38. Total mass = mass per bacterium x number of bacteria. Find
total mass M as a function of mass per bacterium m if the
total number is 10°.

39-42 = A ski slope has a slope of —0.2. You start at an altitude of
10,000 ft.

39.  Write the equation giving altitude  as a function of horizontal
distance moved d.

40. Write the equation of the line in meters.

41. What will be your altitude when you have gone 2000 ft hor-
izontally?

42. The ski run ends at an altitude of 8000 ft. How far will you
have gone horizontally?

43-46 = The following data give the elevation of the surface of the
Great Salt Lake in Utah.

Year, y Elevation, E (ft)

1965 4,193
1970 4,196
1975 4,199
1980 4,199
1985 4,206
1990 4,203
1995 4,200

43. Graph these data.

44. During which periods is the surface elevation changing lin-
early?

45. What was the slope between 1965 and 1975? What would
the surface elevation have been in 1990 if things had con-
tinued as they began? How different is this from the actual
depth?

46. What was the slope during between 1985 and 19957 What
would the surface elevation have been in 1965 if things had
always followed this trend? How different is this from the
actual depth?

47-50 = Graph the following relations between measurements of
a growing plant, checking that the points lic on a line. Find the
equations in both point-slope and slope-intercept form.

Age, a Mass, M Volume, V Glucose production, G

(days)  (g) (cm?®) (mg)
0.5 2o 31l 0.0
1.0 4.0 6.2 3.4
1.5 5.5 7.3 6.8
2.0 7.0 8.4 10.2
29 8.5 9.5 13.6
3.0 10.0 10.6 17.0
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47. Mass as a function of age. Find the mass on day 1.75.
48. Volume as a function of age. Find the volume on day 2.75.

49. Glucose production as a function of mass. Estimate glucose
production when the mass reaches 20.0 g.

50. Volume as a function of mass. Estimate the volume when
the mass reaches 30.0 g. How will the density at that time
compare with the density when @ = 0.57?

51-44= Consider the data in the following table (adapted from
Parasitoids by H. C. F. Godfray), describing the number of wasps
that can develop inside caterpillars of different weights.

Weight of Caterpillar (g) Number of Wasps

0.5 80
1.0 ils
1S 150
2.0 175

51. Graph these data. Which point does not lie on the line?
52. Find the equation of the line connecting the first two points.

53. How many wasps does the function predict would develop in
a caterpillar weighing 0.72 g?

54. How many wasps does the function predict would develop
in a caterpillar weighing 0.0 g? Does this make sense? How
many would you really expect?

55-58 = The world record times for various races are decreasing
at roughly linear rates (adapted from Guinness Book of Records,
1990).

55. The men’s Olympic record for the 1500 meters was 3:36.8 in
1972 and 3:35.9 in 1988. Find and graph the line connecting
these. (Don’t forget to convert everything into seconds.)

56. The women’s Olympic record for the 1500 meters was 4:01.4
in 1972 and 3:53.9 in 1988. Find and graph the line connect-
ing these.

57. Ifthings continue at this rate, when will women finish the race
in exactly no time? What might happen before that date?

58. If things continue at this rate, when will women be running
this race faster than men?

Computer Exercises

59. Try Exercise 58 on the computer. Compute the year when the
times will reach 0. Give your best guess of the times in the
year 1900.

60. Graph the ratio of temperature measured in Fahrenheit (O
temperature measured in Celsius for —273 < °C < 200. What
happens near °C = 0? What happens for large and small val-
ues of °C? How would the results differ if the zero for Fahren-
heit were changed to match that of Celsius?

3
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Discrete-Time Dynamical Systems

Notation for a discrete-time dynamical

Example 1.5.1

Suppose we collect data on how much several bacterial cultures grow in one hour, or
how much trees grow in one year. How can we predict what will happen in the long run?
In this section, we begin addressing these dynamic problems, which form the theme
of this chapter and indeed of much of this book. We follow the basic steps of applied
mathematics: quantifying the basic measurement and describing the dynamic rule.
We will learn how to summarize the rule with a discrete-time dynamical system or
an updating function that describes change. From the discrete-time dynamical system
and a starting point, called an initial condition, we will compute a solution that gives
the values of the measurement as a function of time.

1.5.1 Discrete-Time Dynamical Systems
and Updating Functions

A discrete-time dynamical system describes the relation between a quantity measured
at the beginning and the end of an experiment or a time interval. If the measurement is
represented by the variable m, we will use the notation m, to denote the measurement
at the beginning of the experiment and m,, to denote the measurement at the end of
the experiment (Figure 1.5.1). Think of 7 as the current time, and 7 4 1 as the time
one step into the future. The relation between the initial measurement m, and the final

measurement m,; is given by the discrete-time dynamical system
My = f(my). (1.5.1)

updating function f

e T

Input,
or
measurement at
beginning of
experiment

Output,
or
measurement at
end of
experiment

my My

my 1 =f(m,)
Discrete-time dynamical system

The updating function f accepts the initial value m, as input and returns the final
value m, as output.

We will begin by applying this notation to several examples of discrete-time dy-
namical systems.

A Discrete-Time Dynamical System for a Bacterial Population

Bc_:call the data introduced in Example 1.2.3. Several bacterial cultures with different
initial population sizes are grown in controlled conditions for one hour and then carefully
recounted. ¢

Colony Initial Population, b; Final Population, b, 4
1 0.47 0.94
2 3.3 6.6
3 0.73 1.46
4 2.8 5.6
5) 15 3.0
6 0.62 ! 1.24
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Graph of the updating function for a
bacterial population
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We have replaced b; (the initial population) with b; (the population at time 7) and by
(the final population) with b, (the population at time 7 + 1).

In each colony, the population doubled in size. We can describe this with the
discrete-time dynamical system

biy1=2.0b;.
The updating function f describes the rule applied to the initial population,
f (b)) =2.0b,.

The graph of the updating function plots the initial measurement b, on the horizontal
axis and the final measurement b, on the vertical axis (Figure 1.5.2). A

A Discrete-Time Dynamical System for Tree Growth

Suppose you measure the heights of several trees in one year, and then again the next
year (Figure 1.5.3). Denoting the initial height by /2, and the final height by /., we
might find the data in the following table (all measured in meters).

Tree Initial Height, h, Final Height, h,.; Change in Height

FIGURE 1.5.4

The dynamics of medication
concentration in the blood

Example 1.5.4

1 23.1 24.1 1.0
2 18.7 19.8 11
3 20.6 21:5 0.9
4 16.0 17.0 1.0
o} 325 33.6 1idl
6 19.8 20.6 0.8

The trees increase in height by about 1.0 m per year.
If we approximate this by assuming that trees grow by exactly 1.0 m per year, the
discrete-time dynamical system that expresses this relation is

h[+1 =h«[ + 1.0.
The updating function, which we can denote by g, has the formula
g(hy)y=h,+1.0.

For example, for a tree beginning with height 12.2 m, the discrete-time dynamical
system predicts a final height of

B =g(12.2)=122+1.0=13.2m. (Al

In this example, the data points do not exactly match the discrete-time dynamical
system. The updating function captures the major trend in the data while ignoring the
noise. Including only the trend corresponds to the use of a deterministic dynamical
system to describe the behavior. To include the noise, we must use a probabilistic
dynamical system (Chapter 6). We will specifically address thé problem of finding an
updating function that captures the major trends in the data when we study the technique
of data-fitting called linear regression (Section 8.9).

Discrete-Time Dynamical System for Mites

Recall the lizards infested by mites (Example 1.4.12). The final number of mites X;+1
is related to the initial number of mites x, by the formula

X1 =2x, + 30.

6.
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A graph of the updating function for
medication concentration
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after treatment after drug is 1.0 mg/L
on day ¢ used by body \ added
RN N

This discrete-time dynamical system has the associated updating function
h(x;)=2x, +30. | A

The discrete-time dynamical systems for bacterial populations, tree height, and
mite number were all derived from data. Often, dynamical rules can instead be derived
directly from the principles governing a system.

A Discrete-Time Dynamical System for Medication Concentration

Suppose we know the following facts about the dynamics of medication. Each day, a
patient uses up half of the medication in his bloodstream. However, he is given a new
dose sufficient to raise the concentration in the bloodstream by 1.0 milligrams per liter

(Figure 1.5.4). Let M, denote the concentration at time 7. The discrete-time dynamical
system is

MI+1 =O-5M1 + 10.

The term 0.5M, indicates that only half of the initial medication remains the next
day. The factor 0.5 is the slope of this linear function. The second term, the intercept,
indicates that 1.0 milligrams per liter of medication is added each day (Figure 1.5.5). We
can graph this linear function by substituting two reasonable values for M,. If M, =0,
then M, =1, the y-intercept of this line. If M, =1, then M,,; =1.5. A

1.5.2 Manipulating Updating Functions

All of the operations that can be applied to ordinary functions can be applied to updating
functions, but with special interpretations. We will study compeosition of an updating
function with itself, find the inverse of an updating function, and convert the units or
translate the dimensions of a discrete-time dynamical system.

Composition Consider the discrete-time dynamical system

m1 = f(m;)

with updating function f. What does the composition f o f mean? The updating
function updates the measurement by one time step. Then

(f o f)im;)= f(f(m)) definition of composition
= f(m;4+1)  definition of updating function
=My2. updating function applied to m,4

Therefore,

(fo f)m)=m .

The composition of an updating function with itself corresponds to a two-step updating
function (Figure 1.5.6).
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Composition of the Bacterial Population Updating Function with Itself

The bacterial updating function is f (b,) = 2b;. The function f o f takes the population
size at time 7 as input and returns the population size 2 hours later, at time 1 =2, as
output. We can compute f o f with the steps

(f o £)B) = f(f(B)
= f(2.0b,)
= 4.0b1 .
After two hours, the population is four times larger, having doubled twice. In this case,

composition of f with itself looks like multiplication. This simple rules works only for
an updating function expressing a proportional relation. A

Composition of the Mite Population Updating Function with Itself

The composition of the mite updating function h(x,) = 2x, + 30 with itself gives
(h o h)(x;) = h(h(x,))

=h(2x; + 30)

= 2(2%,.7-30) + 30

=4x, + 90.

Suppose we started with x, =10 mites. After 1 week, we would find £ (10) =

2.10 + 30 = 50 mites. After a second week, we would find A(50) = 2.-50+30=
130 mites. Using the composition of the updating function with itself, we can compute

the number of mites after 2 weeks, skipping over the intermediate value of 50 mites
after 1 week, finding

(h o h)(10) =4 - 10 4+ 90 = 130. 7

Inverses Consider the general discrete-time dynamical system

miy1 = f(my)

with updating function f. What does the inverse f =1 mean? The updating function
updates the measurement by one time step, and the inverse function undoes the action
of the updating function. Therefore,

fﬂl(mH—l) =my.

The inverse of an updating function corresponds to an “updating” function that goes
backwards in time (Figure 1.5.7).

Inverse of the Bacterial Population Updating Function

The bacterial updating function is f(b,) =2b,. We find the inverse by writing the
discrete-time dynamical system

br+] - 2.01),

Example 1.5.8

Example 1.5.9
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and solving for the input variable b, (Algorithm 1.1). In this case, dividing both sides
by 2.0 gives
bf = 'l')"r‘ﬂ.
2.0
The inverse function is
b
-1 t+1
b)) = —.
f ( t+1) 2.0 ,
If multiplying by 2.0 describes how the population changes forward in time, dividing
by 2.0 describes how it changes backward in time.
. If b, e 2.0,then b,y =2.0b, =2.0 - 2.0 =4.0. If we go backwards from b,,.; =4.0
using the inverse of the updating function, we find

4.0
b= f"1(4.0)= 5= 2.0,

exactly where we started. A

Inverse of the Mite Updating Function
To find the inverse of the mite updating function A (x,) = 2.0x, + 30, we use Algo-
rithm 1.1

2.0x, + 30 = x,44

2.0x, = x4 — 30
X 30
20

the original equation

subtract 30 from both sides
divide both sides by 2.0
Therefore,

X1 — 30

2.0
Suppose we started with x, = 10 mites. After 1 week, we would find

h(10) =2-10 + 30 = 50.

X =h"(x ) = =0.5x,41 — 15.

Applying the inverse, we find

50 — 30
20 < -

The inverse function takes us back to where we started. : A

h=1(50) = 10.

1.5.3 Discrete-Time Dynamical Systems: Units
and Dimensions

The updating function f(b,) =2.0b, accepts as input positive numbers with units of
bacteria. If we measure this quantity in different units, we must convert the updating
function itself into the new units. If we measure a different quantity like total mass or
volume, we can translate the updating function into different dimensions.

Describing the Dynamics of Tree Height in Centimeters

Suppose we wish to study tree height (Example 1.5.2) in units of centimeters rather
than meters. In meters, the discrete-time dynamical system is

g(h't)zhar + 1-0 m.

First, we Qeﬁne a new variable to represent the measurement in the new units. Let H,
be tree height measured in centimeters rather than meters. Then H, = 100k,, because
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Finding the discrete-time dynamical
system for trees in centimeters

FIGURE 1.5.9

Finding the discrete-time dynamical
system for bacteria in terms of mass
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there are 100 centimeters in a meter. We wish to find a discrete-time dynamical system
that gives a formula for H,; in terms of H, (Figure 1.5.8).

Hi = 100hr+1
=100(h, + 1.0)
= 100h, + 100.0
= H, 4+ 100.0.
The discrete-time dynamical system in the new units corresponds to adding 100 cen-
timeters to the height, which is equivalent to adding 1 meter. Although the underlying

process is the same, the discrete-time dynamical system and the correspondinggpdat—
ing function are different, just as the numerical values of measurements are different

in different units.

definition of H,

discrete-time dynamical system for /1,
multiply through by 100

definition of H;

Describing the Dynamics of Bacterial Mass

Suppose we wish to study the bacterial population in terms of mass rather than number.
At the beginning, the mass, denoted by m;, is :

m; = by
where p is the mass per bacterium (as in Example 1.3.4). The updated mass m,; is

iy = Wby the definition of m;
= -2.0b, substituting the original updating function
=2.0ub,
=2.0m,.
This new discrete-time dynamical system doubles its input like the original discrete‘:-
time dynamical system, but takes mass as its input rather than numbers of bacteria
(Figure 1.5.9).

rearranging the terms

recognize that m, = ub,

discrete-time dynamical
system for number

RN

fundamental fundamental

translate with $ translate with
relation relation

b
discrete-time dynamical
system for mass

1.5.4 Solutions

A discrete-time dynamical system describes some quantity at the end of an exp.erlmt‘aﬁt
as a function of that same quantity at the beginning. What if we were to continue ﬂ’;e
experiment? A bacterial population growing according to b4 = 2.0b, would dOUbrz
again and again. A tree growing according to hip1=h +1.0 woulq add more and mo
meters to its height. An infested lizard would become even more infested.
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To describe a situation in which a dynamical process is repeated many times, we
let m represent the measurement at the beginning, m; the measurement after one time
step, m, the measurement after two time steps, and so forth (Figure 1.5.10). In general,
we define

m, = measurement ¢ hours after the beginning of the experiment.

my my ny m,

measurement at measurement at measurement at measurement at
time 0 time 1 time 2 time ¢

Our goal is to find the values of m;, for all values of ¢. Before we can do so, however,
we must know where we started. Without knowing where you started, it is impossible
to answer a question like “where are you after driving 5 miles south?”” The starting
value is known as the initial condition.

The sequence of values of m; for t =0, 1, 2, ... is the solution of the discrete-time
dynamical system m,; = f(m,) starting from the initial condition .

There is a mathematical theory devoted to sequences like the solutions of discrete-
time dynamical system, concerned often with whether the values converge to a partic-
ular value.

The graph of asolution is a discrete set of points with the time ¢ on the horizontal axis
and the measurement m, on the vertical axis. The initial point has coordinates (0, m)
to describe the initial condition. The next point, with coordinates (1, m;), describes
the measurement at r = 1, and so forth (Figure 1.5.11). It is possible to find a formula
for the solution for simple discrete-time dynamical systems, but not in many more
complicated cases.

A Solution of the Bacterial Discrete-Time Dynamical System

Suppose we begin with one million bacteria, which corresponds to an initial condition
of bg = 1.0 (with bacterial population measured in millions). If the bacteria obey the
discrete-time dynamical system b, = 2.0b,,

by =2.0bp=2.0-1.0=2.0

by=2.00 =2.0.-2.0=4.0

b3 =2.0b, =2.0-4.0=28.0.

Examining these results, we notice that

by =2.0-1.0
b, =2.0%-1.0
by =2.0°-1.0.

After 3 hours, the population has doubled three times, and is 2.0° = 8.0 times the
original population. We graph the solution by plotting the time ¢ on the horizontal axis
and the number of bacteria after ¢ hours (b,) on the vertical axis (Figure 1.5.12). The
graph consists only of a discrete set of points describing the hourly measurements hence
the name “discrete-time dynamical system.” Sometimes, we will connect the points in
a solution with line segments to make the pattern easier to see.

After ¢ hours, the population has doubled # times and has reached the size

b, =20, (1.5.2)
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This formula describes the solution of the discrete-time dynamical system with initial
condition b = 1.0. It predicts the population after ¢ hours of reproduction for any value
of t. For example, we can compute

by =2.08-1.0=256.0

without ever computing by, by or other intermediate values.

A

A Solution with a Different Initial Condition
Suppose we started the system with a different initial condition of by = 0.3 million. We
can find subsequent values by repeatedly applying the discrete-time dynamical system,
b, =2.0-03=0.6
b, =2.0-0.6=1.2
by =2.0-12=24.

If we look for the pattern in this case,

b, =2.0-0.3
by =2.0%-0.3
by =2.0>.0.3.

After ¢ hours, the population has doubled times as before and reached the size
b, =2.0" - 0.3 million bacteria.

The solution is different from the one found in Example 1.5.11 with a different initial
condition (Figure 1.5.13). Although the two solutions get further and further apart, the
ratio always remains the same (Exercise 55). A

Two Solutions of the Tree Height Discrete-Time Dynamical System

Tree height obeys the discrete-time dynamical system
hepi=he + 1.0
(Example 1.5.2). Suppose the tree begins with a height of 7o = 10.0 m. Then
hy=ho+1.0=11.0m
hy=hy+1.0=12.0m
hy=h, +1.0=13.0m.

Each year, the height of the tree increases by 1.0 m. After 3 years, the height is 3.0 m
greater than the original height. After 7 years the tree has added 1.0 m to its height
times, meaning that the height will have increased by a total of + m (Figure 1.5.14).
Therefore the solution is

ht == 10.0 + t.
This formula predicts the height after ¢ years of growth for any . We can compute
hg=10.0+8.0=18.0m

without computing A1, hy or other intermediate values.
If the tree began at a height of 2.0 m, the size for the first few years would be

hy=ho+1.0=30m
hy=h +1.0=40m
hy=h, +1.0=5.0m.
Again, the tree adds t meters of height in ¢ years, SO the height is
h,=2.0+4t.

FIGURE 1.5.14

A solution: tree height as a function of
time

I FIGURE 1.5.15

Two solutions for tree height as
functions of time
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The §01ution with this smaller initial condition is always exactly 8.0 m less than the
solution with the hg = 10 (Figure 1.5.15).

Is it always possible to guess the formula for a solution in this way? We will
next see some cases where computing the solution step by step is straightforward
but finding a solution is tricky. Remarkably, there are simple discrete-time dynamicai
systems for which it is impossible to write a formula for a solution. For example
chaotic dynamical systems have solutions that are so unpredictable that no formulzi
can describe them (Subsection 3.2.3).

Finding a Solution of the Medication Discrete-Time Dynamical System

Consider the discrete-time dynamical system for medication (Example 1.5.4), given by
M, =0.5M,+1.0.
Suppose we begin from an initial condition of My = 5.0 milligrams per liter. Then
M;=0.5-50+10=35
M;=0.5-354+1.0=2.75
M;=05:2754+1.0=2.375
My=0.5-2.375+1.0=2.1875.
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FIGURE 1.5.16
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The values are getting closer and closer to 2.0 (Figure 1.5.16). More careful examination
indicates that the results move exactly half way toward 2.0 each step. In particular,
My—20=50-2.0=3.0
My —20=35-20=15=05-3.0
M, —2.0=275-2.0=0.75=0.5-15
M, —2.0=2.375-2.0=0.375=0.5-0.75
M, —2.0=2.1875—-2.0=0.1875=0.5" 0.375.

Can we convert these observations into the formula for a solution? If we write the
concentration as 2.0 plus the difference,
My=2.0+3.0
M;=20+05-3.0
M, =2.0+0.5-30
M;=2.0+0.5-3.0

we might see that
M,=2.0+0.5"-3.0.

Finding patterns in this way and translating them into formulas can be tricky. It is much
more important to be able to describe the behavior of solutions with a graph or in
words. In this case, our calculations quickly revealed that the solution moved closer
and closer to 2.0. In Section 1.6, we will develop a powerful graphical method to deduce
this pattern with a minimum of calculation. ;

A Second Solution of the Medication Discrete-Time Dynamical System

If we begin with an initial concentration of My = 1.0 milligrams per liter, then

M;=05-1.04+10=15
M;=05-15410=175
M;=05-175+1.0=1.875
M,=0.5-1.875+1.0=1.9375.
Unlike bacterial populations (Example 1.5.12) and tree size (Example 1.5.13), the

graphs of solutions starting from different initial conditions look completely different
(Figure 1.5.17).

FIGURE 1.5.17

Another solution of medication
concentration as a function of time
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However, the values still get closer and closer to 2.0, and the difference from 2.0
is reduced by a factor of 0.5 each day,

My—20=10-20=-1.0
M;—20=15-2.0=-0.5
M, —20=1.75-2.0=-0.25
M; —2.0=1.875—-2.0=-0.125
My —2.0=1.9375 —2.0=—-0.0625.
We can find the formula using the same idea as before. If we write
My=2.0-1.0
M =20-05-1.0
M;=20-0.5"-1.0
M;=2.0-0.5"-1.0
we can see that
M,=2.0-0.5""-10. ry

In Section 2.2, we will use the fundamental idea of the limit to study more carefully

what it means for the sequence of values that define a solution to get closér and closer
to 2.0. k

A Solution of the Mite Discrete-Time Dynamical System

Recall the discrete-time dynamical system
xl+] = 2x; + 30
for mites. If we started our lizard off with xo = 10 mites, we compute

x1 =2.0x9 +30=50

¥ =2.02, 30 =130

x3 = 2.0x, 4+ 30 =290.
The pattern is not too obvious in this case. There is a pattern, which is a good challenge
to find (Exercise 35).

Finding an Updating Function from a Solution

Suppose we have measured a sequence of values over time and wish to find the discrete-

time dynamical system that generated them. Consider the following population of birds
in a newly founded refuge.
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: 7 ; Summary  Starting from data or an understanding of a biological process, we can derive a discrete-
Decade After Founding, t _ Population Size, B time dynamical system, the dynamical rule that tells how a measurement changes
0 300 from one time step to the next. The updating function describes the relation between

400 ‘ measurements at times t and 7 + 1. The composition of the updating function with itself

produces a two-step discrete-time dynamical system, while the inverse of the updating
, function produces a backwards discrete-time dynamical system. Like all biological
1600 relations, a discrete-time dynamical system can be described in different units and
dimensions. Repeated application of a discrete-time dynamical system starting from an
initial condition generates a solution, the value of the measurement as a function of
time. With the proper combination of diligence, cleverness, and luck, it is sometimes
possible to find a formula for the solution. Given data from a solution, we can sometimes

1
5) 700
3

These values correspond to the solution of an unknown discrete-time dynamical system,
and we begin, as usual, by graphing them. The solution rises quickly. .
To find the discrete-time dynamical system, we can rewrite these data in terms of

the current and next value.

Population as a function of time

Old Population, B New Population, B,

300 400
400 700
700 1600

We can seek the equation describing this relationship with Algorithm 1.3.

1. The graph in Figure 1.5.18b looks like a line.

Population as a function of previous population

2000 B :
pRE 1500 |
N
£ 1000 & 1000 |
<
’§_ 0
g S00¢ o 500
0 0 : - :
0 0 500 1000 1500 2000
time in decades, ¢ B,
a b
FIGURE 1.5.18

Finding the equation of a discrete-time dyn

amical system from data

2. Pick the first two data points.

3. The slope m is
AB; 700 —400 300
=R =0 =300~ 100 —
4. Using the point (300, 400) as the base point in the point-slope form for a line,
the equation is

Bi41 =3.0(B, — 300) + 400.

5. We can multiply this out to find the slope-intercept form

B,,1=3.0B, — 500.

This population seems to have the potential to triple every decade, but 500 individu'ilgS
are removed, perhaps by poachers. '

work backwards to find the underlying discrete-time dynamical system.

m Exercises

Mathematical Techniques

1-4= Write the updating function associated with each of the fol-
lowing discrete-time dynamical systems and evaluate it at the given
arguments. Which are linear?

1. pi41=p — 2, evaluate at p, =5, p; =10, and p, = 15.
2, = %i, evaluate at ¥, =4, ¥, =8, and ¢, = 12.

3. x4 =2x%+2, evaluate at x, =0, x, =2, and x, = 4.

s 0, = er_]_ T evaluate at O, =0, Q, =1, and O, =2.

5-8s Compose the updating function associated with each
discrete-time dynamical system with itself. Find the two-step
discrete-time dynamical system. Check that the result of apply-
ing the original discrete-time dynamical system twice to the given
initial condition matches the result of applying the new discrete-
time dynamical system to the given initial condition once.

5. Volume follows v, = 1.5v,, with vg = 1220um?>.

6. Length obeys [, ={, — 1.7, with [p = 13.1 cm.

1. Population size follows n,4+1 = 0.5n,, with ng = 1200.
8

Medication concentration obeys M, =0.75M, + 2.0 with
My=16.0.

912« Find the backwards discrete-time dynamical system asso-
Clated with each discrete-time dynamical system. Use it to find the
value at the previous time.

9. v = 1.5v,. Find vp if v; = 1220um? (as in Exercise 5).
10. liy1 =1, — 1.7. Find [y if [; = 13.1cm (as in Exercise 6).
1. n,41 =0.5n,. Find no if ny = 1200 (as in Exercise 7).

122 M, =0.75M, +2.0. Find Mo if M;=16.0 (as in Exer-
cise 8).

13-14= Find the composition of each of the following mathemat-

lcally' elegant updating functions with itself, and find the inverse
nction,

13, The updating function f (x) = 1% Put things over a com-
mon denominator to simplify the composition.

14. The updating function /(x) = —-x—l Put things over a com-
A
mon denominator to simplify the composition.

15-18 = Find and graph the solutions of the following discrete-time
dynamical systems for five steps with the given initial condition.
Compare the graph of the solution with the graph of the updating
function.

15. vy = 1.50;, with vy = 1220um?,

16. [y =1 — 1.7, withlp=13.1 cm.

17. n,y1 =0.5n,, with ny = 1200.

18. M, =0.75M, + 2.0 with My =16.0.

19-22 = Using a formula for the solution, you can project far into
the future without computing all the intermediate values. Find the
following, and say whether the results are reasonable.

19. Find a formula for v, for the discrete-time dynamical system
in Exercise 15, and use it to find the volume at ¢ = 20.

20. Find a formula for v, for the discrete-time dynzimjca] system
in Exercise 16, and use it to find the length at t = 20.

21. Find a formula for v, for the discrete-time dynamical system
in Exercise 17, and use it to find the number at ¢ = 20.

22. Find a formula for v, for the discrete-time dynamical system
in Exercise 18, and use it to find the concentration at t = 20
(use the method in Example 1.5.14 after finding the value it
seems to be approaching).

23-26 = Experiment with the following mathematically elegant up-
dating functions and try to find the solution.

23. Consider the updating function

X
14+x

fx) =

from Exercise 13. Starting from an initial condition of xo = 1,
compute Xy, Xa, X3, and x4, and try to spot the pattern.

24, Use the updating function in Exercise 23 but start from the
initial condition xo = 2.
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25. Consider the updating function
g(x)=4—x.

Start from initial condition of xo = 1, and try to spot the pat-
tern. Experiment with a couple of other initial conditions.
How would you describe your results in words?

26. Consider the updating function

b
h(x) =~——
x—1
from Exercise 14. Start from initial condition of xo =3, and
try to spot the pattern. Experiment with a couple of other
initial conditions. How would you describe your results in
words?

Applications

27-30= Consider the following actions. Which of them commute
(produce the same answer when done in either order)?

27. A population doubles in size; 10 individuals are removed from
a population. Try starting with 100 individuals, and then try
to figure out what happens in general.

28. A population doubles in size; population size is divided by 4.
Try starting with 100 individuals, and then try to figure out
what happens in general.

29. An organism grows by 2.0 cm; an organism shrinks by 1.0
cm.

30. A person loses half his money. A person gains $10.

31-34= Use the formula for the solution to find the following, and
say whether the results are reasonable.

31. Using the solution for tree height 7, =10.0 +7 m (Exam-
ple 1.5.13), find the tree height after 20 years.

32. Using the solution for tree height #, =10.0 ¢ m (Exam-
ple 1.5.13), find the tree height after 100 years.

33. Using the solution for bacterial population number b, =
2.0" - 1.0 (Equation 1.5.2), find the bacterial population af-
ter 20 hours. If an individual bacterium weighs about 10~
grams, how much will the whole population weigh?

34. Using the solution for bacterial population number b, =
2.0' - 1.0 (Equation 1.5.2), find the bacterial population
after 40 hours. How much would this population weigh?

35-36 = Find a formula for the solution of the given discrete-time
dynamical system.

35. Find the pattern in the number of mites on a lizard with
xo =10 and following the discrete-time dynamical system
Xeg1 = 2%, + 30. (Hint: Add 30 to the number of mites.)

36. Find the pattern in the number of mites on a lizard with
xo = 10 and following the discrete-time dynamical system
X 2554205

37-40= The following tables display data from four experiments:
a. Cell volume after 10 minutes in a watery bath

b. Fish mass after 1 week in a chilly tank

37.

38.

39.

40.

c¢. Gnat population size after 3 days without food
d. Yield of several varieties of soybean before and after fer-
tilization

For each, graph the new value as a function of the initial
value, write the discrete-time dynamical system, and fill in
the missing value in the table.

Cell Volume Parasitoids (um?®)

1220 1830
1860 2790
1080 1620
1640 2460
1540 2310
1420 7

Fish Mass (g)

181 10.4
18.2 15.5
173 14.6
16.0 1813
20.5 17.8

25 2

Gnat Number

125103 | 6.0 %10
2.4 x 10° 1.2 5,10
1.6 x 10° 8.0 x 10?
20x10° 1.0 x 103
1.4 x 10° 7.0 x 10?
8.0 x 10? 0

Soybean Yield per Acre

100 210
50 110
200 410
75 160
95 200
250 il

RN s ST T

41-44 = Recall the data used for Exercises 49-52 in Section 1.2.

Age, a Length, L Tail Length, Mass, M

(days) (cm) T (em) (g)
0.5 15 1.0 15
1.0 3.0 0.9 3.0
1.5 4.5 0.8 6.0
2.0 6.0 0.7 12.0
2:5 7:5 0.6 24.0
3.0 9.0 0.5 48.0

These data define several discrete-time dynamical systems. For ex-
ample, between the first measurement (on day 0.5) and the second
(on day 1.0), the length increases by 1.5 cm. Between the second
measurement (on day 1.0) and the third (on day 1.5), the length
again increases by 1.5 cm.

41. Graph the length at the second measurement as a func-
tion of length at the first, the length at the third measure-
ment as a function of length at the second, and so forth.
Find the discrete-time dynamical system that reproduces the
results.

42. Find and graph the discrete-time dynamical system for tail
length.

43. Find and graph the discrete-time dynamical system for mass.
44, Find and graph the discrete-time dynamical system for age.

45-48 = Suppose students are permitted to take a test again and
again until they get a perfect score of 100. We wish to write a
discrete-time dynamical system describing these dynamics.

45, In words, what is the argument of the updating function?
What is the value?

46. What are the domain and range of the updating function?
What value do you expect if the argument is 1007

47. Sketch a possible graph of the updating function.

48. Based on your graph, how would a student do on her second
try if she scored 20 on her first try?

49-50 = Consider the discrete-time dynamical system b, = 2.0b,
for a bacterial population (Example 1.5.1).

49. Write a discrete-time dynamical system for the total volume

of bacteria (suppose each bacterium takes up 10*um?).

0. Write a discrete-time dynamical system for the total area

taken up by the bacteria (suppose the thickness is 20 wm).

51-52 = Recall the equation k1 = h, + 1.0 for tree height.

91, Write a discrete-time dynamical system for the total volume

of the cylindrical trees in Section 1.3, Exercise 27.

92. Write a discrete-time dynamical system for the total volume
of a spherical tree (this is kind of tricky).

9-54% Consider the following data describing the level of

g;dslcation in the blood of two patients over the course of several
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Medication Level

Medication Level

Day in Patient 1 in Patient 2
0 20.0 0.0
1 16.0 2.0
2 13.0 32
3 10.75 3.92

53. Graph three points on the updating function for the first pa-
tient. Find the discrete-time dynamical system for the first
patient.

54. Graph three points on the updating function for the second
patient and find the discrete-time dynamical system.

55-56 = For the following discrete-time dynamical systems, com-
pute solutions with the given initial condition. Then find the differ-
ence between the solutions as a function of time, and the ratio of
the solutions as a function of time. In which cases is the difference
constant, and in which cases is the ratio constant? Can you explain
why?

55. Two bacterial populations follow the discrete-time dynamical
system b, = 2.0b,, but the first starts with initial condition
bo=1.0x 10° and the second starts with initial condition
bo=3.0x10°.

56. Two trees follow the discrete-time dynamical system A, =
h; + 1.0, but the first starts with initial condition /¢ = 10.0
m and the second starts with initial condition hg = 2.0 m.

57-60 = Follow the steps to derive discrete-time dynamical systems
describing the following contrasting situations.

57. A population of bacteria doubles every hour, but 1.0 x 10°
individuals are removed after reproduction to be converted
into valuable biological by-products. The population begins
with by = 3.0 x 10° bacteria. '

a. Find the population after 1, 2, and 3 hours.
b. How many bacteria were harvested?
c.  Write the discrete-time dynamical system.

d. Suppose you waited to harvest bacteria until the end of 3
hours. How many could you remove and still match the
population b3 found in part a? Where did all the extra
bacteria come from?

58. Supi)ose a population of bacteria doubles every hour, but that
1.0 x 10° individuals are removed before reproduction to be
converted into valuable biological by-products. Suppose the
population begins with b = 3.0 x 10° bacteria.

a. Find the population after 1, 2, and 3 hours.
b. Write the discrete-time dynamical system.

c.  How does the population compare with that in the previ-
ous problem? Why is it doing worse?

59. Suppose the fraction of individuals with some superior gene
increases by 10% each generation.




