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a. Write the discrete-time dynamical system for the fraction C:
of organisms with the gene (denote the fraction at time ¢
by f, and figure out the formula for fi11) .

b. Write the solution with fo = 0.0001.

c.  Will the fraction reach 1.0? Does the discrete-time dy-
namical system make sense for all values of f;?

60. The Weber-Fechner law describes how human beings per-
ceive differences. Suppose, for example, that a person first
hears a tone with a frequency of 400 hertz (cycles per sec-
ond). He is then tested with higher tones until he can hear 61.
the difference. The ratio between these values describes how
well this person can hear differences. 62

a. Suppose the next tone he can distinguish has a frequency
of 404 hertz. What is the ratio?

Introduction to Discrete-Time Dynamical Systems

Write the discrete-time dynamical system for this person.
Find the fifth tone he can distinguish.

d. Suppose the experiment is repeated on a musician, and
she manages to distinguish 400.5 hertz from 400 hertz.
What is the fifth tone she can distinguish?

61-62= The total mass of a population of bacteria will change
if either the number of bacteria changes, the mass per bacterium
changes, or both. The following problems derive discrete-time dy-
namical systems when both change.

The number of bacteria doubles each hour, and the mass of
each bacterium triples during the same time.

The number of bacteria doubles each hour, and the mass of
cach bacterium increases by 1.0 x 10~°g. What seems to go
wrong with this calculation? Can you explain why?

b. According to the Weber-Fechner law, the next higher tone
will be greater than 404 by the same ratio. Find this tone.

mAnalysis of Discrete-Time Dynamical Systems

FIGURE 1.6.1
Graph of the updating function

We have defined discrete-time dynamical systems that describe what happens during a
single time step, and defined the solution as the sequence of values taken on over many
time steps. Often enough, finding a formula for the solution is difficult or impossible.
Nonetheless, we can often deduce the behavior of the solution with simpler meth-
ods. This section introduces two such methods. Cobwebbing is a graphical technique
that makes it possible to sketch solutions without computing anything. Algebraically,
we will learn how to solve for equilibria, points where the discrete-time dynamical
system leaves the value unchanged.

1.6.1 Cobwebbing: A Graphical Solution Technique
Suppose we have a general discrete-time dynamical system

M1 = f(m;)

with the updating function graphed in Figure 1.6.1. By adding the diagonal (the line
m,41 = m,)tothe graph, we can find the behavior of solutions graphically. The technique
is called cobwebbing.

Suppose we are given some initial condition mg. To find m,, we evaluate the
updating function at my, or

my = f(mo).

Graphically, m; is the point on the graph of the updating function directly above mo
(Figure 1.6.2a). Similarly, m, is the point on the graph of the updating function directly
above m and so on.

The missing step is moving m; from the vertical axis onto the horizontal axis. The
trick is to reflect it off the diagonal line that has equation my = m,. Move the point
(mo, m) horizontally until it intersects the diagonal. Moving a point horizontally does
not change the vertical coordinate. The intersection with the diagonal occurs at the
point (my, m;) (Figure 1.6.2b). The point (m, 0) lies directly below (Figure 1.6.2¢).

What have we done? Starting from the initial value my, plotted on the horizontal
axis, we used the updating function to find m; on the vertical axis and the reflecting
trick to project m; onto the horizontal axis. We then can find m5, by moving vertically
to the graph of the updating function (Figure 1.6.2d). To find m3, we move horizontally
to the diagonal to reach the point (ma, m,), and then vertically to the point (172, ms)-
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Cobwebbing: The first steps
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Because the lines reaching all the way to the horizontal axis are unnecessary, they are
generally omitted to make the diagram more readable (Figure 1.6.3).

Having found m, m,, and ms on our cobwebbing graph, we can sketch a graph of
the solution that shows the measurement as a function of time. In Figure 1.6.2, we began
at mo = 2.5. This is plotted as the point (0, mg) = (0, 2.5) in the solution (Figure 1.6.4)
The value m, is approximately 3.2 and is plotted as the point (1, m,) in the solution. The
values of m, and m3 increase more slowly, and are plotted thus on the graph. Without
plugging numbers into the formula, we have used the graph of the updating function
to figure out the behavior of a solution starting from a given initial condition.
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Similarly, we can find how the concentration would behave over time if we started
from the different initial condition my = 1.2 (Figure 1.6.5). In this case, the diagonal
lies below the graph of the updating function, so reflecting off the diagonal moves
points to the left. Therefore, the solution decreases.

The steps for cobwebbing are summarized in the following algorithm.

Using Cobwebbing to Find a Solution

1. Graph the updating function and the diagonal.

2. Starting from the initial condition go “up or down to the updating function
and over to the diagonal.”
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Cobweb and solution of tree growth ) \ L ) )
model a b The points where the graph of the updating function intersects the diagonal play a special
; role in cobweb diagrams. These points also play an essential role in understanding the
. ! g etar D play ; g
i behavior of discrete-time dynamical systems. Consider the discrete-time dynamical
| I (od o find The pattem. systems plotted in Figure 1.6.9. The lfirst des_crlbes a population of plants (denoted by
\ 3, Bepeat for e menvesien pe _ ) P, at time 7) and the second a population of birds (denoted by B, at time #). Each graph
4. Sketch the solution at times 0, 1, 2, and so forth as the consecutive horizontal includes the diagonal line used in cobwebbing.
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Consider the discrete-time dynamical system for medication (Example 1.5.4) Dynamics of two populations
£ M, =0.5M, + 1.0. If we begin cobwebbing from an initial condition where the graph of the updating
function lies above the diagonal, the population increases (Figure 1.6.10a). In contrast,
The updating function is a line with slope 0.5 and intercept 1, and is thus less steep than if we begin cobwebbing from an initial condition where the graph of the updating
) the diagonal M, ., = M,.If we begin at M, = 5, the cobweb and solution decrease more function lies below the diagonal, the population decreases (Fi gure 1.6.10b). The plant
B and more slowly over time (Figure 1.6.7). If we begin instead at My = 1, the cobweb population will thus increase if the initial condition lies to the left of the crossing point,
§ and solution increase over time (Figure 1.6.8). \ and decrease if it lies to the right of the crossing point.
{
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Behavior of plant population starting from two initial conditions : What happens wh_ere the updating function crosses the diagonal? At these points,
the population neither increases nor decreases, and thus remains the same. Such a point
Similarly, the updating function for the bird population lies below the diago- | is called an equilibrium.
nal for initial conditions less than the first crossing and the popL.llgtl'on decr_egses ‘ »
(Figure 1.6.11a). The updating function is above the diagonal for initial conditions ‘ Definition 1.11 A point m* is called an equilibrium of the discrete-time dynamical system
between the crossings and the population increases (Figure 1.6.11b). Finally, the up- M1 = f(my)
dating function is again below the diagonal for initial conditions greater than the second ‘ D :
crossing and the population decreases (Figure 1.6.11c). ‘ if £(m*)=m*.
This definition says that the discrete-time dynamical system leaves m* unchanged.
Cobweb starting below first crossing Cobweb starting between crossings These points can be found graphically by looking for intersections of the graph of the
1200 ~ 1200 1 ‘ updating function with the diagonal line.
1000 When there is more than one equilibrium, they are called equilibria. The plant
o h population has two equilibria, one at P =0 and one at P = 50. If we start cobwebbing
300 1 800 - . from an initial condition exactly equal to an equilibrium, not much happens. The cobweb
24 el goes up to the crossing point and gets stuck there (Figure 1.6.12a). The solution is a
o 600 - =y horizontal sequence of dots (Figure 1.6.12b).
400 1 400 - ’ Why does the graphical method for finding equilibria work? The diagonal has
ol equation
200 i
LIRS, 0 L ! o My =ny
0 =t ; 1200 ; ; . .
0 BB 600 1200 0 if’ Bi and can be thought of as a discrete-time dynamical system that leaves all inputs un-
B b, changed, and always returns an output equal to its input. The intersections of the graph
a of the updating function with the diagonal are thus points where the updating function
PP S——r,, 3 - leaves its input unchanged. These are the equilibria.
1200
R mgm n -
1000 | 1.6.3 Equilibria: Algebraic Approach
800 | s . .
‘ When we know the formula for the discrete-time dynamical system, we can solve for
7 600} the equilibria algebraically.
& .
400 |- Example 1.6.3 The Equilibrium of the Medication Discrete-Time Dynamical System
200 - Recall the discrete-time dynamical system for medication
1 1 T |
o 600 B, B, 1200 : M,y =0.5M, + 1.0
4 (Figure 1.6.13, Example 1.5.4). Let M* stand for an equilibrium. The equation for
C

equilibrium says that M* is unchanged by the discrete-time dynamical system, or

M*=05M" +1.0.

FIGURE 1.6.11
Behavior of bird population starting from three initial conditions




74 Chapter 1 Introduction to Discrete-Time Dynamical Systems

5 -
diagonal
4 L
3 i .
I updating
X function
2k o
equilibrium

1
O 1 1 1 1 === )

0 1 2 3 4 5

FIGURE 1.6.13

Equilibrium of the medication
discrete-time dynamical system

Example 1.6.4

or ;
updating
51 function
4 -
Qi B diagonal
2 -
l L e .
/ equilibrium

0 1 1 1 1 L o |

0 1 2 3 4 5 6

by

FIGURE 1.6.14

Equilibrium of the bacterial
discrete-time dynamical system

Example 1.6.5

40
30 updating
function
é 20 F diagonal
10
0 ) . . )

0 10 20 30
' hy

FIGURE 1.6.15

40

A discrete-time dynamical system with

no equilibrium

Example 1.6.6

We can solve this linear equation.

M*=0.5M* 4+ 1.0 the original equation

M*—05M*=1.0 subtract 0.5M* to get unknowns on one side

0.5M*=1.0 do the subtraction
1.0
M*=—=2.0. divide by 0.5
0.5 d

The equilibrium value is 2.0 milligrams per liter. We can check this by plugging M, =2.0
into the discrete-time dynamical system, finding that

M1 =05-2.0+1.0=20.
A concentration of 2.0 is indeed unchanged over the course of a day. Furthermore, we
have seen that solutions approach this equilibrium (Examples 1.5.14 and 1.5.15). I\
The Equilibrium of the Bacterial Discrete-Time Dynamical System
To find the equilibria for the bacterial population discrete-time dynamical system
b1 =2b,

(Figure 1.6.14, Example 1.5.1), we write the equation for equilibria,
DYe=2b";

We then solve this equation

bi=12ph* the original equation
b* — b* =2b* — b* subtract b* from both sides
O=b", do the subtraction

Consistent with our picture, the only equilibrium is at b, =0. The only number that

remains the same after doubling is 0.

A Discrete-Time Dynamical System with No Equilibrium

The updating function for a growing tree following the discrete-time dynamical system
h(+1 = ht -+ 10

has a graph that is parallel to the diagonal (Figure 1.6.15). To solve for the equilibria,
we try

h* =h* 4+ 1 the equation for the equilibrium
h*—h*=1
0=1. do the subtraction

subtract i* to get unknowns on one side

This looks bad. The graph of the updating function and the graph of the diagonal do not
intersect because they are parallel lines. Something that grows 1.0 m per year cannot
remain unchanged. £

A Biologically Unrealistic Equiliorium

The graph of the updating function associated with a mite population that follows the
discrete-time dynamical system

X1 = 2x, + 30
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FIGURE 1.6.16

The discrete-time dynamical system for

mites

FIGURE 1.6.17

Extending the discrete-time dynamical
system for mites to include a negative

domain
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lies above the diagonal for all positive values of x, (Figure 1.6.16). To solve for the
equilibria, try

x*=2x* 430 the equation for the equilibrium

x*—2x*=30 subtract 2x* to get unknowns on one side
—x*=30 do the subtraction
x*=-30. divide both sides by — 1
This looks like nonsense. However, if we check by substituting x, = —30 into the

discrete-time dynamical system, we find

Xop1 =2 - (—30) + 30 = —30,

which is indeed equal to x;.
Although there is a mathematical equilibrium, there is no biological equilibrium.
If we extend the graph to include biologically meaningless negative values, we see that

the graph of the updating function does intersect the diagonal (Figure 1.6.17). A
Xl
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50 - diagonal
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Example 1.6.7 The Loading Dose for a Medication

In the discrete-time dynamical system for medication (Example 1.6.3) the solution only
slowly increases to its equilibrium at M* = 2. To reach this equilibrium immediately,
the dose on the first day can be increased. Rather than giving a dose of 1.0 as on later
days, suppose a larger dose of 2.0 were given. Then, on this first day,

M, =0.5My +2.0.

Because this is the first dose given, .My = 0, meaning that M; = 2.0, equal to the equi-
librium. Returning thereafter to the normal dose of 1.0, the system

M1 =05M,+1.0

will remain at equilibrium. This loading dose avoids the slow build-up to the desired
concentration.

Algebra Involving Parameters Studying the general form of a discrete-time dynam-
ical system, using parameters instead of numbers, can simplify the algebra and make
results easier to understand. When we work with parameters, however, we must be
more careful with the algebra.
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» Algorithm 1.5

Example 1.6.8

Example 1.6.9

Example 1.6.10

Solving for Equilibria

1. Write the equation for the equilibrium.

2. Use subtraction to move all the terms to one side, leaving 0 on the other.

3. Factor (if possible).

4. Set each factor equal to 0 and solve for the equilibria (if possible).

5. Think about the results. A
As always, we begin by setting up the problem. The next three steps give a safe method

to do the algebra (although the algebra may be im'possible). The final step is perhaps
the most important. A result is worthwhile only if it makes sense.

Finding Equilibria of the Bacterial Model in General

Consider the bacterial discrete-time dynamical system where the factor of 2.0 has been
replaced with a general per capita reproduction of r,

b[+1 =rb[.

The factor r describes how much the population grows (or declines) in one hour.
Applying Algorithm 1.5 gives

bt =srb® the equation for the equilibrium
b*—rb* =0 move everything to one side
b*1—r) =0 factor out the common factor of b*
b*=0 or 1 —r=0 setboth factors to 0
b =0t ri=i* solve each term

There are two possibilities. The first matches what we found ea}rlier; a population of
0 is at equilibrium. This makes sense because an extinct population cannot reproc%uce.
The second is new. If the per capita reproduction  is exact_ly 1, any value of _b, is an
equilibrium. In this case, each bacterium exactly replaces 1tse1_f. '1Th_e populatlor} size
will remain the same no matter what its size, even though the individual bacteria are

reproducing and dying.

Equilibria of the Medication Model with a Dosage Parameter

Consider the medication discrete-time dynamical system with the parameter §
M, =0.5M, + S,
where S represents the daily dosage. The algorithm for finding equilibria gives
M*=0.5M*+ S the equation for the equilibrium
M*—05M*—-S=0

move everything to one side

0.5M* - S=0 simplify
M*=20S. nothing to factor, solve for M*
The equilibrium value is proportional to S, the daily dosage. A

Equilibria of the Medication Model with Absorption

Consider the medication discrete-time dynamical system with parameter &

My = (1 — )M, + 1.0,

Example 1.6.11

Summary
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where the parameter o represents the fraction of existing medication absorbed by the
body during a given day. For example, if @ =0.1, 10% of the medication is absorbed

by the body and 90% remains.
M* = (1 —a)M* 4+ 1.0 the equation for the equilibrium
M*— (1 —-a)M*—1.0=0
M*—M*"+aM*—1.0=0
aM*—-1.0=0
_ 10
o

move everything to one side
distribute negative sign through quantity
cancel M* — M*

M solve for M*

The equilibrium value is proportional to the reciprocal of & and is thus larger when the
fraction absorbed is larger. If o = 0.1, the equilibrium is

1.0
M’ =— =10.0,
0.1 0

In contrast, if the body absorbs 50% of the medication each day, leading to a larger
value of o = 0.5, then

1.0
M*=—=20. ,
0.5
The body that absorbs more reaches a lower equilibrium. A

Equilibria of the Medication Model with Two Parameters

Consider the medication discrete-time dynamical system with two parameters (extend-
ing Examples 1.6.9 and 1.6.10),

My =0 —a)M, + S.
The algorithm for finding equilibria gives

M*=(—a)M*+ S the equation for the equilibrium
M*—(l—a)M*—S=0 )
M*— M +aM*—S=0

move everything to one side

distribute negative sign through quantity

aM* —8§=0 cancel M* — M*
S
M*=—. solve for M*
o

The equilibrium value is larger if S is larger or if o is smaller. It makes sense because
the equilibrium concentration can be increased in two ways: by increasing the dosage
or by decreasing the fraction absorbed. ry

We have developed a graphical technique to estimate solutions called cobwebbing. By
examining the diagrams used for cobwebbing, we found that intersections of the graph
of the updating function with the diagonal line play a special role. These equilibria
are points that are unchanged by the discrete-time dynamical system. Algebraically, we
find equilibria by solving the equation that describes such points. We can often solve for
equilibria in general, without substituting numerical values for the parameters. Solving
the equations in this way can help clarify the underlying biological process.
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Exercises . .
13. 107

Mathematical Techniques

1-2= The following steps are used to build a 'cobweb diagram. gl
Follow them for the given discrete-time dynamical system based
on bacterial populations.

Volume

Graph the updating function.

b. Use your graph of the updating function to find the point
(bo, by). e e, yaiR

c. Reflect it off the diagonal to find the point (by, by).

d. Use the graph of the updating function to find (by, by).

e. Reflect off the diagonal to find the point (b, by).

Time (h)
14. \’

Y

§/4 8
s

368 Cobweb the following discrete-time dynamical systems fpr Tirme (h)
three steps starting from the given initial condition. Compare with
the solution found earlier.

f. Use the graph of the updating function to find (by, b3).
g. Sketch the solution as a function of time.

1. The discrete-time dynamical system biy1 =2.0b, with
by =1.0.

Volume

9. The discrete-time dynamical system nee1 = 0.5n, with
no=1.0.

3. v1 = 1.5, starting from v = 1220me3 (as in Section 1.5, 15. o
Exercise 5).

4, [ =1 — 1.7, starting from ly=13.1 cm (as in Section 1.5,
Exercise 0).

Volume

A

SV VoV 2V

5. n,4 =0.5n,, starting from no = 1200 (as in Section 1.5, Ex-
ercise 7).

6. M4 =0.75M, +2.0 starting from the initial condition f5L

Mo = 16.0 (as in Section 1.5, Exercise 8). -

7-12= Graph the updating functions associated with the follow-
ing discrete-time dynamical systems, and cobweb for five steps

starting from the given initial condition.

: 16. 231
7. x4 =2x, — 1, starting from xo = 2.

8. z,41 =0.9z, + 1, starting from zo = 3.

9. w1 =—0.5w, + 3, starting from wo = 0.

Volume

10. x4 =4 — x,, starting from xo=1 (as in Section 1.5,
Exercise 25).

11. x,+1:1—x'—, starting from xo=1 (as in Section 1.5,
+ X

t 1 1
Exercise 23). TR . S =
& Time (h)
x— 1
1.5, Exercise 20).

1250 1= for x, > 1, starting from xo = 3 (as in Section

i ing functions OVer
13-16 = Find the equilibria of the following discrete-time dynam- 17-22= Sketch graphs of the following updating function

ical system from the graphs of their updating functions Label the

coordinates of the equilibria. braically if possible.

the given range and mark the equilibria. Find the equilibria algé” =

i f(x)=x?for0sx <2,
18. g(y)=y*—1for0<y<2.

19-22= Graph the following discrete-time dynamical systems.
Solve for the equilibria algebraically, and identify equilibria and
the regions where the updating function lies above the diagonal on
your graph.

19. c¢4+1=0.5¢; 4 8.0, for 0 < ¢, < 30.
20. bry1=3b, for0<b, <10.

21. b1 =0.3b, for 0 < b, < 10.

22. b1 =2.0b, — 5.0, for 0 < b, < 10.

23-30 = Find the equilibria of the following discrete-time dynam-
ical systems. Compare with the results of your cobweb diagram
from the earlier problem.

23. v, = 1.5, (as in Section 1.5, Exercise 5).
24. .1 =1, — 1.7 (as in Section 1.5, Exercise 6).
25. x;41 =2x; — 1 (as in Exercise 7).

26. 7,41 =0.9z; + 1 (as in Exercise 8).

27. w1 =—0.5w, + 3 (as in Exercise 9).

28. x,.1 =4 — x; (as in Exercise 10).

295 X, = T—_T—_L)—C: (as in Exercise 11).

B0y, | = x,x—t T for x, > 1 (as in Exercise 12).

31-34= Find the equilibria of the following discrete-time dynam-
ical systems that include parameters. Identify values of the para-
meter for which there is no equilibrium, for which the equilibrium
is negative, and for which there is more than one equilibrium.

31, W[+]:CIW[+3.
32. x,+1:b_x,.

B ox= I_Cf—l—%,-

U = e

Applications

35-40= Cobweb the following discrete-time dynamical systems
for five steps starting from the given initial condition.

35. An alternative tree growth discrete-time dynamical sys-

tem with form A, = h, + 5.0 with initial condition /g = 10.

36. The lizard-mite system (Example 1.5.3) x,,1 = 2x, + 30 with
Initial condition xg = 0.

37. The model defined in Section 1.5, Exercise 37 starting from
an initial volume of 1420.

38, Th? model defined in Section 1.5, Exercise 38 starting from
an initial mass of 13.1.

3, Th? I_nodel defined in Section 1.5, Exercise 39 starting from
an initial population of 800.

40,

The.: model defined in Section 1.5, Exercise 40 starting from
an initial yield of 20.
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41-42 = Reconsider the data describing the levels of a medication in
the blood of two patients over the course of several days (measured
in mg per liter), used in Section 1.5, Exercises 53 and 54.

Medication Level Medication Level

Day in Patient 1 in Patient 2
0 20.0 0.0
1 16.0 2.0
2 13.0 39
3 10.75 3.92

41, For the first patient, graph the updating function and cobweb
starting from the initial condition on day 0. Find the equilib-
rium.

42.  For the second patient, graph the updating function and cob-
web starting from the initial condition on day 0. Find the
equilibrium.,

43-44= Cobweb and find the equilibrium of the following discrete-
time dynamical system.

43. Consider a bacterial population that doubles every hour,
but 1.0 x 10° individuals are removed after reproduction
(Section 1.5, Exercise 57). Cobweb starting from by =
3.0 x 10° bacteria.

44. Consider a bacterial population that doubles every hour,
but 1.0 x 10° individuals are removed before reproduc-
tion (Section 1.5, Exercise 58). Cobweb starting from by =
3.0 x 10° bacteria.

45-46 = Consider the following general models for bacterial popu-
lations with harvest.

45. Consider a bacterial population that doubles every hour, but
h individuals are removed after reproduction. Find the equi-
librium. Does it make sense?

46. Consider a bacterial population that increases by a factor of
r every hour, but 1.0 x 10° individuals are removed after re-
production. Find the equilibrium. What values of r produce
a positive equilibrium?

47-48 = Consider the general model M, | = (1 —a)M, + § for
medication (Example 1.6.11). Find the loading dose (Exam-
ple 1.6.7) in the following cases.

47. a=02,5=2.
48- o= 08, S = 4,

Computer Exercises

49. Use your computer (it may have a special feature for this)
to find and graph the first 10 points on the solutions of the
following discrete-time dynamical systems. The first two de-
scribe populations with reproduction and immigration of 100
individuals per generation, and the last two describe popu-
lations that have 100 individuals harvested or removed each
generation.

a. by =0.5b, + 100 starting from by = 100.
b. by =1.5b, + 100 starting from by = 100.




