Find the formula and sketch the graph of sleepiness over the
course of a day due to the ultradian rhythm.

Sketch the graph of the two cycles combined.

At what time of day are you sleepiest? At what time of day
are you least sleepy?

Computer Exercises

Consider the following functions.
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34. 930 46.
47.
Q
E, 48.
(=]
>
1.7
ol Ui e 29,
-04 02 0 0.2 0.4
Time (h)

35-38 = Graph the following functions. Give the average, maxi-
mum, minimum, amplitude, period, and phase of each and mark
them on your graph.

3. f(x)=30+40cos (27 ;éo)

36. g(t)=4.0+3.0cos[27(t — 5.0)].

37. h(z)=1.0+5.0co0s (2:: = (3)0)

3. W(y)=—2.0+3.0cos (272 g;” )

39-44= Oscillations are often combined with growth or decay. Plot
graphs of the following functions, and describe in words what you
see. Make up a biological process that might have produced the
result.

39. f(t)=1+1t+cos2mt) forO<t <4.
40. h(t)=t+0.2sin(2xt) for 0 <t < 4,
41, g(t) =€ cos(2mt) foriQ< 13,

42. W(@t)=e"'cos(2mt) for0 <t <3.
43. H(t)=cos(e') for0 <t <3.

44. b(t)=cos(e™) for0<t <3.

45-48 = Sleepiness has two cycles, a circadian rhythm with a period
of approximately 24 hours and an ultradian rhythm with a period
of approximately 4 hours. Both have phase 0 (starting at midnight)
and average 0, but the amplitude of the circadian rhythm is 1.0
sleepiness unit and the ultradian is 0.4 sleepiness unit.

45. Find the formula and sketch the graph of sleepiness over the
course of a day due to the circadian rhythm.

50.

51.

fi(x) =cos (x - %)
&
2

cos(3x —
fHilx)= ( 3 )
cos (5x — .
o 3)
cos{7x — A
Frx) = ( = 2)
a. Plot them all on one graph.
b. Plot the sum fi(x) + f3(x).
¢. Plot the sum fi(x) + f3(x) + fs(x).
d. Plot the sum fi(x) + f3(x) + f5(x) + f7(x).

What does this sum look like?

f. Try to guess the pattern, and add on fo(x) and fi1(x).
This is an example of a Fourier series, a sum of co-
sine functions that add up to a square wave that jumps
between values of —1 and 1.

Use a computer to cobweb and graph solutions of the fol-
lowing discrete-time dynamical systems. Try three different
initial conditions for each. Can you make any sense of what
happens? Why don’t the solutions follow a sinusoidal oscil-
lation?

a. X1 =cos(x,).
b, yey1 =sin(y,).
. Zp41 =sin(z,) +cos(z;).

Plot the function f(x)=cos(2m -440x) + cos(2m - 441x).
Describe the result. If these were sounds, what might you

-

FIGURE 1.9.1
Gas exchange in the lung: the volume

FIGURE 1.9.2

Gas exchange in the lung: the
concentration

hear? (This corresponds to playing two notes with the same "

amplitude and slightly different frequencies.)

m A Model of Gas Exchange in the Lung

The exchange of materials between an organism and its environment is one of the 1
most fundamental biological processes. By following the amount of chemical steP =
by step through the breathing process, we can derive a discrete-time dynamical SYS-5
tem that models this process for a simplified pair of lungs. This discrete-time dynamic

system describes how the outside air mixes with internal air, and takes the form © ‘8
weighted average. This model provides a framework we use to study more complicale®
biological processes such as absorption or release of chemical.
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1.9.1 A Model of the Lungs

Consider a simplified breathing process. An adult male lung has a volume of about
6.0 L when full. With each breath, 0.6 L of the air in the lungs are exhaled, and replaced
by 0.6 L of outside (or ambient) air. After exhaling, the volume of the lungs is 5.4 L.
and returns to 6.0 L after inhaling (Figure 1.9.1). o

exhale ‘ inhale
0.6 liter \ 0.6 liter

& RN

P -
54 liters

6.0 liters 6.0 litérs

Suppose further that thej lung contains a particular chemical with a concentration
pf 2.0 {mle/L l?efore exhaling that the lungs contain. (A mole is a convenient chem-
ical unit indicating 6.02 x 10?* molecules, and a millimole is 6.02 x 10% molecules).

The ambie_nt air has a chemical concentration of 5.0 mmol/L. What is the chemical
concentration after one breath?

exhale 0.6 liter
2.0 millimoles/per liter
1.2 millimoles

/

inhale 0.6 liter
5.0 millimoles/per liter
3.0 millimoles

/

5.4 liter's
6.0 liters 6.0 liters
2.0 mmol/L
10.8 mmol
2.0 mmol/L 10.8 mmol + 3.0 mmol
12.0 mmol 2.3 mmol/L

We must track thr.ee quantities through these steps: the volume (Figure 1.9.1), the
total amount of chemical, and the chemical concentration (Figure 1.9.2). To find the
total amount from the concentration, we use the fundamental relation

total amount = concentration x volume.

Conversely, to find the concentration from the total amount, we rearrange the funda-
mental relation as

. total amount
concentration = ———

volume
One basic b_iological assumption underlies our reasoning—that air breathed out
has a concentration equal to that of the whole lung. This means that the air in the lungs
is completely mixed each breath, which is not exactly true. Assuming that neither air

nor chemical is produced or used while breathi thr E
e eathing, we can track through the process
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The discrete-time dynamical system is therefore

Total - c41=0.54+0.9¢,.
Volume Chemical Concentration 5 . . .
(L)  (mmol)  (mmol/L) What We Di g Checking, an input of ¢, = 2.0 gives

i Multiplied volume of fungs (6.0) o i =05409.2.0=23
/b:d; . ltL)Tegasth o e 2 by concentration (2.0) to get 12.0. ERLE gl e : ,

e‘ % Multiplied volume exhaled (0.6) | as found above. The graph of the }deating fuqction is a line with y-intercept 0.5 and
Alr ld 0.6 1.2 2.0 by concentration (2.0) to get 1.2. 5; slope 0.9 (Figure 1.9.4). We graph it by connecting the y-intercept (0, 0.5) with another
exhale 4 c : ,

o Multiplied volume remaining (5.4) : ' point, such as (2.0, 2.3). . . o
Airinuges 54 10.8 2.0 tration (2.0) to get 10.8. ! We can solve for equilibria and use cobwebbing to better understand this discrete-
after exhalation by cones i ' ' : FIGURE 1.9.4 time dynamical system. Let ¢* stand for an equilibrium. The equation for equilibrium

Multiplied volume inhaled (0.6) by Updating function for the lung model thyt . ty o . h Bk dc-l fochl : d v { svst q
i ; g says that an input of ¢* is unchange e discrete-time dynamical system, or
ﬁlllialed 99 20 ol ambient concentration (5.0) to get 3.0. i Y P g ; 4 Y k4 o
Found total by adding 10.8 4+ 3.0 = ] c*=0.5+0.9c"
Air in lungs 6.0 13.8 23 13.8, and divided by volume (6.0) to 10 . The solutions of this equation are equilibria (Figure 1.9.5). To solve,
after breath get 2.3. £ diagonal
e equilibrium . c*=0.5+0.9¢* the original equation
- ‘ bl updating . i . .
i n function c*—0.9¢*=0.5 subtract 0.9¢* to get unknowns on one side
: ] &l .
Breathing creates a discrete-time dynamical system. The or% ginal co_ncentratlor} of 4 0.1c* 0.5 b S Bt
2.0 mmol/L is updated to 2.3 mmol/L after a breath. To write the discrete-time dynamwal / 2+ i 0.5 —50. divide by 0.1
system, we must figure out the concentration after a breath, ¢,41, as a function qf the ‘ 0 é . 6| 8| ) X
concentration before the breath, ¢,. We follow the same steps, but replace 2.0 with ¢; & The equilibrium value is 5.0 mmol/L. We can check this by plugging ¢, = 5.0 into the
(Figure 1.9.3). ; discrete-time dynamical system, finding
FIGURE 1.9.
exhale'0.61hter. LS U Equilibrium of the lung discrete-time at o T 0 R=.0,
¢; millimoles/per liter 5.0 ‘;“(l)hm,‘l’ll.es‘/ plzrsmer ' dynamical system A concentration of 5.0 is indeed unchanged by the breathing process.
0.6¢, millimoles U U 7 We can use cobwebbing to check whether solutions move toward or away from
‘ this equilibrium. Recall that cobwebbing is a graphical procedure for finding approxi-
mate solutions (Section 1.6), with steps summarized in the phrase “up or down to the

updating function and over to the diagonal.” Both the cobweb starting from c¢q = 10.0

: (Figure 1.9.6) and the one starting from ¢ = 0.0 (Figure 1.9.7) produce solutions that
6.0 liters : i approach the equilibrium at ¢* =5.0.

5.4 liters
6.0 liters LA

¢, mmol/L.
5.4¢, mmol 3 " |
FIGURE 1.9.3 s 10 1% G . s
Gas exchange in the lung: finding the ¢, mmol/L 5.4¢, mmol + ?)2 mmoll E : Al .
discrete-time dynamical system 6.0c, mmol 0.9¢, mmol + 0.5 mmo : e
& S
- b A 4
Total _ FIGURE 1.9.6 I - 5
Volume Chemical Concentration _ ] ; p Z , | I : |
Step (L) (mmol)  (mmol/L) What We Did dcizgrfb?nd Soltion of the lung e ! : . 3 : )
ot ete-ti i . .
Fotit Multiplied volume of lungs (6.0) ] e me dynamical system with ¢ ;
o 0 600 ¢ i to get 6.0c;. 3 : a b
before breath by concentration (c;) to ge! ¢
Air Multiplied volume exhaled (0.6)
exhaled o9 Do - by concentration (cy) to get 0.6¢;. il
ir i Multiplied volume remaining (5.4) |
Air in lungs 54 5o . ‘ .
i i : t 5.4¢:.
after exhalation ; by concentration (c;) to g i 6 el
Air Multiplied volume inhaled (0.6) by p
inlhaled 00 0 >0 ambient concentration (5.0) to get 7.5 | . ul
Added inhaled chemical (3.0) to ; : FiGURrg 1.97 5 ) O 0 )
ir i remaining chemical (+5.4¢;) and ] Gobweh o ok | . . ‘
;\fltrenigztghs 60 30+54c  05+09¢  yii4eq by volume (6.0) to get 4 . Ofthelung AR N T I

1 i : )
0.5+ 0.9¢;. . =00 ynamical system with ¢

~
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1.9.2 The Lung System in General

In the previous subsection, we assumed that the lungs had a volume qf 6.0 L, that
0.6 L of air were exhaled and inhaled, and that the ambient concentration of chem-
ical was 5.0 mmol/L. Suppose, more generally, that the Tungs have a volume of Vv
liters, that W liters of air are exhaled and inhaled each br.eath, an_d that the gmbwnt
concentration of chemical is y (“gamma”). We can find the discrete-time dynamical sys-
temgiving ¢,41 as a function of ¢; by again following the breathing process step by step
(Figure 1.9.8).

exhale W liters inhale W liters

¢, mmol/L y mmol/L
We, mmol yW mmol

FIGURE 1.9.8

Gas exchange in the lungs: general case

Vliters

Vliters

¢, mmol/L
(V — W)c, mmol

¢, mmol/L (V — W)e, + yW mmol |

Ve, mmol

Total
Chemical
(mmol)

Concentration
(mmol/L)

Volume

(L) What We Did

Multiplied volume
of lungs (V) by
concentration

(c;) to gete, V.

Air in lungs v oV
before breath

Ct

Multiplied volume
. exhaled (W) by
Air concentration (c;)
to get ¢, W.

exhaled

Multiplied volume

Air in lungs remaining (V — W) by

| Vol g =) @ concentration (¢;) to

after exhalation G

Multiplied volume
Air inhaled (W) by ambient
inhaled i/ i e concentration (y) to

gety W.

W Found total by adding

Airil‘llungs vV Ct(V—W)““YW CI(V_‘/“//)+Y‘ Ct(V—W) to )/W and 1
after breath divided by volume (V)3

. s c )
The new concentration appears at the end of the last line of the table, giving th ,
discrete-time dynamical system
c(V-W)+yW ‘z;‘
1% ' 3

Cr+1 =

Example 1.9.1

FIGURE 1.9.9
Effects of different values of q

Definition 1.16
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This equation can be simplified by multiplying out the first term and dividing out
the V,

a(V=W)+yW

Cry1 =

%
_ctV——c,W—{-yW
i v
B w w
_c[—c,7+y7.

The two values W and V appear only as the ratio —-W—, which is the fraction of the
total volume exchanged each breath. For example, when W =0.6 L and V =6.0 L,

g7 0.1, meaning that 10% of air is exhaled each breath. We define a new parameter

w f ;
q= T fraction of air exchanged
to represent this quantity. We can then write the discrete-time dynamical system as

Cip1=C — g +vq

or, after combining terms with ¢,, as the general lung discrete-time dynamical system,

e = (1= @)e; +qy. (1.9.1)

Finding the Discrete-Time Dynamical System with Specific Parameter Values

In the original example, W = 0.6 and V = 6.0, giving ¢ = % =0.1. Using y = 5.0, the
general equation matches our original discrete-time dynamical system because

cip1=(1—-0.1)c, +0.1-5.0=0.9¢, +0.5. A

After a breath, the air in the lungs is a mix of old air and ambient air (Figure 1.9.9).
The fraction 1 — ¢ is old air that remains in the lungs, and the remaining fraction g is
ambient air. If ¢ = 0.5, half of the air in the lungs after a breath came from outside, and
;41 is the average of the previous concentration and the ambient concentration. If g is
small, little of the internal air is replaced with ambient air and ¢, is close to ¢;. If g
is near 1, most of the internal air is replaced with ambient air. The air in the lungs then
resembles ambient air, and ¢, is close to the ambient concentration y .

Ambient

Ambient

Ambient

q =075
75% of air exchanged

qg=05
50% of air exchanged

25% of air exchanged

The new concentration ¢, is a weighted average of the old concentration ¢, and
the ambient concentration y .

A weighted average of two values x and y is a sum of the form gx + (1 — ¢g)y for some
value of ¢ between 0 and 1.

When g = 1/2, the weighted average is the ordinary average. The concentration in the
lungs after breathing is a weighted average: a fraction 1 — ¢ of air is left over from the
previous breath, and a fraction ¢ is ambient air.
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Example 1.9.2 A Weighted Average

Example 1.9.3
Example 1.9.4

Example 1.9.5

i

FIGURE 1.9.10
Mixing liquids as a weighted average

Example 1.9.6

Suppose x =2 and y = 5. Then the weighted average that places a weight ¢ = 0.8 on
xand1 —¢g=0.20nyis

gx+(1 —q)y=0.8-2+0.2-5=2.6.
Less weight is placed on y, and the weighted average is closer to x. A
A Contrasting Weighted Average

Suppose x =2 and y =35, as in Example 1.9.2. The weighted average that places a
weight g =02onxand 1 —g=0.8o0ny is

gx+(1—q)y=02-2+08-5=44.
More weight is placed on y, and the weighted average is closer to y. A
An Ordinary Average

Suppose x =2 and y =35, as in Examples 1.9.2 and 1.9.3. The ordinary average places
equal weight g =0.50onx and 1 —¢ =0.5 on y, and is equal to

qx—l—(1—q)y=0.5-2+0.5-5=3‘5.
This value is exactly in the middle between x and y. A
The Weighted Average Applied to Liquids

Suppose 1.0 L of liquid with a concentration of 10.0 mmol/L of salt are mixed with

3.0 L of liquid with a concentration of 5.0 mmol/L of salt (Figure 1.9.10). What is the =

concentration of the resulting mixture? We can think of this as a ng ght.ed average. The
4.0 L of the mixture contains 1.0 L of the high-salt solution (or a fraction of 0.25) and

3.0 L of the low-salt solution (or a fraction of 0.75). The resulting concentration is the =

weighted average
0.25 - 10.0 mmol/L + 0.75 - 5.0 mmol/L, = 6.25 mmol/L.

We could work this out more explicitly by computing the total amount of salt and

the total volume. There are 10.0 mmol of salt from the first solution and 15.0 mmol

i

1
|
]
il
b
i}
|

from the second (multiplying the concentration of 5.0 mmol/L by the volume of 3.0 L), ’
for a total of 25.0 mmol in 4.0 L. The concentration is 1

25.0 mmol
40L

The weighted average provides a simpler way to find this answer.

=6.25 mmol/L.

A Weighted Average with More Than Two Components

Weighted averages also work when more than two solutions are mixgd. Suppose IOE ‘
of liquid with a concentration of 10.0 mmol/L of salt are mlxed_ with 3.0 L of }lqlll 3
with a concentration of 5.0 mmol/L of salt and 1.0 L of liquid with a concentration 0t =
2.0 mmol/L of salt. What is the concentration of the resulting mixture? In this case, the

5.0 L of the mixture are composed of 20% (or 0.20) of the high-salt concentration solu- -

tion, and 60% (or 0.60) of the medium salt concentration solution and 20% (or 0.20) of

the low-salt concentration solution. The resulting concentration is the weighted averag® 7
0.20 - 10.0 mmol/L + 0.60 - 5.0 mmol/L + 0.20 - 2.0 mmol/L = 5.4 mmol/L.
: g : 1
The Equilibrium of the Lung Discrete-Time Dynamical System The generd
discrete-time dynamical system for the lung model is

eim= = g)o/+gy.

FIGURE 1.9.11

D .
yhamics of 5 lungs with absorption

1.9 A Model of Gas Exchange in the Lung 111

Following the steps for finding equilibria gives

%

¢* = (1 —q)c*+ qy the equation for the equilibrium
=1 =qg)*—qy =0
ct—c*+qc*—qy =0
qgc* —qy 0 do the subtraction

gic*~y) =0
g=0orc"—y=0

move everything to one side

multiply ¢* through (1 — ¢)

factor out the ¢

set both factors to 0
g=0orc'=y solve each term

The key algebraic step comes after factoring. Remember that the product of two terms
(like g and c* — y) can equal O only if one of the terms is equal to O.

What do these results mean? The first case, ¢ = 0, occurs when no air is exchanged.
Because lungs that are exchanging no air are, there is no expression for ¢* in this case,
any value of ¢, is an equilibrium. This make sense because a lung that is exchanging
no air is, in fact, at equilibrium. The second case is more interesting. It says that the
equilibrium value of the concentration is equal to the ambient concentration. Exchang-
ing air with the outside world has no effect when the inside and the outside match.
Doing the calculation in general explains why the equilibrium of 5.0 mmol/L found in
Subsection 1.9.1 had to match the ambient concentration of 5.0 mmol/L.

’

1.9.3 Lung Dynamics with Absorption

Our model of chemical dynamics in the lungs ignored any absorption of the chemical
by the body. We can now consider the dynamics of oxygen, which is of course absorbed
by blood. How will this change the discrete-time dynamical system and the resulting
solution and equilibrium?

We can use the weighted average to derive the discrete-time dynamical system in-
cluding absorption. Suppose that a fraction ¢ of air is exchanged each breath, that
ambient air has a concentration of y, and that a fraction o of chemical is absorbed
before breathing out (Figure 1.9.11). After absorption, the concentration in the lungs
is (1 — a)c,. Mixing produces a weighted average with a fraction 1 — ¢ of this old air
and a fraction ¢ of ambient air, giving the discrete-time dynamical system

1 =1 —q¢)1 —a)e, +qy.

If o = 0, this reduces to the original model of a lungs without absorption.

absorb a inhale W L
fraction exhale W liters v mmol/L
TN N VWL i
VL Vil VL

(1 - ),

¥ fl ey (1-g)(1 - e, + g
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Example 1.9.7

Example 1.9.8

Introduction to Discrete-Time Dynamical Systems

Absorption of Oxygen by the Lung

t has a volume of 6.0 L and that replaces 0.6 L each breath

with ambient air (as in Figure 1.9.2). Suppose that we are tracking O)fygte}:ln, lxgrllthsaiz
ambient concentration of 21%, and assume that 30% of the oxygen in the lung

absorbed each breath. Our parameter values are

Consider again a lungs tha

qg=0.1
a=0.3
y=0.21.

The discrete-time dynamical system is then

41 =0.9:0.7¢, +0.1 .0.21 =0.63¢, +0.021.

The equilibrium concentration in the lungs then solves
¢* =0.63¢* +0.021
0.37¢* =0.021
c¢*=0.057.

of oxygen in the lungs, which is equal to the concentra-

erey i
e e ed out, would be about 5.7%, or roughly one fourth i!f

tion of oxygen in the air breath
the ambient concentration.
tion, the equilibrium concentration will be lower than the

equilibrium of the system in general, we
ds on the fraction absorbed. To find the

As a result of absorp
ambient concentration. By solving for the
can investigate how the equilibrium depen
equilibrium, we solve

c=1-g)( —a)c* +qy
=1 —-q)(l—a)"=qy
c(1-—(1—-g—a)=qyY
5 qy :
T1-(1—-g)(1-0)

C*

As a check, if we substitute a =0, we find

§ bt 2g)a il g

tching the result without absorption. _ o ]
A CT:;gtotal oxygen absorbed per breath will be the product of the fraction absorbe

o, the concentration c*, and the volume V, or

¥ . 12
Total absorbed per breath =ac*V. (1.92)

The Equilibrium Concentration of Oxygen as a Function of

With the parameter values ¢ = 0.1 and y =0.21, we find *

.
C=1"090-a) 1-0901-a

By substituting values of « ranging from o =0 to
concentration as a function o

f absorption (Figure 1.9.12). With V =6.0,

0.021a
Total absorbed per breath = 6.0m. H

r

FIGURE 1.9.12
Equilibrium and absorption as a
function of ¢

Example 1.9.9

Summary
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Finding « from the Equilibrium Concentration of Oxygen

The actual oxygen concentration in exhaled air is approximately 15%, although this
values varies depending on activity level. What fraction of oxygen is in fact absorbed?
We can find this by solving for the value of « that produces ¢* =0.15.
0.021
015 = ——r——
1-09(1 — )
0.15(1 = 0.9(1 — @)) =0.021
0.15(0.1 4 0.9«) = 0.021

0.021
0.14+09a0=——=0.14

AR Gl

o =0.044.

Rather surprisingly, the lungs absorbs less than 5% of the available oxygen, leading to
exhaled air that has nearly 30% less oxygen than ambient air.

Starting from an understanding of how a lungs exchanges air, we derived a discrete-time
dynamical system for the concentration of a chemical in the lungs. The discrete-time
dynamical system can be described as a weighted average of the internal concentration
and the ambient concentration. The equilibrium is equal to the ambient concentration,
and cobwebbing diagrams indicate that solutions approach this equilibrium. Including
absorption produces a slightly more complicated model with an equilibrium that is
less than the ambient concentration. We used this model to investigate the dynamics of
oxygen in the lungs.

’F Exercises

J Mathematical Techniques
1-4n

1,

Use the idea of the weighted average to find the following.

LOL of water at 30°C is mixed with 2.0 L of water at 100°C.
What is the temperature of the resulting mixture?

5-8 = Express the following weighted averages in terms of the
given variables.

5. 1.0 L of water at temperature 7 is mixed with 2.0 L of water
at temperature T>. What is the temperature of the resulting
mixture? Set 71 =30 and 75 = 100 and compare with the re-

o =1, we can plot the equilibl'iurn "-

?-0 I'nl of water with a salt concentration of 0.85 mol/L,
I)S mixed with 5.0 ml of water with a salt concentration of
.70 mol/L.. What is the concentration of the mixture?

+ IMaclass of 52 students, 20 scored 50 ona test, 18 scored 75,

and the rest scored 100. What was the average score?

= Inaclags of 100 students, 10 score at 20, 20 score at 40, 30

Score at 60,

and 40 score at 80. What is the average score in
the clasg?

sult of Exercise 1.

V1 liters of water at 30°C is mixed with V, liters of water
at 100°C. What is the temperature of the resulting mixture?
Set Vi =1.0 and V, =2.0 and compare with the result of
Exercise 1.

V; liters of water at temperature 7; is mixed with V, liters
of water at temperature 7>. What is the temperature of the
resulting mixture?
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8. V, liters of water at temperature T is mixed with V5 liters of
water at temperature 7> and V; liters of water at temperature
T;. What is the temperature of the resulting mixture?

9-12 = The following are similar to examples of weighted averages

with absorption.
9. 1.0 L of water at 30°C is to be mixed with 2.0 L of water at 21.

100°C, as in Exercise 1. Before mixing, however, the temper-
ature of each moves half-way to 0°C (so the 30°C water cools 22,
to 15°C). What is the temperature of the resulting mixture?
Is this half the temperature of the result in Exercise 17 23

10. 2.0 ml of water with a salt concentration of 0.85 mol/L, is to
be mixed with 5.0 ml of water with a salt concentration of 0.70 24
mol/L, as in Exercise 2. Before mixing, however, evaporation ;
leads the each concentration of each component to double.
What is the concentration of the mixture? Is it exactly twice
the concentration found in Exercise 27

11. In a class of 52 students, 20 scored 50 on a test, 18 scored
75, and the rest scored 100. The professor suspects cheating, 25.
however, and deducts 10 from each score. What is the aver-
age score after the deduction? Is it exactly 10 less than the
average found in Exercise 3? %

12. 1In a class of 100 students, 10 score at 20, 20 score at 40, 30
score at 60, and 40 score at 80 as in Exercise 4. Because stu-
dents did so poorly, the professor moves each score half way

19. The situation in Exercise 15.
20. The situation in Exercise 16.

21-24= Compute the equilibrium of the lungs discrete-time dy-
namical system and check that c* =Y.

Vv =20L, W=03Ly= 5.0 mmol/L, co = 1.0 mmol/L (as
in Exercise 13).

v=10L W=01L,y= 8.0 mmol/L, co = 4.0 mmol/L (as
in Exercise 14).

y=10L W=09L,y= 5.0 mmol/L, co = 9.0 mmol/L (as
in Exercise 15).

y=100L, W=02L,y= 1.0 mmol/L, ¢o = 9.0 mmol/L,
(as in Exercise 16).

95-26= Compare the equilibrium and total amount absorbed per
breath for different values of g. Use an ambient concentration of
y=02landa volume of V = 6.0L.

Suppose g = 0.4 and o= 0.1. Why is the equilibrium con-
centration higher than with g = 0.2 even though the person
is breathing more?

Suppose g =0.landa = 0.05. Think of this as a person gasp-
ing for breath. Why is the concentration nearly the same as
in Example 1.9.97 Does this mean that gasping for breath is
OK?

up toward 100 (g0 the students with 20 are moved up to 60). 27-30= The following problems investigate absorption that is not

What is the average score in the class? Ts the new average the
old average moved half way to 100?

Applications 2.

13-16= Suppose that the volume of the lungs is V, the amount
breathed in and out is W, and the ambient concentration is Y
mmol/L. For each of the given sets of parameter values and the
given initial condition, find the following: 28

The amount of chemical in the lungs before breathing

The amount of chemical breathed out

o 8

The amount of chemical in the lungs after breathing out 29.

The amount of chemical breathed in

- o & ©

g. Compare this result with the result of using the general

lungs discrete-time dynamical system (equation 1.9.1). 31,

: Remember that g =W/ V.
13. V=20L,W=05L,y= 5.0 mmol/L, co= 1.0 mmol/L.
14, V=10L, W=0.1L,y=80 mmol/L, co = 4.0 mmol/L.
15. V=10L, W=09L,y= 5.0 mmol/L, co=9.0 mmol/L.
16. V=100L,W=02L,y = 1.0 mmol/L, co = 9.0 mmol/L.
17-20= Find and graph the updating function in the following

The amount of chemical in the lungs after breathing in 30.

32.

proportional to the concentration in the lungs. Assume y =0.21
and g =0.1, and find the equilibrium concentration.

Oxygen concentration is reduced by 2% each breath (that is,
if the concentration before absorption were 18%, it would
be 16% after absorption). Find the discrete-time dynamical
system and the equilibrium. Are there values of ¢; for which
the system does not make sense?

Oxygen concentration is reduced by 1% each breath. Find
the discrete-time dynamical system and the equilibrium. Are
there values of ¢, for which the system does not make sense?

The amount absorbed is 0.2(c; — 0.05) if ¢; = 0.05. This
models a case where the only oxygen available is that in €x-
cess of the concentration in the blood, which is roughly 5%.

The amount absorbed is 0.1(c; — 0.05) if ¢; > 0.05.

The concentration of chemical in the lungs after breathing in 31-32= Find the value of the parameter that produces an exhaled
concentration of exactly 0.15. Assume y =0.2land g = 0.1.

Oxygen concentration is reduced by an amount A (general'
izing the case in Exercises 27 and 28). How does the amount
absorbed with this value of A compare with the amount 0
oxygen absorbed in Examplq 1.9.97

The amount absorbed is (¢, — 0.05) (generalizing the cas® f‘

where only available oxygen is absorbed in Exercises
and 30). How does the amount absorbed with this value 0

« compare with the amount of oxygen absorbed in EXal= s

ple 1.9.9?

33, Suppose S = Q.OO]..Write the discrete-time dynamical sys-
tem and. find its equilibrium. Compare the equilibrium with
the ambient concentration.

34, The actual concentration of carbon dioxide in exhaled air is
about 0.04, or IQO times the ambient concentration. Find the
value of S that gives this as the equilibrium.

35-36 = A bacterial population that has per capita production r < 1
but that is supplemented each generation follows a discrete-time
dynamical system much like that of the lungs. Use the followin,

steps to build the discrete-time dynamical system. ;

a. Starting from 3.0 x 10° bacteria, find the number after
reproduction.

b. Find the number after the new bacteria are added.
¢. Find the discrete-time dynamical system.

35. A population of bacteria has per capita production r = 0.6
and 1.0 x 10° bacteria are added each generation. ,

36. A population of bacteria has per capita production r = 0.2
and 5.0 x 10 bacteria are added each generation. ’

{57—40 " Finq the equilibrium population of bacteria in the follow-
ing cases with supplementation.

37. A golpglaticm6 of bacteria has per capita production r = 0.6
and 1.0 x 10° bacteria are added each i in Ex.
e generation (as in Ex-

38 A gospulationG of bacteria has per capita production r =0.2
and 5.0 x 10° bacteria are added each i in Ex.
o generation (as in Ex-

39. A populatioq of bacteria has per capita production r =0.5
and S bacteria are added each generation. What happens t(;

the equilibri i . X
senseq? ilibrium when S is large? Does this make biological

40. A population of bacteria has per capita production r < 1, and

1.0 x 10° pgct.eria are added each generation. What happens
;:()) the equilibrium if » = 0? What happens if 7 is close to 1?
o these results make biological sense?

‘:;-::tlﬂol‘jlill(les receive water from streams each year and lose water
basedonthe%} streams and eyaporatmn. The following values are
i reat Salt Lake in Utah. The lake receives 3.0 x 10°m?
I on T};}ealr \limh sallplty of 1 part per thousand (concentra-
5 salinity-Ase ake contains 3.3 x 10"m? of water and starts with
. 1' sume that the \.Jvater that flows out has a concentra-

qual to that of the entire lake. Compute the discrete-time
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dynamical system by finding (a) the total salt before the inflow.
(b) total water, (c) total salt and salt concentration after inflow. anci

(d) total water, total salt, and salt i
; , salt concentration afte
evaporation, roudlow or

41. There is no evaporation, and 3.0 x 10°m? of water flows out
each year. ’

42. 1.5 x 10°m® of water flows out each year, and 1.5 x 10°m?
evaporates. No salt is lost through evaporation.

43. A total of 3.0 x 10°m® of water evaporates, and there is no
outflow.

44, Assurpe instead that 2.0 x 10°m?® of water evaporates and
there is no outflow. The volume of this lake is increasing.

11:5—48 - Find the equilibrium concentration of salt in a lake in the
ollgwlqg cases. Describe the result in words by comparing the
equilibrium salt level with the salt level of the water flowing in.

45. The situation described in Exercise 41.
46. The situation described in Exercise 42.
47. The situation described in Exercise 43.
48. The situation described in Exercise 44.

49-50 = A .lab is growing and harvesting a culture of valuable bac-
teria described by the discrete-time dynamical system

b1 =rb, —h.

The bacteria have per capi i
pita production r, and & bacteria -
vested each generation. ’ il

49, Sugpt(?se ;‘hat r=1.5and h = 1.0 x 10° bacteria. Sketch the
updating function, and find the equilibrium both al i
o e oth algebraically

50. Without settipg r and A to particular values, find the equilib-
rium algebralcally: Does the equilibrium get larger when &
gets larger? D(;)es it get larger when r gets larger? If the an-
swers seem odd (as they should), look at a cobweb di
to try to figure out why. v Sog

Computer Exercise

51. Investigate which factor is most important in absorbing oxy-
gen at the maximum rate: the volume V of the lungs t}}lle
amoul'lt exchanged W, or the fraction absorbed « L;sin
Equation 1.9.2. If an athlete could train to increase’one ogf
these values, which would be the most effective?

mExample of Nonlinear Dynamics

L T .
he discrete-time dynamical systems we have studied in detail (bacterial populations

it : . ; ;
fuenec?i?fhj[s’ Eq;te po\%llatmnsaand the lung) are said to be linear because the updating
ear. We now derive a model of two ¢ i i i
e ; ompeting bacterial populations
crete-time dynamical system that i i i
i L A al system that is not linear. Nonlinear
ave much more complicated behavior th i

o . nplic analinear system. For

mple, they may have more than one equilibrium. By comparing the twoyequilibria

cases. Cobweb for three steps starting from the points indicated arbon 4

in the earlier problems. Sketch the solutions. 33-34s The following problems investigate production of ¢

dioxide by the lungs. Suppose that the concentration increases 3
an amount S before the air is exchanged. Assume an ambient €O

17. The situation in Exercise 13.
centration of carbon dioxide of y = 0.0004 and g =0.1.

18. The situation in Exercise 14.
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