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square of 4C, and 3 times AC times the square of BC, is [3 times] the product of
AB, BC, and AC. Therefore since this, as has been shown, is equal to 6 times
AB, adding 6 times 4.B to that which results from AC into 3 times the square
of BC there results 3 times BC times the square of 40, since BC is minus. Now
it has been shown that the product of CB* into 3 times the square of AC is
minus; and the remainder which is equal to that is plus, hence 3 times CB into
the square of AC and 3 times AC into the square of CB and 6 times 4B make
nothing. Accordingly, by common sense, the difference between the cubes AC
and BC is as much as the totality of the cube of AC, and 3 times AC into the
square of CB, and 3 times CB into the square of AC (minus), and the cube of
BC (minus), and 6 times AB. This therefore is 20, since the difference of the
cubes AC and OB was 20. Moreover, by the second theorem of the 6th chapter,

putting BC minus, the cube of 4B will be equal to the cube of A0 and 3 times
AC into the square of BC minus the cube of BC and minus 3 times BC into the

square of AC. Therefore the cube of 4B, with 6 times A B, by common sense,

since it is equal to the cube of A0 and 3 times AC into the square of CB, and

minus 3 times CB into the square of AC, and minus the cube of CB and 6 times

A B, which is now equal to 20, as has been shown, will also be equal to 20. Since

therefore the cube of AB and 6 times 4 B will equal 20, and the cube of GH,

together with 6 times G'H, will equal 20, by common sense and from what has

been said in the 35th and 31st of the 11th Book of the Hlements, GH will be

equal to 4 B, therefore GH is the difference of AC and OB. But AC and CB, or
AC and CK, are numbers or lines containing an area equal to a third part of the

number of unknowns whose cubes differ by the number in the equation, where-
fore we have the

RULE®

Cube the third part of the number of unknowns, to which you add the square of
half the number of the equation, and take the root of the whole, that is, the

2 Here begins the text of p. 307 of the Ars magna, reproduced in Fig. 2.

5 This rule is known as Cardan’s rule for the case #® + px = ¢. In our notation;

Since u? — v® = ¢ = 20, wv = p[3, we can find # = u — v by solving a quadratic
equation. Since v = pf3u, u® — (p/3u)® = q, u® — qu® — (p[3)%® = u® — 20u® — p = 0, we

find
2 . —_—
w=1y /(%) +(§)=1oi«/1oo+s=1oi«/ms

0o 1 7\ (2)“‘__ 108
v 2t (2)+ 7 = 10 + V108.

. Cardan now states in the ““Rule”: for u? take 10 + /108 (this is the binomial ), for v® take
—10 + V108 (this is the apotome; both expressions are from Euclid’s Elements, Book X), s

SRR R

= V10 + Vi0s — ¥V _10 + v 10s.

Similarly:

that

In Cardan’s notation (see Fig. 2, fourth line from the bottom):

R V:cub: R 108 p: 10 m: R V: cubica R 108 m: 10;

here p st.ands for “piu,” plus, m for ‘“‘meno,’” minus, and B for “radix.” Cardan does not
.use the signs +, —, although they were already in use at the time.
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square root, which you will use, in the one case adding the half of the number
which you just multiplied by itself, in the other case subtracting the same half,
and you will have a binomial and apotome respectively; then subtract the cube
root of the apotome from the cube root of the binomial, and the remainder from
this is the value of the unknown. In the example, the cube and 6 unknowns
equals 20; raise 2, the 3rd part of 6, to the cube, that makes 8; multiply 10, half
the number, by itself, that makes 100; add 100 and 8, that makes 108; take the
root, which is /108, and use this, in the first place adding 10, half the number,
and in the second place subtracting the same amount, and you will have the

4 LlBt - ‘3°
DE AR'THMET“A ' ﬁ 11 mm' »
: um unod ei ¢ uatufz prigitus ’
quadratum A cterefmi& rchg;:l g ch‘m 5 dr:zu ¢ 8, 8¢ fexcuplit

. mplum o o qd’?m:: fgft:n’ eﬁ dxﬁ'mnua X CO‘H“ni animi1 1{:: F:‘::’
| o an (t quod coflatur ex cu s
{5 cAcubos CoquantumeltQuot P mi8tcu

| e 1A i ¢ 3,8 triplo ¢ Bin g abia GA .
i -8 triplo Acin uadras i differentia
\ - Betriple +& fexcuplo A B,hac igitur eft 20,9 & capituli s pofita

| : bo B C m’f it zo qual‘GP“ fecundum fupport“m T dratum BCs binomial V108 + 10, and the apotome V/108 — 10; take the cube root of these
i it 20, &tnplo AC ll)ﬂ :11 icuiE A TCUM and subtract that of the apotome from that of the binomial, and you will have
; scubu 3 — —
cm quadratum Acm " it 'xgqu etur cubo . the value of tlie unknown V+/108 + 10 — V108 — 10.

' tC tlam >
“,T‘-‘f e quadratum Apmi

¢ 20 , ut probatum

1t,u ubus AB 8( fexcuplum AB X
1 acqucntur 20,erit ex com
p'& 31 » undecimi elemento?
& c 8, funtautem

Cardan continues to discuss one case after another. Here are, in our notation, the head-
ings of the different chapters:

t:',"‘:cstcs fuperﬁcn’.m:x‘ 11. 2° +ax =15 20. 2 =ax? +bx + ¢
m cubi d{ffcmm in- ﬂumem 12. s®*=ax +b 21. 2® +a = b2? + cz
1 13. 2® +a = bz 22. 2® 4+ ax + b = ca?
‘ 14. 2% =aa? + b 23. 2® +ax? +b=cx
: ubllm ,c(u'addcs 15, 2% + aa? = 24. On the 44 derivative
ipe ‘aad!cgm, fc1h 16. 28 4+ a = ba? equations (for example,
17. 2% + aa? + bz = ¢ x8 4 62* = 100) 3
18. % + ax = b2? + ¢ 25. On imperfect and par-
19. 2® +ax? =bx + ¢ ticular rules. vi
apter 26 and later chapters also deal with biquadratic equations.

Many examples follow. We occasionally meet negative numbers, which Cardan calls
itious” (fictae). Another element enters in the following example, taken from Chapter

B7:.'On the rule of postulating a negative,” which involves imaginaries. We substitute
ern notation.

I will give as an example:® If some one says to you, divide 10 into two parts,
one of which multiplied into the other shall produce 30 or 40, it is evident that
this case or question is impossible. Nevertheless, we shall solve it in this fashion.

b
manonem,mv. cubs.

b 5 m4 IO~ artem ;, Let us divide 10 into equal parts and 5 will be its half. Multiplied by itself, this

‘“ B duc 1 te.l‘“am p ; : - :

) rebus mquztt\r IO, > i 26 junge 2 5 yields 25. From 25 subtract the product itself, that is 40, which, as I taught you
duc g dxmidxum no,ad quadraum‘!_,l ¢ _ fiu mﬁ? in the chapter on operations in the sixth book, leaves a remainder —15. The

cubuxn,ﬁ & - root of this added to and then subtracted from 5 gives the parts which multiplied

together will produce 40. These, therefore, are 5 + vV —15and 5 — v/ —15.

Fig. 2 ® Here begins the text of p. 667 of the Ars magna, reproduced in Fig. 3.
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Proof. That the true significance of this rule may be made clear, let the line
AB [see Fig. 3], which is called 10, be the line which is to be divided into two
parts whose rectangle is to be 40. Now since 40 is the quadruple of 10,
we wish four times the whole of AB. Therefore, make A.D the square on AC,
the half of AB. From A.D subtract four times A4 B. If there is a remainder, its
root should be added to and subtracted from AC thus showing the parts [into
which 4B was to be divided]. Even when such a residue is negative, you will
nevertheless imagine V' — 15 to be the difference between 4D and the quadruple
of A B which you should add to and subtract from AC to find what was sought.
That is 5 + V25 ~ 40 and 5 — V25 — 40, or 5 + V' —15 and 5 — V' —15.
Dismissing mental tortures, and multiplying 5 + V' —15 by 5 — V' —15, we
obtain 25 — (—15) which is +15. Therefore the product is 40. However, the
nature of 4D is not the same as that of 40 or 4B because a surface is far from
a number or a line. This, however, is closest to this quantity, which is truly
puzzling since operations may not be performed with it as with a pure negative
number or with other numbers.” Nor can we find it by adding the square of
half the number to the product number and take away and add from the root
of the sum half of the dividend. For example, in the case of dividing 10 into
two parts whose product is 40, you add 25, the square of one half of 10, to 40
making 65. From the root of this subtract 5 and then add 5 and according to
similar reasoning you will have V85 + 5 and /65 — 5. But these numbers
differ by 10, and do not make 10 jointly.® This subtility results from arithmetic
the final point of which is, as I have said, as subtile as it is useless.

4 FERRARI. THE BIQUADRATIC EQUATION

an’s Ars magna not only presented the numerical solution of cubic equations, but—to
urprise of his contemporaries—also showed how a biquadratic equation can be solved.
as accomplished by a young friend of Cardan’s, Ludovico Ferrari (1522-1565), who
is talents on the equation x* + 622 + 36 = 60x. The method has since been known
method of Ferrari.

text begins with a square 4D, of which the side 4 B is supposed to be itself a square,
= 22 Added to 4B is a part BC = p = 3. Then by means of another addition
y the square AH is obtained. Figure 1 shows that the area LNM = Y2 + 2yp,
D = BC = p.

7 The sentence is: quae vere est sophistica, quoniam per eam, non ut in puro m: nec in aliis;
operationes exercere licet, nec venars quid sit. T. R. Witmer (in a translation of the Ars magna
to be published by the M.I.T. Press) translates this: “This truly is sophisticated, since
through it one can (as one cannot in the case of a pure negative) perform operations and
pursue a will-o’-the wisp.”

® Since @y + @, = 10, z;m, = 40, the equation to be solved is 22 — 10:1; + 40 = 0, hence
=051+ V25 — 40 Cardan, puzzled by this ““sophisticated subtility,” asks whether per-

‘haps o = + 6 + V25 ¥ 40 will do, but then #; — z, = 10 and not z; + 5.
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same time make the extreme terms on both sides plus, for otherwise the tri-
nomial or binomial changed to a trinomial will necessarily fail to have a root.
Having done this, you will add enough squares and a number to the one side,
by the third rule,® so that the same being added to the other side (in which the
unknowns were) will make a trinomial having a square root by assumption; and
you will have a number of squares and a number to be added to each side, after
which you will extract the square root of each side, which will be, on the one
side, 1 square plus a number (or minus a number) and, on the other side, 1
unknown or more, plus a number (or minus a number; or a number minus

unknowns), wherefore by the fifth chapter of this book you will have what has
been proposed.

QUESTION v*

Example. Divide 10 into 3 parts in continued proportion such that the first
multiplied by the second gives 6 as product. This problem was proposed by
Johannes Colla,® who said he could not solve it. I nevertheless said I could solve
it, but did not know how until Ferrari found this solution. Put then 1 unknown
as the middle number, then the first will be 6/1 unknown, and the third will be
% of a cube. Hence these together will be equal to 10. Multiplying all by 6
unknowns we shall have 60 unknowns equal to one fourth power plus 6 squares
plus 36.% Add, according to the 5th rule, 6 squares to each side, and you will
have 1 fourth power plus 12 squares plus 36, equal to 6 squares plus 60 un-
knowns; for if equals are added to equals, the totals are equal. But 1 fourth
power plus 12 squares plus 36 has a root, which is 1 square plus 6. If 6 squares
plus 60 unknowns also had a root, we should have the job done; but they do not
have; hence we must add so many squares and a number to each side, that on
the one side there may remain a trinomial having a root, while on the other
side it should be made so. Let therefore a number of squares” be an unknown
and since, as you see in the figure...CL and MK are formed from twice GC
into A B, and GC is an unknown, I will always take the number of squares to be
added as 2 unknowns, that is, twice GC; and since the number to be added to
36 is LN M it therefore is the square of GC together with the product of twice

3 Rule given earlier in the book.
* The problem is to find y:2 = z:2, # + y + 2 = 10, zy = 6, which leads to

§+w+lwa=10_
® 6

This is written
2t + 1222 4 36 = 622 + 60z, or (@? + 6)2 = 622 + 60z.
This is changed into (22 + 6 + y)? = 622 + 60z + 2y(2? + 6) + y2. The right-hand
member is a square if :
2% + 30y% + 72y = 900, ¥° + 15y + 36y = 450,

or ¥° + (12 + 4)y% + 36y = 4(5*)2. This is a cubic equation, already discussed by
Cardan.

5 Zuasse de Tonini da Coi, or Johannes Colla, was a mathematician who often conferred
with Tartaglia and Cardan.

8 This means ¢ 4 622 4+ 36 = 60x.

7 Here begins the text of p. 74Y, reproduced in Fig. 2,
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__’—"—_’—’_‘_’— /—-{—_
2873 + V/80449% + /2873 — /80449% — B
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* the number of squares.

with the product
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———— e
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