um x 15um to 5um x 6pum x 25pm.
What is the range of the possible number of bacteria
making up the total mass of 30 grams?

2. Suppose the number of bacteria in a culture is a linear function
of time.

a. If there are 2.0 x 10® bacteria in your lab at 5 P.M. on
Tuesday, and 5.0 X 108 bacteria the next morning at 9
A.M., find the equation of the line describing the number
of bacteria in your culture as a function of time.

b. At what time will your culture have 1.1 x 10° bacteria?

¢. The lab across the hall also has a bacterial culture where

they have 2.0 X 10® bacteria at 5 P.M. on Tuesday, and

the number of bacteria is a linear function of time. If

15.

16.

17.

18.

19.

20.

. e R

PN, —h if Ny > Ne
N,+1: i
rN; if Ny < Ne.

Suppose h = 1000 and N.= 1000 and r =1.5. Investigate
some solutions starting with different values of No < 1000.
What is happening?

Find the equilibrium when 7= 1000 and N.=1000 and
+ = 1.5. What would happen to solutions starting with values
greater than the equilibrium? Use this information, and that
in the previous problem, to sketch a cobweb diagram.

Redo Exercise 15 with r = 1.65. How do the results differ
from those in Exercise 157

Find the equilibrium when h = 1000 and N.= 1000 and
7 = 1.65. Can you explain why solutions that start below the
equilibrium can shoot off to infinity?

Computer Exercises

Study the dynamics of Exercises 1-4 for values of ¢ ranging i
from 0.4 up to 1.0. Are there any cascs where the behavior

is neither 2:1 AV block nor the Wenckebach phenomenon?
How would you describe these behaviors.

What happens to the dynamics of the example illus-
trated in Figure 1.11.10 if c is made even closer to 0.57
What does it look like on a cobwebbing diagram? If ¢=
0.5000000000001, do you think it would be possible to dis-
tinguish the Wenckebach phenomenon from normal beating?

Is it? 1

|
i

3.4 x 10° bacteria the next morning at 9 A.M., when will
your culture have twice as many bacteria as theirs?

Consider the functions f(x)=e > and g(x) = B+ 1

2. Find the inverses of f and g, and use these to find when
f(x) =2 and when gx)=2. 1

b. Find fogandgo f and evaluate each at x =2. 4

c. Find the inverse of go f. What is the domain of this =

function?

A lab has a culture of a new kind of bacteria where each indi-

vidual takes 2 hours to split into three bacteria. Suppose (&=

these bacteria never die and that all offspring are OK. a2
Write an updating function describing this system-

b. Suppose there are 2.0 % 107 bacteria at 9 A.M. HOW many
will there be at 5 P.M.?

¢. Write an equation for how many bacteria there are a5 5
function of how long the culture has been running:

When will this population reach 10”7

5, The number of bacteria (in millions) in a lab are as follows

Time, t(h) Number, b
0.0 1.5
1.0 3.0
2.0 4.5
3.0 5.0
4.0 7.5
5.0 9.0

a. Graph these points.

b. Find the line connecting them and the time ¢ at which the
value does not lie on the line.

¢. Find the equation of the line and use it to find what the
value at ¢+ would have to be to lie on the line.

d. How many bacteria would you expect at time 7.0 hours?
6. The number of bacteria in another lab follows the discrete-

time dynamical system

o 2.0b, b, <1.0
(1 =
—0.5(b; —1.0)+2.0 b, >1.0
where ¢ is measured in hours and b, in millions of bacteria.

a. _Graph the updating function. For what values of b, does
it make sense?

b. Find the equilibrium.

(0 Cobwc?b starting from by = 0.4 million bacteria. What do
you think happens to this population?

1l Con\{ert the follqwing angles from degrees to radians and find
tl_le sine-and cosine of each. Plot the related point both on a
circle and on a graph of the sine or cosine.

0= 16()°,

b. 0=—60°.
c. 6=110°.
d. 6=-190°.
e. 0=1160°.

S
uppose the temperature H of a bird follows the equation
H =38.0 +3.0c0s (w
1.2
wh i :
CIC 7 1s measured in days and H is measured in degrees C.
Sketch a graph of the temperature of this bird.

Write the e vation i .
St gracIl) 2 ion if the period changes to 1.1 days.

Write the equation i
quation if i i
grees, Sketch  gra l;h.the amplitude increases to 3.5 de-

Write the e uati i
quation if the ave ]
grees. Sket ; : rage decreases to 37.5 de-
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9. The butterflies on a particular island are not doing too

10.

11.

12.

well. Each autumn, every butterfly produces on average
1.2 eggs and then dies. Half of these eggs survive the win-
ter and produce new butterflies by late summer. At this
time, 1000 butterflies arrive from the mainland to escape
overcrowding.

a. Write a discrete-time dynamical system for the popula-
tion on this island.

b. ?(;Sgh the updating function and cobweb starting from

c¢. Find the equilibrium number of butterflies.

A culture of bacteria has mass 3.0 x 10~ grams and con-
sists of spherical cells of mass 2.0 x 107!° grams and density
1.5 grams/cm?.

a. How many bacteria are in the culture?
b. What is the radius of each bacterium?

c. Ifthe bacteria were mashed into mush, how much volume
would they take up?

A person develops a small liver tumor. It grows according to
S(t) = S(0)e*’

where S(O). = 1.0 gram and @ = 0.1/day. At time ¢ = 30 days,
the tumor is detected and treatment begins. The size of the
tumor then decreases linearly with slope of —0.4 grams/day.

a.  Write the equation for tumor size at t = 30.
b. Sketch a graph of the size of the tumor over time.
¢.  When will the tumor disappear completely?

Twoo similar objects are left to cool for one hour. One starts at
80°C and cools to 70°C and the other starts at 60°C and cools

to 5§°C. Suppose the discrete-time dynamical system for
cooling objects is linear.

a. Find the discrete-time dynamical system. Find the tem-
perature of the first object after 2 hours. Find the temper-
ature after 1 hour of an object starting at PORC.

b. g}(l)‘?gh the updating function and cobweb starting from

¢ Eind the equilibrium. Explain in words what the equilib-
rium means.

A culture of bacteria increases in area by 10% each hour.
Suppose the area is 2.0 cm? at 2:00 P.M.

a.  What will the area be at 5:00 P.M.?

b.  Write the relevant discrete-time dynamical system and
cobweb starting from 2.0.

c.  What was the area at 1:00 P.M.?

d. Ifall bactgria are the same size and each adult produces
two pffspnng each hour, what fraction of offspring must
survive?

e Ff the culture medium is only 10 cm? in size, when will
it be full?



