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Compose the medication discrete-time dynamical sys-
tem M, =0.5M; + 1.0 with itself 10 times. Plot the result-
ing function. Use this composition to find the concentration
after 10 days starting from concentrations of 1.0, 5.0, and
18.0 milligrams per liter. If the goal is to reach a stable con-
centration of 2.0 milligrams per liter, do you think this is a

good therapy?

by = 1.5b, — 100 starting from bo = 201. 50.
d. b,y =1.5b —100 starting from bo = 199.

. What happens if you run the last one for 15 steps? What
is wrong with the model?

BB

Expressing Solutions with Exponential Functiobﬁ_pﬂ;

The solution associated with the bacterial discrete-time dynamical system given by
bity 220D} is

bt = 2.0’

when by = 1.0. As a function of 7, the solution is an example of an exponential function.
To find how long it will take the population to reach a particular target value such as

100 requires solving an equation where the variable ¢ appears in the exponent. Solving
for ¢ can be simplified by converting this function into a standard form with the base
e, and working with the inverse of the exponential function, the natural logarithm.
In this section, we will study the laws of exponents and the laws of logarithms that
make this conversion convenient. We will generalize the bacterial population growth
discrete-time dynamical system to include the death of some bacteria and show that
the solution is again an exponential function, but with base equal to the per capita
reproduction of the bacteria.

1.7.1 Bacterial Population Growth in General

The bacteria studied hitherto have doubled in number each hour. Each bacterium divided
once and both “daughter” bacteria survived. Suppose instead that only a fraction @
(“sigma”) of the daughters survive. Instead of 2.0 offspring per bacteria, we find an
average of 20 offspring (Figure 1.7.1). For example, if only 75% of offspring survived
(o =0.75), there are an average of 1.5 surviving offspring per parent. Let

r=20.

fraction
o survive
— =

/ total of
r = 20 surviving

offspring

__.——-—}
fraction
o survive

FIGURE 1.7.1

Bacterial population growth with
reproduction and mortality

Daughter

The new parameter r represents the number of new bacteria produced per bacterium

and is called the per capita reproduction.
In terms of the parameter r, the discrete-time dynamical system is

by =rb;.

This fundamental equation of population biology says that the population at time? + 1;

is equal to the per capita reproduction (the number of new bacteria per old bacteriutm/:

Example 1.7.1

Example 1.7.2

FIGURE 1.7.2

Bacterial population growth
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times the population at time ¢ (the number of old bacteria), or
new population = per capita reproduction x old population.

Discrete-Time Dynamical System If Most Offspring Survive

If o =0.75, then r =2 0.75 = 1.5. The discrete-time dynamical system is
b1 = 1.5b,. ‘
If by = 100, then b; = 1.5 - 100 = 150. The population increases by 50% each hour. (A

Discrete-Time Dynamical System If Few Offspring Survive

If o =0.25, then r =2 - 0.25 =0.5. The discrete-time dynamical system is
B¢ 1=05b,
If by = 100, then by =0.5 - 100 = 50. Because th ) i
. . . =50. e value of the sur i 5
this population decreases by 50% each hour. of the survival 715 so smey

Starting from a population with by bacteria, we i i
. ) , we can apply the discrete-time d -
ical system repeatedly to derive a solution, much as we did in Example 1.5.11 W?t?la;lle
particular value r =2 (Figure 1.7.2). We find -

by =rbg )
b2 =rb1 =r2b0
b3=rb2:r3b0.

i s

bo by = rby

b, = r'by
population at
time ¢

by = rb; = r’b,
population at
time 2

population at
time 0

population at
time 1

Each hour, the initial population by is multipli i
; the i _ plied by the per capita reproduction r. Aft
t hours, the initial population by has been multiplied by ¢ factors of r. Therefore &

bt = rtbo.

How do these solutions behave for different valu i
. es of the per capita reproducti
r? Results with four values of 7 starting from by = 1.0 are given in ths follogvingutiﬂ;?él

t

0 1.0 1.0 1.0 1.0

1 2.0 1.5 1.0 0.5

2 40 295 1.0 0.25

3 8.0 337 1.0 0.125
4 16.0 5.06 1.0 0.0625
S 32.0 7:59 1.0 0.0312
6 64.0 11.4 1.0 0.0156
7 128.0 17.1 1.0 0.00781
8 256.0 25.6 1.0 0.00391

In the first two columns, r > 1 and the ion i
: S, population increases each hour (Figure 1.7.3a
and b). In the third column, » = 1 and the population remains the same hour after hour
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FIGURE 1.7.3

Growing and declining bacterial
populations
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(Figure 1.7.3c). In the final column, r < 1 and the populatioq decreases each hour
(Figure 1.7.3d). We summarize these observations in the following table.

Value of r  Behavior of Population

r= 1 population increases
=1 population remains constant
r=1 population decreases

i i i rati d retains a constant
A population with r = 1 exactly replaces itself each gener ation an . .
sizi, Even though the individuals in the population change. This is consistent with our
finding that any value of b is an equilibrium when r = 1 (Example 1.6.8).

1.7.2 Laws of Exponents and Logs

In the solution b, = r'bo, the variable 7 appears in the exponent, in co'n.trast toa functlt(;; i
like f(r) =t> where the variable 7 is raised to a power. For any positive number a, e

exponential function to the base a is written

fx)=a"

. ; - : ut
and said to be “a to the xth power.” This function takes x as input and returns as Ou?i)ke 7
x factors of @ multiplied together. The notation generalizes that used in equations

a - =a-da.

- ized
The key to using exponential functions is knowing the laws of exponeqts, summszléng
in the table. The table also includes examples using a = 2 that can help in remem ]
when to add and when to multiply.

Example 1.7.3

Example 1.7.4

Ry

T 0 ] 2 3

FIGURE 1.7.4

Graph of the exponential function

Example 1.7.5

1.7 Expressing Solutions with Exponential Functions 83

Laws of Exponents

General Formula Example with a=2, x=2 and y=3

Law 1 a*-a’ =gt 22.23 -25-32

Law 2 (@) =a? 243 =20=64

Law 3 a"‘=—1- _2=—1-§-:-1—
; a* 5 2 4

Law 4 s gt

a* 52
Law 5 al=a 21=2
Law 6 a’=1 20=1

The exponential function is defined for all values of x, including negative numbers
and fractions. What does it mean to multiply half an a or —3 a’s together? These
expressions must be computed with the laws of exponents.

Negative Powers

3

To compute a~, apply law 3 to find

1
-3
a = E
For example )
1
273 = — =-=0.125.
2¥ 8
Negative powers are in the denominator. A

Fractional Powers

To compute a®>, we raise this unknown quantity to the 2nd power (square it), and use
law 2 to find

0.5)2 s a0.5-2

(a =a'=a.

Therefore, a to the 0.5th power is the number that, when squared, gives back a. In other
words, a to the 0.5 power is the square root of a. For example

205 — /2 =1.41421. A

For reasons that will make sense only with a bit of calculus (Section 2.8),-the base
most commonly used throughout the sciences is the irrational number

e=2.718281828459...

The function

fx)=¢"

said “e to the x” is called the exponential function to the base e, or simply the
exponential function (Figure 1.7.4). Calculators and computers often abbreviate this

as exp. The domain of this function consists of all numbers, and the range is all positive
numbers.

Examples of the Laws of Exponents with the Base e

modlet =3t =¢7 (law 1).
m () =34 =¢!? (law 2).
e 2= % (law 3).

4
s &

&= et =e! =¢ (laws 4 and 5).
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Definition 1.12

FIGURE 1.7.5

The exponential function and natural
logarithm are inverses

5
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3l

FIGURE 1.7.6
Graph of the natural logarithm

X

s 0 =1 (law 6).

s ¢3 + ¢* cannot be simplified with a law of exponents. (A

The graph of the exponential function crosses every pgsitive horizonta} line only
once, and thus passes the horizontal line test for having an inverse (see Section 1.2.4).

The inverse is the natural log.

The inverse function of the exponential function e* is called the natqral logarithm (91~
natural log). The natural log of x is written In(x). The natural logarithm has a domalq
consisting of all positive numbers.

From the definition of the inverse (Definition 1.6),
In(e*) =x

eln(x) =X

(Figure 1.7.5).

exponential function natural logarithm

natural logarithm exponential function

The graph of the natural logarithm increases from “negative inﬁnity”. near x =0,
through 0 at x = 1, and rises more and more slowly as x becomes larger (Figure 1.7.6).

It is impossible to compute the natural log of a negative number.

Example 1.7.6 Exponential and Logarithmic Functions

= If In(100) = 4.605, then ¢*%%° = 100.

s If ¢5 = 148.41, then In(148.41) =5.

= If In(0.1) = —2.302, then e~ >**=0.1.

s If =3 =0.04979, then In(0.4979) = —3. Al

The key to understanding natural logarithms is knowing the laws of logs, which
are the laws of exponents in reverse.

Example 1.7.7 TheLaws of Logs in Action

The Laws of Logs

Law 1 In(xy) =In(x) + In(y)
Law 2 In(x?) = yIn(x)

Law 3 In(1/x) = —In(x)

Law 4 In(x/y) =In(x) — In(y)
Law 5 In(e) =1

Law 6 In(1) =0

s In(3) +In(4)=In(3-4) = In(12), using law 1.
= In(3*) =41n(3), using law 2.
= In(1/3) = — In(3), using law B

Example 1.7.8
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= In(4/3) =In(4) — In(3), using law 4.
= In(3) - In(4) cannot be simplified with a law of logs. ry

In some disciplines, people use the exponential function with base 10, or
fx)=10".
Its inverse is the logarithm to the base 10, written
log,o x
and said “log base 10 of x.” Just as In(x) = y implies that x =¢”,
logjgx =y
implies
x=10".

For example, if log;, x = 2.3, x = 10*3 = 199.5. In most ways, the exponential function
with base 10 and the log base 10 work much like the exponential function with base e
and the natural logarithm. All laws of exponents and logs are the same except for law 5,
which becomes

10" =10

The base e is more convenient for studying dynamics with calculus.

Law 5 of exponents:
Law 5 of logs:

Converting Logarithms in Base 10 to Natural Logs

Suppose log;y(x) = y. How can we find In(x)? By the definition of log,,.

x=10%;
Then
In(x) =1In(10%) taking the natural log of both sides
=y In(10) law of logs 2
=2.303y because In(10) =2.303
=2.3031log,o(x).  definition of y
For instance, log,,(100) = 2, so In(100) = 2.302 - 2 = 4.604. , A

1.7.3 Expressing Results with Exponentials

We can use the laws of exponentials and logs to express
bt = I"tb()

in terms of the exponential function with base e. Because the exponential function and
the natural logarithm are inverses, we can rewrite r as

r =,
Then, using law 2 of exponents,

e (eln(r))l
— o
The general solution for the discrete-time dynamical system
b1 =rb,
with initial condition by can be written in exponential notation as

b’ - boeln(r)t.
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Example 1.7.9

Example 1.7.10
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FIGURE 1.7.7
Using solutions to find times

Example 1.7.11

100

Population

FIGURE 1.7.8
Using solutions to find times

Expressing a Solution with the Exponential Function

Consider the case r = 2.0 and by = 1.0. Because In(2.0) = 0.6931, the solution N
bt — LOeln(ZO)t £ 1.06(0'6931)[‘ "

What is the value of rewriting the solution in this way? Exponential notation makes
it easier to solve equations describing the future behavior of a population.

Using a Solution Expressed with the Exponential Function: Increasing Case

When will the population that obeys b1 = 2.0b,, with solution
b; = 2.0[

reach 100.0 million? In Example 1.7.9 we wrote this solution in exponential notation.
Now we can set b, = 100 and solve for ¢ with the steps

eln(Z,O)t =100

In(2.0)t = In(100)
In(10
F=
In(2)
The population will pass 100.0 million between hours 6 and 7 (Figure'1.7.7 ). The key
step uses the natural log, the inverse of the exponential function, to remove the variable

t from the exponent. y

equation for ¢
take the natural log of both sides

solve for ¢

Using a Solution Expressed with the Exponential Function: Decreasing Case

How long it will take a population with 7 < 1 to decrease to some specified value?
Suppose r = 0.7 and by = 100.0. The population decreases because r < 1. When will
it reach b, =2 (Figure 1.7.8)? In exponential notation,

b, = 100.0¢"07,
Then b, = 2.0 can be solved
100.0£200 =2.0

equation for ¢

0Dk (102 divide both sides by 100
1n(0.7)t =In(0.02) take the natural log
In(0.02
= ¢ ) =10.96.  solve fort
In(0.7)

All the negative signs cancel, and we see that this population will pass 2.0 just before
hour 11. i

Throughout the sciences, many measurements other than population sizes are de-
scribed by exponential functions. In such cases, we write the measurement S as a

function of ¢ as
S(t) = S(0)e*.

The parameter S(0) represents the value of the measurement at time 7 = 0. The para-

meter « describes how the measurement changes and has dimensions of 1/time. When

o > 0 the function is increasing (Figure 1.7.9a and b). When o <0 the function 18
decreasing (Figure 1.7.9¢c and d). The function increases most quickly with larg® 3

positive values of &, and decreases most quickly with large negative values of a.

The doubling time is defined as the time it takes the initial value of a growing 4

measurement to double (Figure 1.7.10).

FIGURE 1.7.9

The exponential function with different
parameter values in the exponent

FIGURE 1.7.10

Doubling times and half-lives

Example 1.7.12
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Computing a Doubling Time

Suppose
St =150.0e"%

with r measured in hours. This measurement starts at =
)00 O s at §(0) = 150.0, and doubles when

150.0e"% =300.0

=20
1.2¢ = In(2.0)
In(2.0)
= =0.5776.

$(0.5776) = 150.0e"205776 — 300.0. A
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We can solve for the doubling time in general by finding the time 74 when S(t;) =

25(0),
S(ty) = S(0)e* =25(0) equation for f4
el =7 divide by S(0)
aty =In(2) take the natural log
L= @) — 0—99—3‘1 solve for #4
o o
The general formula for the doubling time is
0.6931
tqg = .

o

The doubling time becomes smaller as & becomes 1arger, consistent with tgle dfac:) ;.hat
measurements with larger values of o increase more quickly. Importantly, the doubling
time does not depend on the initial value S(0).

Example 1.7.13 Computing a Doubling Time with the Formula

Suppose S(1) = 150.0¢"2" (Example 1.7.12). Then & = 1.2/hour, and the doubling time

18

ta= 9—?9—231 =0.5776 hours. A

When a < 0, the measurement is decreasing, and we can ask .how long it Wiltl‘ takz
to become half as large. This time, denoted #j, i8 called the half-life, and can be foun

with the following steps.
S(ty) = S(0)e* = 0.55(0)  equation for

e =0.5 divide by S(0)
at, =1n(0.5) take the natural log
th= In(0.5) = —0—'623—1. solve for t,
i o o
The general formula for the half-life is
0.6931
= .
o

The half-life becomes smaller when o grows Jarger in absolute value. Apply this equa-
tion only when o <0.

Example 1.7.14 Computing the Half-Life

If a measurement follows the equation
M(t) =240.0e >,

with 7 measured in seconds, then o = —2.3/s and the half-life is
—0.6931

t;,:———3—=0.3014 s. AR

Example 1.7.15 Thinking in Half-Lives

i i 43
Consider the measurement M (f) given in Example 1.7..14, with a half-life of 0‘.3t001t g
To figure out how much the value will have decreased in 2.0s, we could plug 1n ;

original formula, finding
M(2.0) =240.0e 72720 =2.41.

Example 1.7.16

Example 1.7.17

Definition 1.13

Example 1.7.18

1.7 Expressing Solutions with Exponential Functions )

The value decreased by a factor of nearly 100. Alternatively, 2.0s is

2.0
— =6.6
0.3014 B

half-lives. After this many half-lives, the value will have decreased by a factor of
26636 — 99 45, We can think of using half-lives as converting the exponential to base 2.

If we are told the initial value and the doubling time or half-life of some measure-
ment, we can find the formula. Instead of solving for the doubling time, we solve for
the parameter .

Finding the Formula from the Doubling Time

Suppose t, = 26,200 years. Because

0.6931
ty = R
o

we can solve for o as
L 0.6931 7 0.6931

= = =2.645 x 1075,
T T 26,200 &
If m(0) =0.031 then
m(t) = 0.0312643 X 107 , Al
Finding the Formula from the Half-Life
Suppose 1, = 6.8 years. Because
0.6931

we can solve for « as

0.6931 0.6931
o= =- =—0.1019.
I 6.8

If V(0) =23.1, then
V(1) = 23.1¢~0101% A

When a measurement follows an exponential function, the results are often plotted
on a semilog graph. )

A semilog graph plots the logarithm of the output against the input.

A Semilog Graph of a Growing Value

Suppose
S(t) = 150.0¢"*

with ¢ measured in hours (Example 1 .7.12). To plot a semilog graph of S(¢) against ¢,
we find the natural logarithm of S().
In(S(¢)) = In(150.0e"%) the natural logarithm of S(z)

=1n(150.0) + In(e"*) break up with law of logs 2

=5.01+1.2t.
The semilog graph is a line with intercept 5.01 and slope 1.2 (Figure 1.7.11). The

semilog graph is useful for exponentially growing measurements because it contracts
the large range of values and converts an exponential curve into a straight line. A

evaluate In(150.0) and cancel In and exponential function
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Ordinary graph Semilog graph Th; semilo.g graph is particularly useful for graphing outputs that follow an ex-
i p : ponential function or have a wide range of values. If both the input and the output
i P ‘{‘ satisfy these conditions, taking the logarithm of both values can help illustrate their
s S 2 ? relationship. Such a graph is called a double-log plot.
= 30000 = -
"~ 20000 s ‘; ' Definition 1.14 A double-log graph plots the logarithm of the output against the logarithm of the input.
10000 .
: e R S S lomeey, Eafis
’ | 2Time3 decu S Oy 1 - Example 1.7.20 Using Ordinary, Semilog, and Double-Log Graphs to lllustrate Data
FIGURE 1.7.1 ; i |

Original graph and semilog graph Suppose

S(t) = 150.0e!*

A ooy

Example 1.7.19 A Semilog Graph of Some Data

i Example 1.7.12) and
Suppose we are to graph the following data. (Example ) and that

M(t) =13.2¢*",

m | Values for times 7 from O up to 5 are given in the following table.

0 1012 i

1 24.34 |

2 2.19 Time s M In(S)  In(M)

3 0.89 ? 0 150.0 1900 5011 258

4 0.056 1 498.0 97.54  6.211 4.58

5 0.078 2 1,653.0 D070 7411 ek
6 0.125 » | 3 5,490.0 5,325.00 8.611 8.58

7 0346 : 4 18,230.0  39,350.00 9.811  10.58

8 1128 5  60,510.0.0 290,700.00 11.010 1258

The graph of the original data is difficult to read because the large vertical scale. makes | ‘ e
the small values almost indistinguishable (Figure 1.7.12a). If we take the logarithm of ! Oy graplagainsttine Semlog e agait i

[
the data, however, the values are much easier to compare (Figure 1.7.12b). _ § ) 1%/1 o [ iog®)
) : & | o | — logM)
Time Value Logarithm of Value .‘. i % »
0 12012 479 i : %’ ks
1 24.34 3.19 ‘ o N
2 2.190 0.78 | Oisrioilaley 2asil B0 aebiz 05 o 1 2 3 4 3
3 0.89 0.1 ; :
4 0.056 —2.88 4
. : Ordinary graph of S vs M
5 0.078 =259 3 s Double-log graph of S vs M
6 0.125 —2.08 g] ]
A 10
7 0.346 —1.06 | ~ 9 A
»n oA 2
8 1.128 0.12 8] % 8 1
& = 71
i j ] o
Ordinary graph Semilog graph 3 FIGURE 1.7.13 S ; : . . . 5 - , : ,
150 g 5 Presenti : 0 50000 150000 250000 4 6 8 1'0 1I2
2 4 5 1 ing data w i
il ‘ i - ith semilog and M log(M)
100 TN ) : R < d
Q
ES =il
G = =0
w150 § -1
Q 2 1 H
. - . é gg To 1llusFrate the behavior of S and M as functions of time, we can use either ordi-
5 5 i 6 3 0 2 Tid;ne nary or semi-log graphs (Figure 1.7.13a,b). If instead we wish to show the relationship
FIGURE 1.7.12 Time . between these two measurements, the double-log plot can be useful (Figure 1.7.13c,d).
a

The curved relationship caused by the differences in the growth rates of the two mea-
surements becomes a linear relationship on a double-log graph. A

Original graph and semilog graph
The value reaches a minimum at time 4 and increases steadily thereafter.
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FIGURE 1.7.14

Transforming the axes on semilog and
double-log graphs

Example 1.7.21

Example 1.7.22

Example 1.7.23

Introduction to Discrete-Time Dynamical Systems

Alternative double log graph
Alternative semilog graph

ainst time
4 1e+05

le+04

[75]
1e+03

1e+02

le+01

Alternative Way to Present Semilog and Double-Log Graphs

Instead of transforming the measurements by taking g.le r}la;tutreg I%g;l\;/ii s::lstgzresgc;r?;
i t distributed o

the axes themselves. The values on the axis are no

ordinary graph where the values 10, 20, 30 and so forth are evenly spaced. Instead, the

\ ly spaced, providing a way to display
powers of 10 such as 10, 100, and 1000 are evenly sp p ing & W omsel

data that take on a larger range of values without changing th
(Figure 1.7.14).

i

biology are linear on double-log graphs even though the

lationships in .
Mobts : do not grow exponentially. Such measurements follow a

underlying measurements
power function, of the form

y=1cx’
y ; ; jonship. -
d are often said to have an allometric relations ‘
g E{IIsing the laws of logs to decompose the product and the power, we find that
In(y)'=In(c) + p In(x).

The natural log of the multiplicative constant ¢ becomes the intercept a}rlld t?e p;)nv;zf
p becomes the slope of a linear relationship between In(x) and In(y). W e‘nf wotion
surements each grow exponentially, they will always be related by a power Tunctiot

Find a Power Function Relationship

i i i he measurements S (t)=
le 1.7.20, we studied the relationship bet_ween the )
11]}535 ())(:‘n;? ':nd M(t) = 13.2¢2%, finding that S is a linear function of M. The p(:ltriit:
(ln[M(O)], In[S(0)]) = (2.58, 5.011) and (In[M (1], In[S(H] = (.4.‘58, 6.2ﬁl‘1t) ;nrllld i
on this line. To use the equation for the point-slope form of a line, we firs

slope as
6.211 —5.011 —0.6.

4.58 —2.58
Using (2.58,5.011) as the base point,
In[S(r)] = 0.6(In[M (1)] — 2.58) + 5.011
=0.61n[M(1)] + 3.468.

m=

The Allometric Relationship Between Surface Area and Volume

— 45013 (Table 1.2)- B S8
A sphere with radius 7 has surface area S = 4 r? and volume V = 37 (Ta i’

; . . el
cause the power of the radius in the surface area 1s 2/3 that in volu

FIGURE 1.7.15

Energy use and body mass

Example 1.7.24

Summary
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can write
S=cVvV¥?

where the constant for a sphere is (36:r)'/3. This allometric relationship holds for an
given shape, but with a different value of the constant c. {

The Allometric Relationship of Energy Use and Body Mass

A famous allometric relationship concerns the link between metabolic rate, the amount
of energy an organism uses, and body mass. For mammals, this takes roughly the form

E =0.018M°%7

Double log graph of energy use vs mass

Ordinary graph of energy use vs mass 61
500 4 )
400 )
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where E is measured in Kcal/hr and M is measured in grams. This relationship is shown

in three ways, with each including a point representing the energy use of a 75 kg person
who consumes about 2000 calories per day (Figure 1.7.15).

We generalized the discrete-time dynamical system for bacterial population growth
to include mortality, writing the discrete-time dynamical system in terms of the per
capita reproduction r. A population grows if » > 1 and declines if » < 1. The solution
can be expressed as an exponential function to base r. For convenience, exponential
functions are often expressed to the base e, often the exponential function. Using the
laws of exponents, any exponential function can be expressed to the base e. The inverse
of the exponential function is the natural logarithm or natural log. This function can be
used to solve equations involving the exponential function, including finding doubling
times and half-lives. Measurements that cover a large range of positive values can be
conveniently displayed on a semilog graph, which reduces the range, and produces a
linear graph if the measurements follow an exponential function. Double-log graphs
help to display data where both the input and output cover a large range of values, and
are linear when the two measurements are both exponential functions of time.
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Exercises A Y s i

Mathematical Techniques

1-10= Use the laws of exponents (o rewrite the following (if
possible). If no law of exponents applies, say so.

1. 430

43.2!

43.27!

43_2—0.5 +43_20‘5
4801243 000
43,2023 . 43,2077
(34)0.5
(43.2°1/%)ie

oF I

10. 4%.2¢

11-22 = Use the laws of logs to rewrite the following if possible. If
no law of logs applies or the quantity is not defined, say so.

11. In(1)

12. In(=6.5)

13. logy;,43.2

14. log,o(3.5+6.5)

15. log;o(5) + logx(20)

16. log(0.5) + log;((0.2)

17. log,(500) — log;o(50)

18. logy;,(5-43.2%) —logy3,(5)
19. log,;,(43.2")

20. log;,(43.27)*

© 0 N o ¢ B W DN

1
21. Using the fact that log, 43.2= 1.935, find log;, (13—2)

22. Using the fact that log, 43.2 = 1.935, find log, (43.2)%.
23-26= Solve the following equations for x and check your answer.
28 7o =21.

98, Aetitl =20,

ghwody 2l

26, 4e™t3 =72,

27-30= Sketch graphs of the following exponential fungtions. EOI'
each, find the value of x where it is equal to 7.0. For t.he increasing
functions, find the doubling time, and for the decreasing functlops,
find the half-life. For what value of x is the value of the function
3.59 For what value of x is the value of the function 14.07

2% e

b

29, 5¢0%
30. 0.1e7%*

s s M
s e i
i

S ot e e S

31-32 = Sketch graphs of the following updating functions over the
given range and mark the equilibria.

Molhz)=e* for0 <z <2.

32, F(x)=Inkx)+1 for 0 < x <2. (Although this cannot be
solved algebraically, you can guess the answer.)

33-36 = Find the equations of the lines after transforming the vari-
ables to create semilog or double-log plots.

33. Suppose M(t) = 43.2¢51, Find the slope and intercept of
In(M(1)).

34. Suppose L(t) = 0.72¢-23% _ Find the slope and intercept of
In(L(2)).

35. Suppose M(t) = 43.2¢51 and S () = 18.2¢*3 . Find the slope
and intercept of In(M(¢)) as a function of In(S(#)).

36. Suppose L(f) = 0.72¢-234 and K (1) = 4.23¢*". Find the
slope and intercept of In(L(t)) as a function of In(K (1)).

Applications

37-40= Find the solution of each discrete-time dynamical system,
express it in exponential notation, and solve for t‘he time V\./hen the
value reaches the given target. Sketch a graph of the solution.

i i -ti ical system
37. A population follows the discrete-time dynamical sy
b,ﬁ_—rjrb, with = 1.5 and b = 1.0 x 10°. When will the

population reach 1.0 x 1072

i ; i -time dynamical system
38. A population follows the discrete-time dy .
byt = rby with r=0.7 and bp=5.0 x 10°. When will the
population reach 1.0 X 102

39. Cell volume follows the discrete-time dynamical_ system
Vpyr = 1.5v, with initial volume of 1350 wm? 3(as in Exer-
cise 37). When will the volume reach 3250 pum??

i -ti ical system
40. Gnat number follows the discrete-time dynamica
Heir = 0.5n, with an initial population of 5.5 x 10*. When
will the population reach 1.5 X 107

41-44 = Suppose the size of an organism at time 7 is given by
S(@t) = Soe™

where S is the initial size. Find the time it t_akes. for the organism

to double or quadruple in size in the following circumstances.

41. So=1.0cmand o =1.0/day.

42. S;=2.0 cmand o = 1.0/day.

43. S;=2.0cmand o =0.1 /hout.

44, Sy=2.0 cm and o = 0.0/hour

45-48 = The amount of carbon-14 (14,) left ¢ years after the death

of an organism is given by

Q(f) T QOE—O‘OOOlZZt

where Qp is the amount left at the time of death. Suppose 0o= ‘

6.0 x 10'° 14, atoms.

45. How much is left after 50,000 years? What fraction is this of
the original amount?

46. How much is left after 100,000 years? What fraction is this
of the original amount?

47. Find the half-life of 14..

48. About how many half-lives will occur in 50,000 years?
Roughly what fraction will be left? How does this compare
with the answer of Exercise 457

49-52 = Suppose a population has a doubling time of 24 years and
an initial size of 500.

49. What is the population in 48 years?
50. What is the population in 12 years?

51, Find the equation for population size P () as a function of
time.

52, Find the one-year discrete-time dynamical system for this
population (figure out the factor multiplying the population
in one year).

53-56 = Suppose a population is dying with a half-life of 43 years.
The initial size is 1600.

53, How long will it take to reach 200?
54, Find the population in 86 years.

55. Find the equation for population size P(t) as a function of
time.

56. Find the one year discrete-time dynamical system for this

population (figure out the factor multiplying the population
in one year).

57-60 = Plot semilog graphs of the values.

57. The growing organism in Exercise 41 for 0 <t < 10. Mark
where the organism has doubled in size and when it has
quadrupled in size.

58. The carbon-14in Exercise 45 for0 < ¢ < 20, 000. Mark where
the amount of carbon has gone down by half.

59. The population in Exercise 49 for 0 <t < 100. Mark where
the population has doubled.

60. The population in Exercise 53 'for 0 <t <100. Mark where

the population has gone down by half.

61‘5?4 ® The following pairs of measurements can be described by
ordinary, semilog, and double-log graphs.

a.  Graph each measurement as a function of time on both
ordinary and semilog graphs.

Graph the second measurement as a function of the first
on both ordinary and double-log graphs.

61. The antler size A(f) in centimeters of an elk increases with
age ¢ in years according to A(f) = 53.2¢%!"" and its shoulder
height Z (1) increases according to L () = 88.5¢%1".

62,

Suppose a population of viruses in an infected person grows
according to V(1) =2.0e2% and that the immune response
(described by the number of antibodies) increases according
0 1(#) =0.01¢* during the first week of an infection. When
Will the number of antibodies equal the number of viruses?

1.7 Exercises 95

63. The growth of a fly in an egg can be described allometri-
cally (see H. F. Nijhout and D. E. Wheeler, 1996). During
growth, two imaginal disks (the first later becomes the wing
and the second becomes the haltere) expand according to
$1(1) = 0.007¢%" and S, () = 0.007¢%* where size is mea-
sured in mm?® and time is measured in days. Development
takes about 5 days. '

64. While the imaginal disks are growing (Exercise 63), the yolk
of the egg is shrinking according to ¥ (f) = 4.0e~!%. Create
graphs comparing Sy (¢) and Y (¢).

65-66 = For each of the given shapes, find the constant ¢ in the
power relationship S = ¢V?? between the surface area S and vol-
ume V. By how much is does ¢ exceed the value (367)"/3 = 4.836
for the sphere (which is in fact the minimum for any shape).

65. For a cube with side length w.
66. For a cylinder with radius » and height 3r.

67-68 = Many measurements in biology are related by power func-
tions. For each of the following, graph the second measurement as
a function of the first on both ordinary and double-log graphs.

67. The —3/2 law of self-thinning in plants argues that the mean
weight W of surviving trees in a stand ingreases while their
number N decreases, related by

W =cN32,

Suppose 10* trees start out with mass of 0.001 kg. Graph the
relationship, and find how heavy the trees would be when
only 100 remain alive, and again when only 1 remains alive.
Is the total mass larger or smaller than when it started?

68. Suppose that the population density D of a species of mam-
mal is a decreasing function of its body mass M according to
the relationship

D=cM™*,

Suppose that an unlikely 1 g mammal would have a density of
10* per hectare. What is the predicted density of species with
mass of 1000 g? A species with a mass of 100 kg? According
to the metabolic scaling law (Example 1.7.24), which species
will use the most energy?

Computer Exercises

69. Use your computer to find the following. Plot the graphs to
check.

a. The doubling time of 8, () = 3.4€%2,
b. The doubling time of S, (¢) = 0.2¢3*.
¢. The half-life of H,(t) = 3.4e~ 0%,
d. The half-life of H,(t) =0.2¢=34.

70. Solve for the times when the following hold. Plot the graphs
to check your answer.

a. Si(t) = S(¢) with Sy and S, from the previous problem.

b. H\(t)=2H,(¢t) with Hy; and H, from the previous
problem.




