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Chapter 1 Introduction to Discrete-Time Dynamical Systems

neurons. They received the Nobel Prize in Physiology and Medicine for this work in
1963 and, perhaps more impressively, developed a model that s still used today to study
neurons and other types of cells.

In general, maintenance of biological systems depends on preserving the distinction
between inside and outside while maintaining flows of necessary materials from outside
to inside and vice versa. The neuron maintains itself at a different electrical potential
from the surrounding tissue in order to be able to respond, while remaining ready to
exchange ions with the outside to create the response. As applied mathematicians, we
quantify the basic measurements, the concentrations of various substances inside
and outside the cell. The dynamic rules express how concentrations change, generally
as a function of properties of the cell membrane. Most commonly, the rule describes
the process of diffusion, movement of materials from regions of high concentration to
regions of low concentration.

1.1.3 Replication: Models of Genetics

Although Mendel’s work on genetics from the 1860s had been rediscovered around
1900, many biologists in the following decades remained unconvinced of his proposed
mechanism of genetic transmission. In particular, it was unclear whether Darwin’s
theory of evolution by natural selection was consistent with this, or any other, proposed
mechanism. ;

Working independently, biologists R. A. Fisher, J.B.S. Haldane, and Sewall Wright
developed mathematical models of the dynamics of evolution in natural populations.
These scientists quantified the basic measurement, in this case the number of individ-
uals with a particular allele (a version of a gene). Their dynamic rules described how
many individuals in a subsequent generation would have a particular allele as a function
of numerous factors, including selection (differential success of particular types in re-
producing), and drift (the workings of chance). They showed that Mendel’s ideas were
indeed consistent with observations of evolution. This work led to the development of
methods of genetic analysis used to analyze DNA sequences today. We study a simple
model of selection in Section 1.10 and examine some of the consequences of Mendel’s
laws in Section 6.2. '

1.1.4 Types of Dynamical Systems

We will study each of the three processes, growth, maintenance, and replication,
with three types of dynamical system, termed discrete-time, continuous time, and
probabilistic. The first two types are deterministic, meaning that the dynamics in-
cludes no chance factors. In this case, the values of the basic measurements can be
predicted exactly at all future times. Probabilistic dynamical systems include chance
factors and values can be predicted only on average.

Discrete-time dynamical systems describe a sequence of measurements made at equally
spaced intervals (Figure 1.1.4). These dynamical systems are described mathematically
by a rule that gives the value at one time as a function of the value at the previous time.
For example, a discrete-time dynamical system describing population growth is a rule
that gives the population in one year as a function of the population in the previous
year. A discrete-time dynamical system describing the concentration of oxygen in the
lung is a rule that gives the concentration of oxygen in a lung after one breath as
a function of the concentration after the previous breath. A discrete-time dynamical
system describing the spread of a mutant allele is a rule that gives the number of
mutant alleles in one generation as a function of the number in the previous generation.
Mathematical analysis of the rule can make scientific predictions, such as the maximum
population size, the average concentration of oxygen in the lung, or the final number
of mutant alleles. The study of these systems requires the mathematical methods of
modeling (Chapter 1) and differential calculus (Chapters 2 and 3).

Continuous-Time
Dynamical Systems

FIGURE 1.1.5

Measurements described by a
continuous-time dynamical system

Probabilistic
Dynamical Systems

FIGURE 1.1.6

Two sets of measurements described by
the same probabilistic dynamical
system in discrete time. The two panels
show the results of two realizations of
the same mathematical model that
differ only due to random factors.
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Continuous-time dynamical systems, usually called differential equations, describe
measurements that are collected over an entire time interval (Figure 1.1.5). A differential
equation consists of a rule that gives the instantaneous rate of change of a set of
measurements. The miracle of differential equations is that information about a system
at one time is sufficient to predict the state of a system at all future times. For example,
a continuous-time dynamical system describing the growth of a population is a rule that
gives the rate of change of population size as a function of the population size itself.
The study of these systems requires the mathematical methods of: integral calculus
(Chapters 4 and 5).
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Probabilistic dynamical systems describe measurements, in either discrete or continu-
ous time, that are affected by random factors (Figure 1.1.6). The rule indicating how
the measurements at one time depend on measurements at the previous time includes
random factors. Rather than knowing with certainty the next measurements, we know
only a set of possible outcomes and their associated probabilities and can therefore pre-
dict the outcome only in a probabilistic or statistical sense. For example, a probabilistic
dynamical system describing population growth is a rule that gives the probability
that a population has a particular size in one year as a function of the population in
the previous year. The study of such systems requires the mathematical methods of
probability theory (Chapters 6-7).
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m Variables, Parameters, and Functions in Biology

Quantitative science is built upon ‘measurements. Mathematics provides the notation
for describing and thinking about measurements and relations between them. In fact,
the development of clear notation for measurements and relations was essential for the
progress of modern science. In this section, we develop the algebraic notation needed to
describe measurements, introducing variables to describe measurements that change
during the course of an experiment and parameters that remain constant during an
experiment but can change between different experiments. The most important types of
relations between measurements are described with functions, where the value of one
can be computed from the value of the other. We will review how to graph functions,
how to combine them with addition, multiplication, and composition, and how to
recognize which functions have an inverse and how to compute it.
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Definition 1.1

Example 1.2.1

0.0 1.00
1.0 1.24
2.0 1.95
3.0 3.14
4.0 4.81
5.0 6.95
6.0 9.57

Output
ordered pair (a, v)

V=~ ~7% represents point with
| input a and output v
I
I
= Input

Origin

Example 1.2.2

Example 1.2.3

1.2.1 Describing Measurements with Variables,
Parameters, and Graphs

Algebra uses letters or other symbols to represent numerical quantities.

A variable is a symbol that represents a measurement that can change during the course
of an experiment.

A simple experiment measures how the population of bacteria in a culture changes
over time. Because two changing quantities are being measured, time and bacterial
population, we need two variables to represent them. In applied mathematics, we choose
variables that remind us of the measurement it represents. In this case, we can use 7 to
represent time and b to represent the population of bacteria. Because there are fewer
letters than quantities to be measured, the same letter can be used to represent different
quantities in different problems. Make sure to explicitly define variables when writing
a model and to check their definitions when reading one.

Describing Bacterial Population Growth

The table to the left lists measurements of bacterial population size (in millions), denoted
by the variable b, at different times ¢ after the beginning of an experiment.

Thinking about data is often easier with a graph. Graphs are drawn using Cartesian
coordinates, which use two perpendicular number lines called the axes to describe two
numbers (Figure 1.2.1). The argument is placed on the horizontal axis (sometimes
called the x-axis), and the value on the vertical axis (sometimes called the y-axis). The
crossing point of the two axes is the origin. The axes are labeled with the variable
name, the measurement it represents, and often the units of measurement (Section 1.3).
Never draw a graph without labeling the axes.

2 107 : (6.0,9.5T)e

2 (5.0,6.95)%

N 6 -

8 o (4.0,4.81)

E 4f

2 |(00,1.00) *(30,3.14)
FIGURE 1.2.1 FIGURE 1.2.2 & 27, °@0,19)

> q

The components of a Results of bacterial Bl Sl P
graph in Cartesian growth experiment: Qi AlAENENENERE NG HT0
coordinates Cartesian coordinates t, time (h)

Graphing Data Describing Bacterial Population Growth

To graph the six data points in Example 1.2.1, plot each point by moving a distance ¢
to the right of the origin along the horizontal axis and a distance b up from the origin
along the vertical axis (Figure 1.2.2). For example, the data point at 7 = 4.0 is graphed
by moving a distance 4.0 to the right of the origin on the horizontal axis and a distance
4.81 up from the origin on the vertical axis.

Describing the Dynamics of a Bacterial Population

Suppose several bacterial cultures with different initial population sizes are grown in
controlled conditions for one hour and then carefully counted. The population size acts
as the basic measurement at both times. We must use different variables to represent
these values, and choose to use subseripts to distinguish them. In particular, we let b;
(for the initial population) represent the population at the beginning of the experiment,
and b (for the final population) represent the population at the end (Figure 1.2.3). The
following table presents the results for six colonies.

5 6l + Colony 2
2 + Colony 4
g~ 5t
cral
g 2 3 Colony 5
El E 5 Colony 3
:g L +++\/C,,— Colony 6
olony 1
O L I I L L I
0 1 2 3 4 5 6
b;, initial population (millions)
FIGURE 1.2.3

Results of alternative bacterial growth

experiment

Definition 1.2

Example 1.2.4
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Colony Initial Population, b;

Final Population, by

1 0.47 0.94
2 3.3 6.6
3 0.73 1.46
4 2.8 5.6
5 1.5 3.0
6 0.62 1.24

Experiments of this sort form the basis of discrete-time dynamical systems (Section 1.5)
and are the central topic of this chapter.

Experiments are done in a particular set of controlled conditions that remain con-
stant during the experiment. However, these conditions might differ between experi-
ments.

A parameter is a symbol that represents a measurement that does not change during
the course of an experiment.

Different experiments tracking the growth of bacterial populations over time might
take place at temperatures that are constant during an experiment but that differ between
experiments. The temperature, in this case, is represented by a parameter. Parameters
are also represented by symbols that recall the measurement. We can use T to represent
temperature. In applied mathematics, capital letters (like 7') and small letters (like 7)
are often used in the same problem to represent different quantities.

Variables and Parameters

Suppose a biologist measures growing bacterial populations at three different temper-
atures. During the course of each experiment, the temperature is held constant, while
the population changes.

b when T=25° b when T=35° b when T=45°
0.0 1.00 1.00 1.00
1.0 1.14 1.45 0.93
2.0 1.30 2.10 0.87
3.0 1.48 3.03 0.81
4.0 1.68 4.39 0.76
5.0 1.92 6.36 0.70
6.0 2.18 9.21 0.66

Figure 1.2.4 compares the sizes of the three populations. The population grows most
quickly at the intermediate temperature of 35°C and declines at the high temperature
of 45°C.
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Results of bacterial growth experiment
at three temperatures

Example 1.2.5

25.0 2.18
2510 2.45
25.0 2.10
25.0 3.03
35.0 9:21
35.0 739
35.0 6.36
45.0 0.66
45.0 0.93

t, time (h)

1.2.2 Describing Relations Between Measurements
with Functions

Numbers describe measurements, and functions describe relations between measure-
ments. For example, bacterial population growth relates two measurements, denoted
by the variables # and b. In general, a relation between two variables is the set of all
pairs of values that are possible.

A Relation Between Temperature and Population Size

Suppose the temperature 7' and final population size P are measured for nine popqla-
tions, with the following results (Figure 1.2.5). These values could result f1:om repeating
the experiment in Example 1.2.4 several times and measuring the population at # = 6.0.
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2'5 35 45 FIGURE 1.2.5

T, temperature (°C) Final population size at three temperatures

Different values of the population P are related to each temperature, perhaps due to
differences in experimental conditions.

A function describes a specific, and important, type of relation. A function is
a mathematical object that takes something (like a number) as input, performs an
operation on it, and returns a new object (like another number). The input is called the
argument (or the independent variable), and the output is called the value (or the
dependent variable) (Figure 1.2.6). The set of all possible things that a function can
accept as inputs is called the domain; the set of all possible things a function can return
as outputs is called the co-domain; and the set of all things the function does return as
outputs is called the range.

FIGURE 1.2.6

The basic terminology for describing a
function

Example 1.2.6

Example 1.2.7

FIGURE 1.2.7

Plotting a function from its formula

Example 1.2.8
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function

. e e g

Value or
dependent
variable

Argument or
independent
variable

DOMAIN RANGE

Data That Can Be Described by a Function

The data in Example 1.2.1 can be described by a function. Each value of the input ¢ is
associated with only a single value of the output b. A

Graphing a Function from Its Formula

To graph a function from a formula, it is easiest to start by plugging in some represen-
tative arguments. Suppose we wish to graph the function f(x) =4 +x — x? forx >0
(a way of restricting the domain to just positive numbers and zero). Evaluating the
function at the arguments 0, 1, 2 and 3, we find

f0)=4+0-0"=4
fH=4+1-1"=4
fQ)=4+2-2"=2
f)=44+3-3=-2

We plot the four ordered pairs (0, 4), (1,4), (2,2), and (3, —2), and connect them
with a smooth curve (Figure 1.2.7). This is precisely the method that calculators and
computers use to plot functions, except that they generally use 20 or more points
to make a graph. Because the output takes on negative values, the horizontal axis is
positioned at a negative value of the output. Rather than drawing axes through the origin
(0, 0), graphs of measurements often place the axes to cross at a value that enhances
readability.

J

X

One of the great advantages of functional notation is that functions can be evaluated
atarguments that consist of parameters and variables (combinations of letters). To do so,
replace the basic variable in the formula with the new argument, however complicated.

Evaluating a Function at a Complicated Argument

To evaluate the function f(x) =4+ x — x? (Example 1.2.7) at the more complicated
argument 2z + 3, replace all occurrences of x in the formula with the new argument
243

fQz+3)=44+(22+3) - 22 +3)%
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Example 1.2.9

Example 1.2.10

Animal Number of Legs

Ant 6
Crab 10
Duck
Fish

Human being

Mouse

o ~ N O B

Spider

FIGURE 1.2.8

Numbers of legs on various organisms
plotted on a graph

To avoid confusion, place the new argument in parentheses wherever it appears. Al-
though it is not always necessary, this expression can be multiplied out and simplified
as

fRz+3)=4+2z+3)—(2z+ 32 original expression
=44 (2z+3) — (42> + 12z +9) expand the square
=4+427+3-4z2-12z -9
=4+3-9+2z—12z—42°
=-2—10z — 472,

multiply negative sign through
group like terms

combine like terms ry

A Function Describing Bacterial Population Growth

The population in Examples 1.2.1 and 1.2.2 obeys the formula
2

t
b = 5 +10.

The population size b is a function of the time 7. The argument of the function b is ¢, the
time after the beginning of the experiment. The value of the function is the population
of bacteria. The formula summarizes the relation between these two measurements: the
output is found by squaring the input, dividing by 4.2, and then adding 1.0.

The function b takes time after the beginning of the experiment as its input. Because
negative time does not make sense in this case, the domain of this function consists of
all positive numbers and zero. We write that

b is defined on the domain ¢ > 0.

Besides negative numbers, fruits, bacteria, and functions lie outside the domain of b.
Because the function b returns population sizes as output, the range of b also consists
of all positive numbers and zero. We write that

b has range b > 0.
A

A Function with Non-numeric Domain

Consider the following table of data. These data describe a relation between two ob-
servations: the identity of the species and the number of legs. We can express this as
the function L (to remind us of legs). According to the table,

L(Ant)=6, L(Crab)=10

and so forth. The domain of this function is “types of animals,” and the range is the
non-negative integers (0, 1,2, 3, ...). We plot the input (“animal”) along the horizontal
axis and the output (“number of legs”) on the vertical axis (Figure 1.2.8).

10 +

Number of legs

Ant Crab Duck Fish  Human Mouse  Spider
Animal

Example 1.2.11

Time Population Size

c o B~ DD O

10

14
16
18
20
290
24

Example 1.2.12

FIGURE 1.2.10

A bacterial population plotted from a

verbal description

0.86
1.69
2.98
4.49
5.69
6.17
5.95
5.29
4.41
3.50
2.67
1.96
1.41
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It is important to realize that the graph of a function is not the function, just as the
spot labeled 2 on the number line is not the number 2 and a photograph of a dog is not
a dog. The graph is a depiction of the function.

Functions can be described in four ways: (1) numerically (by means of a table),
(2) as a formula, (3) as a graph, and (4) verbally. As biologists and applied mathe-
maticians, we need to be able to use all four methods and to translate between them.
In particular, we must know how to translate graphical information into words that
communicate key observations to colleagues and the public.

Describing Results in Graphs and Words

The following table presents a more complicated pattern of population size change.

Bacterial population (millions)
+
+

0 5 10 15 20 25 FIGURE 1.2.9

Time (h) The population of bacteria in a culture

We can see (more casily from Figure 1.2.9 than from the table) that the bacterial
population grew during the first ten hours and declined thereafter. The population
reached a maximum at time 10. This graph and its description can be used to understand
the results even without a mathematical formula. A

Sketching a Graph from a Verbal Description

Conversely, it can be useful to sketch a graph of a function from a verbal description.
Suppose we are told that a population increases between time 0 and time 5, decreases
nearly to 0 by time 12, increases to a higher maximum at time 20, and goes extinct at
time 30. A graph translates this information into pictorial form (Figure 1.2.10). Because
we were not given exact values, the graph is not exact. It instead gives a qualitative
picture of the results.

Second
peak

Population size

First
peak
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FIGURE 1.2.11
The vertical line test

Example 1.2.13

Example 1.2.14

two points intersect |
the vertical line :
x=06

-1 =05 0 0.5

FIGURE 1.2.12

The circle describes a relation that is
not a function

Not all relations are described by functions. A function must give a unique output
for a given input. Relations between measurements can be more complicated. The
vertical line test provides a graphical method to recognize relations that cannot be

described by functions.

The Vertical Line Test A relation is not a function if some vertical line crosses the
graph two or more times. In Figure 1.2.11, there are three outputs associated with
the input 0.2: 1.12, 1.79, and 3.09. This relationship cannot be described with a

function.

vertical line intersects
t three points

L

There is nothing wrong with relations that cannot be described by functions.
Experiments, even when performed under apparently identical conditions, rarely pro-
duce identical results. As we will see when we study statistics (Chapter 8) func-
tions are a useful mathematical idealization of the expected or average result of an

experiment.

A Mathematical Formula That Gives a Relation That Is Not a Function

The set of solutions for x and y from the formula

14y =1
is the circle of radius 1 centered at the origin (Figure 1.2.12). Each value of x between
x =—1and x = 1 is associated with two different values of y. For example, the value

x = 0.6 is associated with both y =0.8 and y = —0.8.
A Relation That Is Not a Function

Suppose several bacterial cultures with different initial population sizes are grown in
controlled conditions for one hour, as in Example 1.2.3, with the following results.

Colony Initial Population, b; Final Population, by
1 0.5 0.9
2 0.5 1.0
3 1.0 2.2
4 1.0 1.9
5 1.5 3.0
6 1:5 2.8

Each initial population was used twice, with similar but not identical results
(Figure 1.2.13). We cannot treat final population size as a function of initial popu]ati;;l

size.

FIGURE 1.2.13

Bacterial growth experiment where
results are not a function

Definition 1.3

Definition 1.4

Example 1.2.15

FIGURE 1.2.14
Adding functions
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1.2.3 Combining Functions

Mathematics makes complicated problems simpler by building complicated structures
from simple pieces. By understanding each of the simple pieces and the rules for com-
bining them, a huge array of complicated relations can be analyzed and understood. The
most important ways to combine functions are as sums, products, and compositions.

Adding Functions The height of the graph of the sum of two functions is the height of
the first plus the height of the second. Geometrically, we can graph each of the pieces
and add them together in the same way.

Algebraically, the value of the function f 4 g is computed as the sum of the values
of the functions f and g.

The sum f + g of the functions f and g is the function that takes on the value
(f +8)x) = f(x)+g).

Multiplying Functions The value of the product f - g is computed as the product of
the values of the functions f and g.

The product f - g of the functions f and g is the function that takes on the value

(f-8x)=f(x)- gx).

We use the dot - rather than the times sign x to indicate multiplication to avoid confusion
with the variable x.

Adding and Multiplying Functions

Consider the functions f(x) and g(x) with formulas
fx)=4+x—x*
g(x) =2x,

graphed in Figures 1.2.14 and 1.2.15. The table following the figures computes the
values of f 4 g and f - g at several points.

8(x)

(SN

5

4 :

3 (f + 8))

2

|

0
=1 f@x)
-2

0 1 2 3
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FIGURE 1.2.15
Multiplying functions

g(x)

Jx)

(f-0)x)

0 1 2 3

X f(x)
0 4
0.5 4.25
i 4
1:5 3.25
2 2
2.5 0.25
3 -2

glx)  (f+gx

0 4
1 825
2 6
3 6.25
4 6
5 5.25
6 4

(f:-g)x)

0
4.25
8
9.75
8
1.25

—12

A

Example 1.2.17
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t by(t)
0.00 1.00
0.50 1:25
1.00 2.00
1.50 3.25
2.00 5.00
2:50 729
3.00 10.00

by(t)

5.00
2.50
1.67
129
1.00
0.83
0.71

(b + b) (1)

6.00
375
3.67
4.50
6.00
8.08
10.71

A

Multiplying Biological Functions

Many quantities in science are built as products of simpler quantities. For example, the
mass of a population is the product of the mass of each individual and the number of
individuals. Consider a population growing according to

2

t
b(t)y=-—+41.0
® 4.2+

(Example 1.2.9). Suppose that as the population gets larger the individuals become
smaller. Let () (the Greek letter mu)! represent the mass of an individual at time ¢,
and suppose that !

Example 1.2.16 Adding Biological Functions

FIGURE 1.2.16
Adding biological functions

If two bacterial populations are separately counted, the total population i's thg sum of the
two individual populations (Figure 1.2.16). Suppose a growing population is described
by the function

bhit)=t>+1

12 r

total population

10

first population

b, population (millions)
(@)}

4

2F second population

O 1 1 ik
0 1 2 3

t, time (h)

and a declining population is described by the function

t b n n-b
0.0 1.00 1.00 1.00
1.0 1.24 0.50 0.62
2.0 1.95 0.33 0.65
3.0 3.14 0.25 0.78
4.0 4.81 0.20 0.96
5.0 6.95 0.17 1.16
6.0 9.57 0.14 1.37
%\ 10 1 //_g
2 sf &
g o
g 6 57
g 4} T
2 /*
2 ol
T
() (2T 1 1 1 1 1
0 2 3 4 5 6

t, time (h)
a

FIGURE 1.2.17
Multiplying biological functions

Definition 1.5

1
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: 10k 1.4 //7#
g % . 12T A
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& 4L Ny e
@ T [ e 04}
E 2f s, =
: T -t 02t
3
0 1 1 1 1 | TSR 0 L L 1 1 i 1
0 1 2 3 4 5 6 0 | 2 3 4 5 6
t, time (h) t, time (h)
b c

We can find the total mass by multiplying the mass per individual by the number of
individuals, as in the table and Figure 1.2.17. The total mass of this population initially
declines and then increases after about 2 hours. A

Composition of Functions The most important way to combine functions is through
composition, where the output of one function acts as the input of another.

The composition f o g of functions f and g is a function defined by

(fog)x) = f(g)). (1.2.1)

We say “ f composed with g evaluated at x” or “ f of g of x.” The function f is called the
outer function, and the function g is called the inner function (Figure 1.2.18).

! Applied mathematicians often use Greek letters to represent variables and parameters. The Greek
alphabet, along with pronunciations of the letters, is given in Appendix A.
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FIGURE 1.2.18

Composition of functions

Example 1.2.18

Example 1.2.19

inner function outer function
8 /

g R RS,

Bedl |

/58
composition

Computing the Value of a Functional Composition

Consider the functions f(x) and g(x) from Example 1.2.15,
fx)=4+x—x"
g(x) =2x.

To find the value of the composition f o g at x =2, we compute

(fo8)@)=f(g(2)

definition of composition

= F£(2:2) substitute 2 into g(x)
=f4) evaluate g(2) =4
=4+4+4—4 substitute 4 into f (x)
= —8. evaluate f(4)=—8

Similarly, to find the value of the composition g o f at x =2, we compute

(80 fH2)=¢g(f(2))

definition of composition

=g(@4+2—2%  substitute 2 into f(x)

=g(2) evaluate f(2)=2

=) substitute 2 into g(x)

=4. evaluate g(2) =4 A

Computing the Formula of a Functional Composition

Consider again the functions f(x) and g(x) from Example 1.2.18,
fx)=4+x—x*
2(x) = 2x.

with domains consisting of all numbers. To find the composition f o g, plug the defi-
nition of the inner function g into the formula for the outer function f, or

(fo®)(x) = f(gx))

the definition

= f(2x) write out the formula for the inner function G
=4 + (2x) — (2x)? plug the formula for G into the outer function F
=4+ 2x —4x2, expand the square

This is the same procedure we used to compute the value of the function f(x) at a
complicated argument in Example 1.2.8. In Example 1.2.18 we computed that
(f 0 g)(2) = —8. If we evaluate by substituting into the formula (f o g)(x) =4 + 2x —
4x?%, we find

(fog)(@=4+2-2-4.22=-8,

matching our earlier result.
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We find the composition g o f by following the same steps, or

(8o /Hx) =g(f(x))

the definition

=gd+x—x% write out the formula for the inner function F
=2(4+x —x?) plug the formula for F into the outer function G
=8+ 2x — 2x2. multiply through

The key step is substituting the output of the inner function into the outer function; the
rest is algebra. In Example 1.2.18 we computed that (g o f)(2) = 4. If we evaluate by
substituting into the formula g o f(x) =8 + 2x — 2x2, we find

(gofH2)=8+2-2-2.2°=4,
again matching our earlier result. A

Example 1.2.19 illustrates an important point about the composition of functions:
the answer is generally different when the functions are composed in a different order.
If f o g=go f, wesay that the two functions commute. When the two compositions
do not match, we say that the two functions do not commute. Without a good reason,
never assume that two functions commute. If you think of functions as operations, this
should make sense. Sterilizing the scalpel and then making an incision produces a quite
different result from making an incision and then sterilizing the scalpel.

Example 1.2.20 Composition of Functions in Biology '

0.00 1.00 0.143
0.50 1.06 0.149
1.00 1.24 0.166
1.50 1.54 0.190
2,00 195 0.219
250 249 0.249
3.00 3.14 0.278

Numbers of bacteria are usually measured indirectly, by measuring the optical density
of the medium. Water allows less light to come through as the population becomes
larger. Suppose that the optical density p is a function of the bacterial population size
b with formula

b) = ———.
PO =T 50
Then the optical density as a function of time is the composition of the function p (b) with

2
the function b(¢) (Figure 1.2.19). Suppose that b(r) = 4r_2 + 1.0 as in Example 1.2.9.
Then '

2 £4+1.0
p(b@)=p (4— + 1-0) = ——42 :
2 2(£ +1.0)+5.0

with values given in the table to the left.

1 T T 3.5 T T 0.28
08} 1 g st 0.26 |
g ré = 024
3 06r 4 E25F g ol
3 s 30
& £ =
£ 041 1 2 2t g 02
< g S N
02} 1 g5l 0.18
< 0.16
0 L 1 1 1 1 ; i
0 1 2 3 0 1 2 3 O‘]40 1 2 3
b, population (in millions) t, time in hours £, time in hours
a b c

FIGURE 1.2.19

Composing biological functions

The composition b o p is not merely different from the composition p o b; it does
not even make sense. The function b accepts as input only the time ¢, not the optical
density returned as output by the function p. We will study this issue more carefully in
Section 1.3. A
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Example 1.2.21

Example 1.2.22

f»-l
FIGURE 1.2.20

The action of a function and its inverse

Definition 1.6

1.2.4 Finding Inverse Functions

A function describes the relation between two measurements and gives a way to compute
the output from a given input. Sometimes we wish to reverse the process and figure out
which input produced a given output. The inverse function, when it exists, provides a
way to do this.

A Simple Inverse Operation

What number, when doubled, gives 8? It is not difficult to guess that the answer is 4.
However, we can formalize this process using functional notation. Let f(x)=2x be
the function that doubles. Our problem is then solving

fx)=8.
Using the formula for f(x), we find

20— 8
x=4.

the equation to be solved
divide both sides by 2 A

A Simple Inverse Function

Example 1.2.21 undoes the act of multiplying by 2. What function does this in general?
If we set y= f(x), we would like to know what value of x produces a given y in
general, without picking a particular value such as y = 8. We follow the same steps,

2x =7y the equation to be solved
X = % divide both sides by 2
The function f~!, read “f inverse,” defined by
.
21 e
et

is the inverse of f; the function that undoes what f did in the first place. Whereas f
takes a number as input and returns double that number population as output, f ~! takes
the doubled number as input and returns the initial number as output.

We can use this inverse like any other function, finding that

8
18)===4,
Bigisy
as we found in Example 1.2.21. A

The definition of an inverse function in general states precisely that the inverse
undoes the action of the original function (Figure 1.2.20).

The function £~ is the inverse of f if

fepG) =g
Pl ) ) ==

Each of f and f~' undoes the action of the other.

The steps for computing the inverse of a function can be summarized in an algo-
rithm, which can be thought of as a recipe. This book contains many algorithms for
solving particular problems. As with a recipe, following an algorithm without thinking
about and checking the steps can lead to disaster. Unlike most algorithms in this book,
this one can be impossible to follow because the equation in the second step cannot be
solved algebraically.

1.2 Variables, Parameters, and Functions in Biology 19

M Algorithm 1.1 Finding the Inverse of a Function

Example 1.2.23

FIGURE 1.2.21

Going backwards with the inverse
function

1. Write the equation y = f(x).
2. Solve for x in terms of y.

3. The inverse function is the operation done to y. ' A

It may look odd to have a function defined in terms of y. Do not change the letters around
to make it look normal. In applied mathematics different letters stand for different things
and resent having their names switched as much as we do.

This algorithm may fail in two different ways: a function might not have an inverse,
or the inverse might be impossible to compute. There is a useful way to recognize a
function that fails to have an inverse. An operation can only be undone if you can
deduce the input from the output. If any particular output is associated with more

than one input, there is no way to tell where you started based solely on where you
ended up.

Finding a More Complicated Inverse

Consider the population following the equation

2

£2
b(t) = — ;
@ 4.2+10

(Example 1.2.9, Figure 1.2.21). If we wish to find the time ¢ from the population b, we
must solve for ¢.

2

t
13 +1.0=0b the equation to be solved for ¢
;2
= b—-1.0 subtract 1.0 from both sides
?=4.2(b—-1.0) multiply both sides by 4.2

t=/42(b - 1.0).

The last step requires that b > 1.0 because we cannot take the square root of a negative
number. '

take the square root of both sides

original function inverse function

Population
© v A~ O ®
\ '
Time
S = N WY E

0 1 2 3 4 5 6 0 2 4 6 8 10
Time Population
a b

Forexample, to one decimal place of accuracy, the time associated with a population

of 5.0 is
t =+/4.2(5.0 — 1.0) = 4.099. Al
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Example 1.2.24

FIGURE 1.2.22
A relation with no inverse
2 -

horizontal line intersects
graph at three points

Output

Input

FIGURE 1.2.23
The horizontal line test

Example 1.2.25

FIGURE 1.2.24
The inverse of x2 is defined when x >0

A Relation That Cannot Be Inverted

Consider the data in the following table (Figure 1.2.22).

Initial Mass Final Mass Initial Mass Final Mass
1.0 7.0 9.0 20.0
2.0 12.0 10.0 18.0
3.0 16.0 11.0 15.0
4.0 19.0 12.0 12.0
5.0 22.0 13.0 9.0
6.0 23.0 14.0 6.0
7.0 23.0 15.0 3.0
8.0 22.0 16.0 1.0
25 1
g
20 + I + p
g 15¢ i +
L i
g 10t horizontal line intersects s
- 2 graph at two points i
A function has no inverse e
00 5 10 15
Initial mass

Suppose you were told that the mass at the end of experiment was 12.0 grams. Initial
masses of 2.0 and 12.0 grams both produce a final mass of 12.0 grams. You cannot tell
whether the input was 2.0 or 12.0. This function has no inverse. A

This reasoning leads to a useful graphical test for whether a function has an inverse.

The Horizontal Line Test A function has no inverse if it takes on the same value two
or more times. This can be established by graphing the function and checking whether
the graph crosses some horizontal line two or more times. (Figure !.2.23)

One can think of functions without inverses as losing information over the course
of the experiment: things that started out different ended up the same.

A Function That Has an Inverse on Part of Its Domain

Consider the function g(x) = x? defined for x > 0 (Figure 1.2.24). We find the inverse
f~(y) by solving y = x? for x.

9. y
8|
71
6..
5 or
2 a4t
i
2+
1
0 1 1 )

e

Example 1.2.26

FIGURE 1.2.25

A function with no inverse

Example 1.2.27

FIGURE 1.2.26

A function with an inverse that is

impossible to compute

Summary

1.2 Variables, Parameters, and Functions in Biology 21
loBeby =
2. Then x = /3.
3. f7 ) =7 A

A Function Without an Inverse

Consider the function f(x) =4 + x — x* (used in Example 1.2.7 and graphed in Figure
1.2.25). We found that the inputs x =0 and x =1 both produce the same output of
Jf(x) =4.If the output is 4, it is impossible to tell which was the input. A graph shows
that this function fails the horizontal line test at almost all values in its range.

i fails horizontal line test
3
2
2 1
= 0
-1
-9
3
_4 L 1 L 1
-2 -1 0 1 2
X

In addition, Algorithm 1.1 might fail because the algebra is impossible. Step 2
requires solving an equation. Many equations cannot be solved algebraically.

A Function with an Inverse That Is Impossible to Compute
Consider the function

fx)=x>+x+1.

The graph satisfies the horizontal line test (Figure 1.2.26.). We try to find the inverse
7 (y) as follows.

1. Sety=x+x+1.

2. Try to solve for x. Even with the cleverest algebraic tricks, this is impossible
(there is a remarkable theorem by the French mathematician Evariste Galois,
proven when he was just 20 years old, that there is no formula for the solution
of a polynomial with a degree greater than 4).

3. Give up.
A

In mathematical modeling, however, it is often more important to know that some-
thing exists (like the inverse in this case) than to be able to write down a formula. We will
later learn a method to compute this inverse numerically with a computer (Section 3.8)

Quantitative science is built upon measurements, and mathematics provides the methods
for describing and thinking about measurements and relations between them. Variables
describe measurements that change during the course of an experiment, and para-
meters describe measurements that remain constant during an experiment but might
change between different experiments. Functions describe relations between different
measurements when a single output is associated with each input, and can be recognized
graphically with the vertical line test. New functions are built by combining functions
through addition, multiplication, and composition. In functional composition, the
output of the inner function is used as the input of the outer function. Many functions
do not commute, meaning that composing the functions in a different order gives a
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different result. Finally, we used the horizontal line test to check whether a function
has an inverse. If it does, the inverse can be used to compute the input from the output.

-

IE Exercises

Mathematical Techniques

1-2 = Identify the variables and parameters in the following situ-
ations, give the units they might be measured in, and choose an
appropriate letter or symbol to represent each.

1. A scientist measures the mass of fish over the course of
100 days, and repeats the experiment at three different levels
of salinity: 0%, 2% and 5%.

2. A scientist measures the body temperature of bandicoots
every day during the winter, and does so at three different
altitudes: 500 m, 750 m, and 1000 m.

3-6= Compute the values of the following functions at the points
indicated and sketch a graph of the function.

3. f(x)=x+5atx=0,x=1,andx=4.

4. g(y)=5yaty=0,y=1,and y=4.

B, h()=—atz=1,z=2,amdz=4.
5z

6. F(r)::r2+5atr:0,r=1,andr=4.

7-10= Graph the given points and say which point does not seem
to fall on the graph of a simple function.

7. 0,1, 1,1, 2D, 3,5,4D.

8. (0,5), (1,10, (2,8),(3,6), 4,4).

9. (0,2),(1,3), (2,6), 3,11), 4, 10).

10. (0,45), (1,25), (2, 12), (3, 12.5), (4, 10).

11-14= Evaluate the following functions at the given algebraic
arguments.
11. f(x)=x+Satx=a,x=a+ 1, and x =4a.
12. g(y)=5yaty=x%y=2x+1,and y=2—x.
; 5

13. h,(z;):L atzzi,zz——,andz:c-i- il

5z 5 ¢

1

14. F(r)=r>+5atr=x+1,r=3x, andr:;c—.
15-16 = Sketch graphs of the following relations. Is there a more
convenient order for the arguments?

15. A function whose argument is the name of a state and whose
value is the highest altitude in that state.

State Highest Altitude (ft)

California 14,491
Idaho 12,662
Nevada 13,143
Oregon 11,239
Utah 13,528
Washington 14,410

16. A function whose argument is the name of a bird and whose
value is the length of that bird.

Bird Length

Cooper’s hawk 50 cm
Goshawk 66 cm
Sharp-shinned hawk 35 cm

17-20 = For each of the following sums of functions, graph each
component piece. Compute the values at x =—2, x=—1,x =0,
x =1, and x =2 and plot the sum.

17. f(x)=2x+3and g(x) =3x — 5.
18. f(x)=2x +3and h(x)=—3x — 12.
19. F(x)=x*+landG(x)=x+ 1.
20, F(x)=x>+1land Hx)=—x+1.

21-24 = For each of the following products of functions, graph each
component piece. Compute the value of the product at x = -2,
x=—1,x=0,x=1,and x =2 and graph the result.

21, f(x)=2x+3and g(x)=3x—5.
22. f(x)=2x+3and h(x)=—3x — 12.
23. F(x)=x*>+1land G(x)=x+ L.
24, F(x)=x2>+1land H(x)=—x+1.

25-28 = Find the inverses of each of the following functions. In
each case, compute the output of the original function at an input
of 1.0, and show that the inverse undoes the action of the function.

25. f(x)=2x+3.
26. g(x)=3x-5.

27. G(y)=1/2+y) fory=0.
28. F(y)=y>+1fory=>0.

29-32 = Graph each of the following functions and its inverse. Mark
the given point on the graph of each function.

29. f(x)=2x + 3. Mark the point (1, f(l)) on the graphs of f
and f~! (based on Exercise 25).

30. g(x)=3x — 5. Mark the point (1, g(1)) on the graphs of g
and g~! (based on Exercise 20).

31. G(y)=1/(2+y). Mark the point (1, G(1)) on the graphs of
G and G~! (based on Exercise 27).

32. F(y)=y*+1 for y>=0. Mark the point (1, F(1)) on the
graphs of F and F ~1 (based on Exercise 28).

33-36 = Find the compositions of the given functions. Which pairs

of functions commute?

33. f(x)=2x+3and g(x)=3x—5.
34. f(x)=2x+3and h(x)=-3x —12.
3. F(x)=x>+1landG(x)=x+1.

36. F(x)=x>+1land Hx)=—x + L.

Applications
37-40 = Describe what is happening in the graphs shown.

37. A plot of cell volume against time in days.

10

8 I

Volume (um?)

Time (days)

38. A plot of a Pacific salmon population against time in years.

1000
800
600 -

400 -

Fish (thousands)

200 |

0 1 1 1 J
1950 1960 1970 1980 1990
Year

3. A p.lot of the average height of a population of trees plotted
against age in years.

10

8_.

Height (m)

0 1 L 1 J

0 10 20 30 40
Age (years)
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40. A plot of an Internet stock price against time.

160
140
120
100
80
60
40
20

0
0

T1ICe

Stock p

{ FRNS S ) e VR o R |

5 10 15 20 25
Time (days)

41-44 = Draw graphs based on the following descriptions.

41, A population of birds begins at a large value, decreases to a
tiny value, and then increases again to an intermediate value.

42. The amount of DNA in an experiment increases rapidly from
a very small value and then levels out at a large value before
declining rapidly to 0.

43. Body temperature oscillates between high values during the
day and low values at night.

44. Soil is wet at dawn, quickly dries out and stays dry dur-

ing the day, and then becomes gradually wetter again during
the night. 3

45-48 = Evaluate the following functions over the suggested range,
sketch a graph of the function, and answer the biological question.

45. The number of bees b found on a plantis givenby b =21 + 1
where f is the number of flowers, ranging from 0 to about
20. Explain what might be happening when f = 0.

46. The number of cancerous cells ¢ as a function of radiation
dose r (measured in rads) is
c=r—4
for r greater than or equal to 5, and is zero for r less than 5.
r ranges from O to 10. What is happening at r = 5 rads?

47. Insect development time A (in days) obeys A =40 — —g
whgre T represents temperature in °C for 10 < T <40.
Which temperature leads to the more rapid development?

48. Tree height A (in meters) follows the formula

s 100a
T 100+a

where a represents the age of the tree in years for 0 <a <
1000. How tall would this tree get if it lived forever?

49-52 = Consider the following data describing the growth of a
tadpole.

Age, a Length, L Tail Length, T Mass, VI

(days) {cm) (cm) (g)
0.5 1.5 1.0 145
1.0 3.0 0.9 3.0
i) 4.5 0.8 6.0
2.0 6.0 0.7 12.0
25 753 0.6 24.0
3.0 9.0 0.5 48.0




