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Preface for the student

I hope that this book reveals the beauty and usefulness of complex numbers to
you. I want you to enjoy both reading it and solving the problems in it. Perhaps you
will spot something in your own area of interest and benefit from applying complex
numbers to it. Students in my classes have found applications of ideas from this
book to physics, music, engineering, and linguistics. Several students have become
interested in historical and philosophical aspects of complex numbers. I have not
yet seen anyone get excited about the hysterical aspects of complex numbers.

At the very least you should see many places where complex numbers shed a
new light on things you have learned before. One of my favorite examples is trig
identities. I found them rather boring in high school and later I delighted in proving
them more easily using the complex exponential function. I hope you have the same
experience. A second example concerns certain definite integrals. The techniques
of complex analysis allow for stunningly easy evaluations of many calculus integrals
and seem to lie within the realm of science fiction.

This book is meant to be readable, but at the same time it is precise and rigor-
ous. Sometimes mathematicians include details that others feel are unnecessary or
obvious, but do not be alarmed. If you do many of the exercises and work through
the examples, then you should learn plenty and enjoy doing it. I cannot stress
enough two things I have learned from years of teaching mathematics. First, stu-
dents make too few sketches. You should strive to merge geometric and algebraic
reasoning. Second, definitions are your friends. If a theorem says something about
a concept, then you should develop both an intuitive sense of the concept and the
discipline to learn the precise definition. When asked to verify something on an
exam, start by writing down the definition of that something. Often the definition
suggests exactly what you should do!

Some sections and paragraphs introduce more sophisticated terminology than
is necessary at the time, in order to prepare for later parts of the book and even
for subsequent courses. I have tried to indicate all such places and to revisit the
crucial ideas. In case you are struggling with any material in this book, remain
calm. The magician will reveal his secrets in due time.
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Chapter 1

From the Real Numbers
to the Complex Numbers

1. Introduction

Many problems throughout mathematics and physics illustrate an amazing princi-
ple: ideas expressed within the realm of real numbers find their most elegant ex-
pression through the unexpected intervention of complex numbers. Many of these
delightful interventions arise in elementary, recreational mathematics. On the other
hand most college students either never see complex numbers in action or they wait
until the junior or senior year in college, at which time the sophisticated courses
have little time for the elementary applications. Hence too few students witness the
beauty and elegance of complex numbers. This book aims to present a variety of
elegant applications of complex analysis and geometry in an accessible but precise
fashion. We begin at the beginning, by recalling various number systems such as
the integers Z, the rational numbers Q, and the real numbers R, before even defin-
ing the complex numbers C. We then provide three possible equivalent definitions.
Throughout we strive for as much geometric reasoning as possible.

2. Number systems

The ancients were well aware of the so-called natural numbers, written 1,2,3, ....
Mathematicians write N for the collection of natural numbers together with the
usual operations of addition and multiplication. Partly because subtraction is not
always possible, but also because negative numbers arise in many settings such as
financial debts, it is natural to expand the natural number system to the larger
system Z of integers. We assume that the reader has some understanding of the
integers; the set Z is equipped with two distinguished members, written 1 and 0,
and two operations, called addition (+) and multiplication (*), satisfying familiar
laws. These operations make Z into what mathematicians call a commutative ring
with unit 1. The integer 0 is special. We note that each n in Z has an additive
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2 1. From the Real Numbers to the Complex Numbers

inverse —n such that
(1) n+(-—n)=(-n)+n=0.
Of course 0 is the only number whose additive inverse is itself.

Let a, b be given integers. As usual we write a—b for the sum a+{—b). Consider
the equation a¢ + = = b for an unknown x. We learn to solve this equation at a
young age; the idea is that subtraction is the inverse operation to addition. To solve
a+x = b for z, we first add —a to both sides and use (1). We can then substitute
b for a + x to obtain the solution

z=0+z=(-a)+a+z=(—a)+b=b+(—a)=b—a.

This simple principle becomes a little more difficult when we work with multi-
plication. It is not always possible, for example, to divide a collection of n objects
into two groups of equal size. In other words, the equation 2 * ¢ = b does not have
a solution in Z unless b is an even number. Within Z, most integers (+1 are the
only exceptions) do not have multiplicative inverses.

To allow for division, we enlarge Z into the larger system Q of rational numbers.
We think of elements of Q as fractions, but the definition of Q is a bit subtle. One
reason for the subtlety is that we want %, %, and % all to represent the same
rational number, yet the expressions as fractions differ. Several approaches enable
us to make this point precise. One way is to introduce the notion of equivalence
class and then to define a rational number to be an equivalence class of pairs of
integers. See [4] or [8] for this approach. A second way is to think of the rational
number system as known to us; we then write elements of Q as letters, z, y, u, v, and
so on, without worrying that each rational number can be written as a fraction in
infinitely many ways. We will proceed in this second fashion. A third way appears
in Exercise 1.2 below. Finally we emphasize that we cannot divide by 0. Surely
the reader has seen alleged proofs that, for example, 1 = 2, where the only error is
a cleverly disguised division by 0.

» Exercise 1.1. Find an invalid argument that 1 = 2 in which the only invalid
step is a division by 0. Try to obscure the division by 0.

P Exercise 1.2. Show that there is a one-to-one correspondence between the set
Q of rational numbers and the following set L of lines. The set L consists of all
lines through the origin, except the vertical line z = 0, that pass through a nonzero
point (a,b) where a and b are integers. (This problem sounds sophisticated, but
one word gives the solution!)

The rational number system forms a field. A field consists of objects which can
be added and multiplied; these operations satisfy the laws we expect. We begin
our development by giving the precise definition of a field.

Definition 2.1. A field F is a mathematical system consisting of a collection of
objects and two operations, addition and multiplication, subject to the following
axioms.

1) For all z,y in F, we have  +y =y + 2 and z x y = y * = (the commutative
laws for addition and multiplication).
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© 2) Forall z,y,t in F, we have (x+y)+t =z + (y+1¢) and (zxy) xt = o % (y*1)
(the associative laws for addition and multiplication).

3) There are distinct distinguished elements 0 and 1 in F such that, for all
inF,wehave 0+ 2 =2+0=2zand 1 x2 =z x1 = z (the existence of additive
and multiplicative identities).

4) For each z in F and each y in F such that y # 0, there are —z and % in F
such that z + (—z) = 0 and y * % =1 (the existence of additive and multiplicative
inverses).

5) For all z,y,t in F we have t x (x +y) = (t*z) + (t*xy) = t*x +t*y (the
distributive law).

For clarity and emphasis we repeat some of the main points. The rational
numbers provide a familiar example of a field. In any field we can add, subtract,
multiply, and divide as we expect, although we cannot divide by 0. The ability to
divide by a nonzero number distinguishes the rational numbers from the integers.
In more general settings the ability to divide by a nonzero number distinguishes
a field from a commutative ring.” Thus every field is a commutative ring but a
commutative ring need not be a field.

There are many elementary consequences of the field axioms. It is easy to prove
that each element has a unique additive inverse and that each nonzero element has
a unique multiplicative inverse, or reciprocal. The proof, left to the reader, mimics
our early argument showing that subtraction is possible in Z.

Henceforth we will stop writing * for multiplication; the standard notation of
zy for z * y works adequately in most contexts. We also write z2 instead of zz as
usual. Let ¢t be an element in a field. We say that z is a square root of ¢ if t = z2.
In a field, taking square roots is not always possible. For example, we shall soon
prove that there is no rational square root of 2 and that there is no real square root
of —1.

At the risk of boring the reader we prove a few basic facts from the field axioms;
the reader who wishes to get more quickly to geometric reasoning could omit the
proofs, although writing them out gives one some satisfaction.

Proposition 2.1. In q field the following laws hold:
1)04+0=0.
2) For all z, we have 20 = 0z = 0.
3) (-1 =(-1)(-1) =1.
4) (—1)z = —z for all z.
5) If zy =0 in F, then either x =0 ory = 0.

Proof. Statement 1) follows from setting z = 0 in the axiom 0+ 2z = z. Statement
2) uses statement 1) and the distributive law to write 0z = (0 + 0)z = 0z + Oz.
By property 4) of Definition 2.1, the object 0z has an additive inverse; we add this
inverse to both sides of the equation. Using the meaning of additive inverse and
then the associative law gives 0 = 0z. Hence 0 = 0z = 0 and 2) holds. Statement
3) is a bit more interesting. We have 0 = 1+ (—1) by axiom 4) from Definition 2.1.
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Multiplying both sides by —1 and using 2) yields
0= (~1)0 = (=)L + (1)) = (-1 + (~1)* = 1+ (~1)%

Thus (—1)? is an additive inverse to —1; of course 1 also is. By the uniqueness of
additive inverses, we see that (—1)2 = 1. The proof of 4) is similar. Start with
0 =1+ (—1) and multiply by = to get 0 = = + (—1)z. Thus (—1)z is an additive
inverse of = and the result follows by uniqueness of additive inverses. Finally, to
prove 5), we assume that zy = 0. If z = 0, the conclusion holds. If ¢ # 0, we can
multiply by 1 to obtain

1 1 1
y=(ely=_(zy)= _0=0.
Thus, if z # 0, then y = 0, and the conclusion also holds. O

We note a point of language, where mathematics usage may differ with common
usage. For us, the phrase “either © = 0 or y = 0” allows the possibility that both
z=0and y=0.

Example 2.1. A field with two elements. Let F5 consist of the two elements
0 and 1. We put 1+ 1 =0, but otherwise we add and multiply as usual. Then F,
is a field.

This example illustrates several interesting things. For example, the object 2
(namely 1 4 1), can be 0 in a field. This possibility will prevent the quadratic
formula, from holding in a field for which 2 = 0. In Theorem 2.1 we will derive the
quadratic formula when it is possible to do so.

First we make a simple observation. We have shown that (—1)% = 1. Hence,

when —1 # 1, it follows that 1 has two square roots, namely £1. Can an element
of a field have more than two square roots? The answer is no.

Lemma 2.1. In a field, an element t can have at most two square roots. If x is a
square root of t, then so is —z, and there are no other possibilities.

Proof. If z? = t, then (—2)? = ¢ by 3) and 4) of Proposition 2.1. To prove that
there are no other possibilities, we assume that both = and y are square roots of ¢.
We then have

(2) O=t—t=2a’—y’=(z—y)(c+y)
By 5) of Proposition 2.1, we obtain either x —y =0 or t +y = 0. Thus y = £z
and the result follows. O

The difference of two squares law stating that 22> —y? = (z —y)(z + y) is a
gem of elementary mathematics. For example, suppose you are asked to multiply
88 times 92 in your head. You imagine 8892 = (90 —2)(90+ 2) = 8100 — 4 = 8096
and impress some audiences. One can also view this algebraic identity for positive
integers simply by removing a small square of dots from a large square of dots and
rearranging the dots to form a rectangle. The author once used this kind of method
when doing volunteer teaching of multiplication to third graders. See Figure 1.1
for a geometric interpretation of the identity in terms of area.
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r+y

Figure 1.1. Difference of two squares.

We pause to make several remarks about square roots. The first remark con-
cerns a notational convention; the discussion will help motivate the notion of or-
dered field defined below. The real number system will be defined formally below,
and we will prove that positive real numbers have square roots. Suppose t > 0. We
write /% to denote the positive x for which 22 = ¢. Thus both = and —z are square
roots of ¢, but the notation v/t means the positive square root. For the complex
numbers, things will be more subtle. We will prove that each nonzero complex
number z has two square roots, say w, but there is no sensible way to prefer one
to the other. We emphasize that the existence of square roots depends on more
than the field axioms. Not all positive rational numbers have rational square roots,
and hence it must be proved that each positive real number has a square root. The
proof requires a limiting process. The quadratic formula, proved next, requires that
the expression b? — 4ac be a square. In an arbitrary field, the expression v/% usually
means any z for which 22 = ¢, but the ambiguity of signs can cause confusion. See
Exercise 1.4.

Theorem 2.1. Let F be a field. Assume that 2 # 0 in F. For a # 0 and arbitrary
b,c we consider the quadratic equation B

(3) az? + bz +c=0.
Then z solves (3) if and only if

. —~b £ v/b? — 4ac

2a

(4)

If b2 — dac is not a square in F, then (3) has no solution.
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Proof. The idea of the proof is to complete the square. Since both a and 2 are
nonzero elements of F, they have multiplicative inverses. We therefore have

24b +c—a(m2+éx)+c—a(m2+éx+—bz—)—{-c—?—2-
ax rre= a N a”  4a? 4a
by,  dac-—b?
We set (5) equal to 0 and we can easily solve for z. After dividing by a, we obtain
b b%—dac
(6) (m + %) - 40,2 .

The square roots of 4a? are of course =2a. Assuming that b — 4ac has a square
root in F, we solve (6) for z by first taking the square root of both sides. We obtain

b Vb2 — dac
— =t
M ot 2a 2a
After a subtraction and simplification we obtain (4) from (7). a

The reader surely has seen the quadratic formula before. Given a quadratic
polynomial with real coefficients, the formula tells us that the polynomial will have
no real roots when b* — 4ac < 0. For many readers the first exposure to complex
numbers arises when we introduce square roots of negative numbers in order to use
the quadratic formula.

» Exercise 1.3. Show that additive and multiplicative inverses in a field are
unique.

> Exercise 1.4. A subtlety. Given a field, is the formula

Vuyv = uv
always valid? In the proof of the quadratic formula, did we use this formula im-
plicitly? If not, what did we use?

Example 2.2. One can completely analyze quadratic equations with coefficients in
Fy. The only such equations are 22 =0, 22 +z =0, 22+1 =0, and 22 +z+1 = 0.
The first equation has only the solution 0. The second has the two solutions 0 and
1. The third has only the solution 1. The fourth has no solutions. We have given
a complete analysis, even though Theorem 2.1 cannot be used in this setting.

Before introducing the notion of ordered field, we give a few other examples of
fields. Several of these examples use modular {clock) arithmetic. The phrases add
modulo p and multiply modulo p have the following meaning. Fix a positive integer
p, called the modulus. Given integers m and n, we add (or multiply) them as usual
and then take the remainder upon division by p. The remainder is called the sum
(or product) modulo p. This natural notion is familiar to everyone; five hours after
nine o’clock is two o’clock; we added modulo twelve. The subsequent examples can
be skipped without loss of continuity.

Example 2.3. Fields with finitely many elements. Let p be a prime number,
and let F), consist of the numbers 0,1, ...,p — 1. We define addition and multiplica-
tion modulo p. Then F,, is a field.
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- In Example 2.3, p needs to be a prime number. Property 5) of Proposition 2.1
fails when p is not a prime. We mention without proof that the number of elements
in a finite field must be a power of a prime number. Furthermore, for each prime
p and positive integer n, there exists a finite field with p™ elements.

P Exercise 1.5. True or false? Every quadratic equation in Fg has a solution.

Fields such as F,, are important in various parts of mathematics and computer
science. For us, they will serve only as examples of fields. The most important
examples of fields for us will be the real numbers and the complex numbers. To
define these fields rigorously will take a bit more effort. We end this section by
giving an example of a field built from the real numbers. We will not use this
example in the logical development.

Example 2.4. Let K denote the collection of rational functions in one variable
z with real coefficients. An element of K can be written %, where p and ¢ are
polynomials, and we assume that ¢ is not the zero polynomial. (We allow ¢{z) to
equal 0 for some z, but not for all 2.) We add and multiply such rational functions
in the usual way. It is tedious but not difficult to verify the field axioms. Hence
K is a field. Furthermore, K contains R in a natural way; we identify the real
number ¢ with the constant rational function {. As with the rational numbers,
many different fractions represent the same element of K. To deal rigorously with

such situations, one needs the notion of equivalence relation, discussed in Section 5.

3. Inequalities and ordered fields

Comparing the sizes of a pair of integers or of a pair of rational numbers is both
natural and useful. It does not make sense however to compare the sizes of elements
in an arbitrary ring or field. We therefore introduce a crucial property shared by
the integers Z and the rational numbers Q. For z,y in either of these sets, it makes
sense to say that > y. Furthermore, given the pair z, y, one and only one of three
things must be true: z > y, x < y, or z = y. We need to formalize this idea in
order to define the real numbers.

Definition 3.1. A field F is called ordered if there is a subset P C F, called the
set of positive elements of F, satisfying the following properties:

1) For all z,y in P, we have z + y € P and zy € P (closure).

2) For each z in F, one and only one of the following three statements is true:
=0,z € P, —z € P (trichotomy).
P Exercise 1.6. Let F be an ordered field. Show that 1 € P.

> Exercise 1.7. Show that the trichotomy property can be rewritten as follows.
For each z,y in F, one and only one of the following three statements is true: z =y,
z—yeP,y—xeP.

The rational number system is an ordered field; a fraction g is positive if and
only if p and ¢ have the same sign.. Note that ¢ is never 0 and that a rational
number is 0 whenever its numerator is 0. It is of course elementary to check in
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this case that the set P of positive rational numbers is closed under addition and
multiplication.

Once the set P of positive elements in a field has been specified, it is easier to
work with inequalities than with P. We write z > y if and only if z — y € P. We
also use the symbols x > y, z < y, £ < y as usual. The order axioms then can be
written as follows:

1)Ifz>0and y >0, then z+y > 0 and zy > 0.
2) Given z € F, one and only one of three things holds: z =0, z > 0, z < 0.

Henceforth we will use inequalities throughout; we mention that these inequal-
ities will compare real numbers. The complex numbers cannot be made into an
ordered field. The following lemma about ordered fields does play an important
role in our development of the complex number field C.

Lemma 3.1. Let F be an ordered field. For each x € F, we have 22 =z %z > 0.
If z #0, then % > 0. In particular, 1 > 0.

Proof. If z = 0, then z? = 0 by Proposition 2.1, and the conclusion hok#. If
z > 0, then % > 0 by axiom 1) for an ordered field. If # < 0, then —z > 0, and
hence (—z)? > 0. By 3) and 4) of Proposition 2.1 we get

(8) ? = (-1)(-1)a? = (—z)(-z) = (—z)*> > 0.
Thus, if = # 0, then 22 > 0. O

By definition (see Section 3.1), the real number system R is an ordered field.
The following simple corollary motivates the introduction of the complex number
field C.

Corollary 3.1. There is no real number x such that z2 = —1.

3.1. The completeness axiom for the real numbers. In order to finally define
the real number system R, we require the notion of completeness. This notion is
considerably more advanced than our discussion has been so far. The field axioms
allow for algebraic laws, the order axioms allow for inequalities, and the complete-
ness axiom allows for a good theory of limits. To introduce this axiom, we recall
some basic notions from elementary real analysis. Let F be an ordered field. Let
S C F be a subset. The set S is called bounded if there are elements m and M in
F such that

m<z<M

for all z in S. The set S is called bounded above if there is an element M in F such
that £ < M for all z in S, and it is called bounded below if there is an element m
in F such that m < z for all z in S. When these numbers exist, M is called an
upper bound for S and m is called a lower bound for §. Thus S is bounded if and
only if it is both bounded above and bounded below. The numbers m and M are
not generally in S. For example, the set of negative rational numbers is bounded
above, but the only upper bounds are 0 of positive numbers.

We can now introduce the completeness axiom for the real numbers. The
fundamental notion is that of least upper bound. If M is an upper bound for S,
then any number larger than M is of course also an upper bound. The term least
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upper bound means the smallest possible upper bound; the concept juxtaposes
small and big. The least upper bound « of S is the smallest number that is greater
than or equal to any member of S. See Figure 1.2. One cannot prove that such
a number exists based on the ordered field axioms; for example, if we work within
the realm of rational numbers, the set of = such that 22 < 2 is bounded above, but
it has no least upper bound. Mathematicians often use the word supremum instead
of least upper bound; thus sup(S) denotes the least upper bound of S. Postulating
the existence of least upper bounds as in the next definition uniquely determines
the real numbers.

y

Figure 1.2. Upper bounds.

Definition 3.2. An ordered field F is complete if whenever S is a nonempty subset
of F and S is bounded above, then S has a least upper bound in F.

We could have instead decreed that each nonempty subset of F that is bounded
below has a greatest lower bound (or infimum). The two statements are equivalent
after replacing S with the set —S of additive inverses of elements of 3.

In a certain precise sense, called isomorphism, there is a unique complete or-
dered field. We will assume uniqueness and get the ball rolling by making the
fundamental definition:

Definition 3.3. The real number system R is the unique complete ordered field.

3.2. What is a natural number? We pause to briefly consider how the natural
numbers fit within the real numbers. In our approach, the real number system is
taken as the starting point for discussion. From an intuitive point of view we can
think of the natural numbers as the set {1,1+41,1+1+1,...}. To be more precise,
we proceed in the following manner.

Definition 3.4. A subset S of R is called inductive if whenever z € S, then
z+1esS.

Definition 3.5. The set of natural numbers N is the intersection of all inductive
subsets of R that contain 1.

Thus N is a subset of R, and 1 € N. Furthermore, if n € N, then n is an
element of every inductive subset of R. Hence n + 1 is also an element of every
inductive subset of R, and therefore n+1 is also in N. Thus N is itself an inductive
set; we could equally well have defined N to be the smallest inductive subset of R
containing 1. As a consequence we obtain the principle of mathematical induction:

Proposition 3.1 (Mathematical induction). Let S be an inductive subset of N
such that 1 € S. Then S =N.
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This proposition provides a method of proof, called induction, surely known to
many readers. For each n € N, let P, be a mathematical statement. To verify that
P, is a true statement for each n, it suffices to show two things: first, P, is true;
second, for all k, whenever P, is true, then Py is true. The reason is that the set
of n for which P, is true is then an inductive set containing 1; by Proposition 3.1
this set is N.

Figure 1.3. Induction.

» Exercise 1.8. Apply the principle of mathematical induction to establish the
well-ordering principle: every nonempty subset of IN contains a least element.

» Exercise 1.9. It is of course obvious that there is no natural number between
0 and 1. Prove it!

» Exercise 1.10. For a constant C put f(z) = 2 + C. Find a formula for the
composition of f with itself n times. Prove the formula by induction.

» Exercise 1.11. For nonzero constants A and B, put f(z) = A(z + B) — B.
Find a formula for the composition of f with itself n times. Prove the formula by
induction. Find a short proof by expressing the behavior of f in simple steps.

» Exercise 1.12. For constants M, C with M # 1 put f(z) = Mz + C. Find a -

formula for the composition of f with itself n times. Suggestion: Write f in the
notation of the previous exercise.

We close this section by proving a precise statement to the effect that many
small things make a big thing. This seemingly evident but yet surprisingly subtle
property of R, as stated in Proposition 3.2, requires the completeness axiom for
its proof. The proposition does not hold in all ordered fields. In other words,
there exist ordered fields F with the following striking property: F contains the
natural numbers, but it also contains super numbers, namely elements larger than
any natural number. For the real numbers, however, things are as we believe. The
natural numbers are an unbounded subset of the real numbers.

Proposition 3.2 (Archimedean property). Given positive real numbers z and e,
there is a positive integer n such that ne > x. FEquivalently, given y > 0, there is
ann € N such that % <y.

Proof. If the first conclusion were false, then every natural number would be
bounded above by 2. If the second conclusion were false, then every natural number
would be bounded above by %. Thus, in either case, N would be bounded above.
We prove otherwise. If N were bounded above, then by the completeness axiom N
would have a least upper bound K. But then K — 1 would not be an upper bound,
and hence we could find an integer n with K — 1 < n < K. But then K < n+ 1;
since n + 1 € N, we contradict K being an upper bound. Thus N is unbounded
above and the Archimedean property follows. O
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» Exercise 1.13. Type “Non-Archimedean Ordered Field” into an internet search
engine and see what you find. Then try to understand one of the examples.

3.3. Limits. Completeness in the sense of Definition 3.2 (for Archimedean or-
dered fields) is equivalent to a notion involving limits of Cauchy sequences. See
Remark 3.1. We will carefully discuss these definitions from a calculus or begin-
ning real analysis course. First we remind the reader of some elementary properties
of the absolute value function. We gain intuition by thinking in terms of distance.

Definition 3.6. For z € R, we define |z| by |2| = z if £ > 0 and |z| = —z if
z < 0. Thus |z| represents the distance between = and 0. In general, we define the
distance 6(x,y) between real numbers z and y by

§(z,y) = |z —yl.

» Exercise 1.14. Show that the absolute value function on R satisfies the follow-
ing properties:

1) |z| > 0 for all z € R, and |z| =0 if and only if z = 0.

2) —|z| <z < |z| for all z € R.

3) |z +y| < |z|+ |y| for all z,y € R (the triangle inequality).

4) la—c| < |a—0bl+|b—c| for all a,b,c € R (second form of the triangle
inequality).

» Exercise 1.15. Why are properties 3) and 4) of the previous exercise called
triangle inequalities?

We make several comments about Exercise 1.14. First of all, one can prove
property 3) in two rather different ways. -One way starts with property 2) for =
and y and adds the results. Another way involves squaring. Property 4) is crucial
because of its interpretation in terms of distances. Mathematicians have abstracted
these properties of the absolute value function and introduced the concept of a
metric space. See Section 6.

We recall that a sequence {z,} of real numbers is a function from N to
R. The real number z,, is called the n-th term of the sequence. The notation
21, L2, vy Ty ..., Where we list the terms of the sequence in order, amounts to list-

.ing the values of the function. Thus z : N — R is a function, and we write z,,

instead of z(n). The intuition gained from this alteration of notation is especially
valuable when discussing limits.

Definition 3.7. Let {z,} be a sequence of real numbers. Assume L € R.

o LIMIT. We say that “the limit of x,, is L” or that “z, converges to L”, and
we write lim,_,o.z, = L if the following statement holds: For all € > 0, there
isan N € Nsuchthatn > N implies |zn, — L| < e

e CAUCHY. We say that {z,} is a Cauchy sequence if the following statement
holds: For all € > 0, there is an N € N such that m,n > N implies |2, —zn| <
€.
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When there is no real number L for which {zn} converges to L, we say that
{zn} diverges.

The definition of the limit demands that the terms eventually get arbitrarily
close to a given L. The definition of a Cauchy sequence states that the terms of
the sequence eventually get arbitrarily close to each other. The most fundamental
result in real analysis is that a sequence of real numbers converges if and only if it
is a Cauchy sequence. The word complete has several similar uses in mathematics;
it often refers to a metric space in which being Cauchy is a necessary and sufficient
condition for convergence of a sequence. See Section 6. The following subtle remark
indicates a slightly different way one can define the real numbers.

Remark 3.1. Consider an ordered field F satisfying the Archimedean property.
In other words, given positive elements z and Y, there is an integer n such that y
added to itself n times exceeds z. Of course we write ny for this sum. It is possible
to consider limits and Cauchy sequences in F. Suppose that each Cauchy sequence
in F has a limit in F. One can then derive the least upper bound property, and F
must be the real numbers R. Hence we could give the definition of the real number
system by decreeing that R is an ordered field satisfying the Archimedean property
and that R is complete in the sense of Cauchy sequences.

We return to the real numbers. A sequence {zn} of real numbers is bounded
if and only if its set of values is a bounded subset of R. A convergent sequence
must of course be bounded; with finitely many exceptions all the terms are within
distance 1 from the limit. Similarly a Cauchy sequence must be bounded; with
finitely many exceptions all the terms are within distance 1 of some particular xp.

Proving that a convergent sequence must be Cauchy uses what is called an
5 argument. Here is the idea: if the terms are eventually within distance £ of
some limit L, then they are eventually within distance ¢ of each other. Proving the
converse assertion is much more subtle; somehow one must find a candidate for the
limit just knowing that the terms are close to each other. See for example [8,‘20].
The proofs rely on the notion of subsequence, which we define now, but which we
do not use meaningfully until Chapter 8. Let {z,} be a sequence of real numbers
and let k£ — ny be an increasing function. We write {n, } for the subsequence of
{zy} whose k-th term is Zn,. 'The proof that a Cauchy sequence converges amounts
to first finding a convergent subsequence and then showing that the sequence itself
converges to the same limit.

We next prove a basic fact that often allows us to determine convergence of a
sequence without knowing the limit in advance. A sequence {z,} is called nonde-
creasing if, for each n, we have z,,.1 > z,. It is called nonincreasing if, for each
n, we have x, 11 < z,,. It is called monotone if it is either nonincreasing or nonde-
creasing. The following fundamental resuls, illustrated by Figure 1.4, will get used
occasionally in this book. It can be used also to establish that a Cauchy sequence
of real numbers has a limit.

Proposition 3.3. A bounded monotone sequence of real numbers has a limit.

Proof. We claim that a nondecreasing sequence converges to its least upper bound
(supremum) and that a nonincreasing sequence converges to its greatest lower
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bound (infimum). We prove the first, leaving the second to the reader. Sup-
pose for all n we have

21 <o L2y <21 <. <M.
Let « be the least upper bound of the set {z,}. Then, given ¢ > 0, the number
a — € is not an upper bound, and hence there is some zy with @ —e¢ < zy < a. By
the nondecreasing property, if n > N, then
9) a—e<zy<r,<a<a+te N
But (9) yields |z, —«| < € and hence provides us with the needed NV in the deﬁnltloél
of the limit, Thus im, . (z,) = .

Figure 1.4. Monotone convergence.

Remark 3.2. Let {x,} be a monotone sequence of real numbers. 'Then {zn}
converges if and only if it is bounded. Proposition 3.3 guarantees that it converges
if it is bounded. Since a convergent sequence must be bounded, the‘converse holds
as well. Monotonicity is required; for example, the sequence (—1)" is boqnded but

it does not converge.

The next few pages provide the basic real analysis needed as background ma-
terial. In particular the material on square roots is vital to the development.

» Exercise 1.16. Finish the proof of Proposition 3.3; in other words, show that
a nonincreasing bounded sequence converges to its greatest lower bound.

» Exercise 1.17. If ¢ is a constant and {z,} converges, prove that {cz,} con-
verges. Try to arrange your proof such that the special case ¢ = 0 need not be
considered separately. Prove that the sum and product of convergent sequences are

convergent.

» Exercise 1.18. Assume {z,} converges to 0 and that {y,} is bounded. Prove
that their product converges to 0.

An extension of the notion of limit of sequence is often l%seful in real gnalyms.
We pause to introduce the idea and refer to [20] for applications and cgns1derably
more discussion. When S is a bounded and nonempty subset of R, we write as usua}
inf(S) for the greatest lower bound of S and sup(S) for the least upper bounsldo
S. Let now {z,} be.a bounded sequence of real numbers. For each k, consider
the set Xy = {z, : n > k}. Then these sets are boundgd as well. F'urthermore
the bounded sequence of real numbers defined by inf(X) is nondecreasing and the
bounded sequence of real numbers sup(Xy) is noninc're:&smg. By.the? monoton::a1
convergence theorem these sequences necessarily ha\./e 1.1m1ts, call(.ad hITl inf (:c,fl) an
lim sup(z,). These limits are equal if and only if lim(z,) exists, in which case
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all three values are the same. By contrast, let x, = (—1)™. Then lim inf(z,) = —1
and lim sup(z,) = 1. Occasionally in the subsequent discussion we can replace
limit by lim sup and things still work.

Next we turn to the concept of continuity, which we also define in terms of
sequences.

Definition 3.8. Let f : R — R be a function. Then f is continuous at a if
whenever {z,} is a sequence and limp—00%rn = @, then lim,_,o. f(z,) = f(a). Also,
f is continuous on a set S if it is continuous at each point of the set. When S§ is
R or when S is understood from the context to be the domain of f, we usually say
“f is continuous” rather than the longer phrase “f is continuous on S”.

» Exercise 1.19. Prove that the sum and product of continuous functions are

continuous. If c is a constant and f is continuous, prove that cf is continuous.

» Exercise 1.20. Prove that f is continuous at a if and only if the following holds.
For each € > 0, there is a § > 0 such that |z — a| < § implies |f(z) — f(a)| < e.

We close this section by showing how the completeness axiom impacts the
existence of square roots. First we recall the standard fact that there is no rational
square root of 2, by giving a somewhat unusual proof. See Exercise 1.22 for a
compelling generalization. These proofs are based on inequalities. For example,
the order axioms yield the following: 0 < a < b implies 0 < a? < ab < b?; we use
such inequalities without comment below.

Proposition 3.4. There is no rational number whose square is 2.

Proof. Seeking a contradiction, we suppose that there are integers m, n such that
(2)? = 2. We may assume that m and n are positive. Of all such representations
we may assume that we have chosen the one for which n is the smallest possible
positive integer. The equality m? = 2n? implies the inequality 2n > m > n. Now
we compute

10 m_mm-n) m*-mn 2 -mn 2n-m

(10) n  nlm-n) nlm-n) nm-n) m-n

Thus 22=" js also a square root of 2. Since 0 < m —n < n, formula (10) provides
a second way to write the fraction 7*; the second way has a positive denominator,
smaller than n. We have therefore contradicted our choice of n. Hence there is no

rational number whose square is 2. (M

Although there is no rational square root of 2, we certainly believe that a
positive real square root of 2 exists. For example, the length of the diagonal of the
unit square should be v/2. We next prove, necessarily relying on the completeness
axiom, that each positive real number has a square root.

Theorem 3.1. Ift € R and ¢t > 0, then there is an x € R with 22 = ¢.

Proof. This proof is somewhat sophisticated and can be omitted on first reading.
If t = 0, then t has the square root 0. Hence we may assume that ¢ > 0. Let S
denote the set of real numbers z such that z? < ¢. This set is nonempty, because
0 € S. We claim that M = max(1,t) is an upper bound for S. To check the claim,
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we note first that 22 < 1 implies z < 1, because z > 1 implies _x2 > 1. Therefore
if t < 1, then 1 is an upper bound for S. On the other hand, if ¢t > 1, then ¢ < 2.
Therefore 22 < ¢ implies 2 < 2 and hence z < ¢. Therefore in this case ¢ is an
upper bound for §. In either case, S is bounded above by M and is nonempty. By
the completeness axiom, S has a least upper bound a. We claim that o? = ¢.

To prove the claim, we use the trichotomy property. We will rule out the cases
a2 < tand o? > t. In each case we use the Archimedean property to find a positive
integer n whose reciprocal is sufficiently small. Then we can add or subtract % to
« and obtain a contradiction. Here are the details. If a? > ¢, then Proposition 3.2
guarantees that we can find an integer n such that

2—Oé<cv2—t
We then have . N 1 5
o
(a——)zzaz——a+—>a2——>t.
n n  n2 n

Thus o« — % is an upper bound for S, but it is smaller than «. We obtain a
contradiction. Suppose next that o® < t. We can find n € N (Exercise 1.21) such
that

(11)

This time we obtain
. Y o tor S aga

Since « + = is bigger than o and yet it is also an upper bound for S, again we

obtain a contradiction. By trichotomy we must therefore have a2 = t. O

2
2on41 ., 2
n2

1 2 1
(a+—)2=a2+—a+—2<t.
n noon

The kind of argument used in the proof of Theorem 3.1 epitomizes proofs
in basic real analysis. In this setting one cannot prove an equality by algebraic
reasoning; one requires the completeness axiom and analytic reasoning.

» Exercise 1.21. For ¢t — o® > 0, prove that there is an n € N such that (11)
holds.

» Exercise 1.22. Mimic the proof of Proposition 3.4 to prove the following state-
ment. If k is a positive integer, then the square root of & must be either an integer

or an irrational number. Suggestion: Multiply 7* by z:zg for a suitable integer q.

4. The complex numbers

We are finally ready to introduce the complex numbers C. The equation z? +
1 = 0 will have two solutions in C. Once we allow a solution to this equation,
we find via the quadratic formula and Lemma 4.1 below that we can solve all
quadratic polynomial equations. With deeper work, we can solve any (nonconstant)
polynomial equation over C. We will prove this result, called the fundamental
theorem of algebra, in Chapter 8.

Our first definition of C arises from algebraic reasoning. As usual, we write
R2 for the set of ordered pairs (z,y) of real numbers. To think geometrically, we
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identify the point (z,y) with the arrow from the origin (0,0) to the point (z,).
We know how to add vectors; hence we define

(12) (z,y) + (a,b) = (z + a,y + b).

This formula amounts to adding vectors in the usual geometric manner. See Figure
1.5. More subtle is our definition of multiplication

(13) (z,y) * (a,b) = (za — yb, zb + ya).

Let us temporarily write 0 for (0,0) and 1 for (1,0). We claim that the opera-
tions in equations (12) and (13) turn R2 into a field.

We must first verify that both addition and multiplication are commutative
and associative. The verifications are rather trivial, especially for addition:

(z,9) + (a,b) = (z +a,y +b) = (a + z,b+y) = (a,b) + (z,y),
(@,y) +(a,0) +(s,t) = (@ +a,y+b) +(s,8) = (2 +a+s,y+b+1)
=(z,9) + (a+s,b+1t) = (z,y) + ((a,b) + (s,1)).
Here are the computations for multiplication:
(2,9) * (a,) = (za — yb, zb + ya) = (az — by, ay + bx) = (a,b) * (z,y),
((z,y) % (a, b)) * (s,t) = (za — by,mbb—l- ya) x (s,t) \
= (zas — bys — tab — tya, xbt + yat — (was — bys)) = (z,y) * ((a,b) * (s,t)).
We next verify that 0 and 1 have the desired properties. ’
(z,9) +(0,0) = (z,v),
(z,9) * (1,0) = (z1 — y0,20 + y1) = (z, ).

The additive inverse of (z,y) is easily checked to be (—z, —y). When (z,y) #
(0,0), the multiplicative inverse of (z,y) is easily checked to be
1 x -y

(%w=%”w”ﬂ+¢)
Checking the distributive law is not hard, but it is tedious and left to the reader in
Exercise 1.23.

(14)

These calculations provide the starting point for discussion.

Theorem 4.1. Formulas (12) and (13) make R? into a field.

The verification of the field axioms givén above'is rather dull and uninspired.
We do note, however, that (—1,0) is the additive inverse of (1,0) = 1 and that
(0,1) % (0,1) = (—1,0). Hence there is a square root of —1 in this field.

The ordered pair notation for elements is a bit awkward. We wish to give two
alternative definitions of C where things are more elegant.

What have we done so far? Our first definition of C as pairs of real numbers
gave an unmotivated recipe for multiplication; it seems almost a fluke that we
obtain a field using this definition. Furthermore computations seem clumsy. A
more appealing approach begins by introducing a formal symbol i and defining C
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, z=x+1y

Y

Figure 1.5. Addition of complex numbers.

to be the set of expressions of the form a + ib for real numbers a,b. We add and
multiply as expected, using the distributive law; then we set i2 equal to —1. Thus

(15) (z+iy) + (a+1ib) = (z +a) +i(y + D),

(16)  (z +1iy) * (a +1ib) = za + i(ya + zb) + *(yb) = (za — yb) + i(ya + zb).
Equations (15) and (16) give the same results as (12) and (13). While this new
approach is more elegant, it makes some readers feel uneasy. After all, we are
assuming the existence of an object, namely 0 + il, whose square is —1. In the
first approach we never assume the existence of such a thing, but such a thing does
exist: the square of (0,1) is (—1,0), which is the additive inverse of (1,0).

The reader will be on safe logical ground if he or she regards the above para-
graph as an abbreviation for the previous discussion. In the next section we will
give two additional equivalent ways of defining C.

» Exercise 1.23. Prove the distributive law for addition and multiplication, as
defined in (12) and (13). Do the same using (15) and (16). Compare.

The next lemma reveals a crucial difference between R and C.

Lemma 4.1. The complex numbers do not form an ordered field.

Proof. Assume that a positive subset P exists. By Lemma 3.1, each nonzero
square is in P. Since 12 = 1 and 52 = —1, both 1 and —1 are squares and hence
must be positive, contradicting 2) of Definition 3.1. O

5. Alternative definitions Qf C

In this section we discuss alternative approaches to defining C. We use some
basic ideas from linear and abstract algebra that might be new to many students.
The primary purpose of this section is to assuage readers who find the rules (12)
and (13) unappealing but who find the rules (15) and (16) dubious, because we
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introduced an object i whose square is —1. The first approach uses matrices of real
numbers, and it conveys significant geometric information. The second approach
fully justifies starting with (15) and (16) and it provides a quintessential example
of what mathematicians call a quotient space.

A matrix approach to C. The matrix definition of C uses two-by-two matrices
of real numbers and some of the ideas are crucial to subsequent developments. In
this approach we think of C as the set of two-by-two matrices of the form (18),
thereby presaging the Cauchy-Riemann equations which will appear throughout
the book. In some sense we identify a complex number with the operation of mul-
tiplication by that complex number. This approach is especially useful in complex
geometry.

We can regard a complex number as a special kind of linear transformation
of R%. A general linear transformation (z,y) — (ax + cy, bz + dy) is given by a
two-by-two matrix M of real numbers:

(17) M= (Z 2).

A complex number will be a special kind of two-by-two matrix. Given a pair of
real numbers a,b and motivated by (13), we consider the mapping L : R? — R?
defined by

L(ZE, y) = (CL:E — by, bz + a'y)'
The matrix representation (in the standard basis) of this linear mapping L is the
two-by-two matrix :

(18) @ j?.

We say that a two-by-two matrix of real numbers satisfies the Cauchy-Riemann
equations if it has the form (18). A real linear transformation from R? to itself whose
matrix representation satisfies (18) corresponds to a complex linear transformation
from C to itself, namely multiplication by a + %b.

In this approach we define a complex number to be a two-by-two matrix (of real
numbers) satisfying the Cauchy-Riemann equations. We add and multiply matrices
in the usual manner. We then have an additive identity 0, a multiplicative identity
1, an analogue of i, and inverses of nonzero elements, defined as follows:

(19) 0= (8 g)
(20) (5 1)
(21) i= (2 '51>.

If ¢ and b are not both 0, then a? + b > 0. Hence in this case the matrix

b
(22) (ZF =7

- a
I I
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makes sense and satisfies the Cauchy-Riemann equations. Note that

a b
(23) G ) (EE === (5 9) -
a2+b2 a2+b2

Thus (22) yields the formula % for the reciprocal of the nonzero complex number
a + b, expressed instead in matrix notation.

Thus C can be defined to be the set of two-by-two matrices satisfying the
Cauchy-Riemann equations. Addition and multiplication are defined as usual for
matrices. The additive identity 0 is given by (19) and the multiplicative identity
1 is given by (20). The resulting mathematical system is a field, and the element
i defined by (21) satisfies i2 + 1 = 0. This method of defining C should appease
readers who on philosophical grounds question the existence of complex numbers.

» Exercise 1.24. Show that the square of the matrix in (21) is the negative of
the matrix in (20); in other words, show that iZ = —1.

» Exercise 1.25. Suppose a? +b% = 1 in (18). What is the geometric meaning of
multiplication by L7

» Exercise 1.26. Suppose b = 0 in (18). What is the geometric meaning of
multiplication by L7

P Exercise 1.27. Show that there are no real numbers & and y such that

1.1 1
ey cty

Show on the other hand that there are complex numbers z and w such that
1 1 1

(24) -+ —=

z w  ztw
Describe all pairs (z,w) satisfying (24).

» Exercise 1.28. Describe all pairs A and B of two-by-two matrices of real num-
bers for which A~! and B! exist and

Al Bl =4+ B)"L.

Remark 5.1. Such pairs of n-by-n matrices exist if and only if n is even; the reason
is intimately connected with complex analysis.

An algebraic definition of C. We next describe C as a quotient space. This
approach allows us to regard a complex number as an expression a + b, where
i%2 = —1, as we wish to do. We will therefore define C in terms of the polynomial ring
divided by an ideal. The reader may skip this section without loss of understanding.

First we recall the general notion of an equivalence relation. Let S be a set.
We can think of an equivalence relation on S as being defined via a symbol =. We
decree that certain pairs of elements s,t € S are equivalent; if so, we write s 2 ¢.
The following three axioms must hold:

e For all s € S, s 2 s (reflexivity).
e For all s,t € 8, s 2t if and only if ¢t & s (symmetry).
e For all 5,t,u € 9, s =t and £ = u together imply s = u (transitivity).
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Given an equivalence relation 22 on S, we partition S into equivalence classes.
All the elements in a single equivalence class are equivalent, and no other member
of § is equivalent to any of these elements. We have already seen two elementary
examples. First, fractions ¢ and § are equivalent if and only if they represent
the same real number, that is, if and only if ad = be. Thus a rational number
may be regarded as an equivalence class of pairs of integers. Second, when doing
arithmetic modulo p, we regard two integers as being in the same equivalence class

if their difference is divisible by p.

» Exercise 1.29. The precise definition of modular arithmetic involves equivalence
classes; we add and multiply equivalence classes (rather than numbers). Show that
addition and multiplication modulo p are well-defined concepts. In other words, do
the following. Assume m; and mg are in the same equivalence class modulo p and
that n1 and n; are also in the same equivalence class (not necessarily the same class
my and my are in). Show that m; + ny and msy + ny are in the same equivalence
class modulo p. Do the same for multiplication.

> Exercise 1.30. Let S be the set of students at a college. For s,# € S, consider
the relation s = ¢ if s and ¢ take a class together. Is this relation an equivalence
relation?

Let R[t] denote the collection of polynomials in one variable, with real coeffi-
cients. An element p of R[t] can be written

d

= Za’jtj’

=0

where a; € R. Notice that the sum is finite. Unless all the a; are 0, there is a largest
d for which a; # 0. This number d is called the degree of the polynomial. When all
the a; equal 0, we call the resulting polynomial the zero polynomial and agree that
it has no degree. (In some contexts, one assigns the symbol —oo to be the degree
of the zero polynomial.) The sum and the product of polynomials are defined as in
high school mathematics. In many ways R[] resembles the integers Z. Each is a
commutative ring under the operations of sum and product. Unique factorization
into irreducible elements holds in both settings, and the division algorithm works
the same as well. See [4] or [8] for more details. Given polynomials p and g, we say
that p is a multiple of g, or equivalently that g divides p, if there is a polynomial ¢
with p = gq. '

The polynomial 1+ #2 is irreducible, in the sense that it cannot be written as a
product of two polynomials, each of lower degree, with real coefficients. The set I
of polynomials divisible by 1+ ¢2 is called the ideal generated by 1+ t2. Given two
polynomials p, g, we say that they are equivalent modulo I if p — q € I, in other
words, if p — ¢ is divisible by 1+ #2. We observe that the three properties of an
equivalence relation hold:

e For all p, p 2 p.
e Yor all p,q, p =2 q if and only if ¢ = p.
e Ifp=qgand g &r, then p Xr.
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This equivalence relation partitions the set RJ[t] into equivalence classes; the
situation is strikingly similar to modular arithmetic. Given a polynomial p(¢), we
use the division algorithm to write p(¢) = q(t)(1 + ¢?) + r(t), where the remainder
r has degree at most one. Thus 7(t) = a + bt for some a,b, and this r is the
unique first-degree polynomial equivalent to p. In the case of modular arithmetic
we used the remainder upon division by the modulus; here we use the remainder
upon division by % + 1.

P Exercise 1.31. Verify the transitivity property of equivalence modulo I.

Standard notation in algebra writes R[t]/(1 + ¢2) for the set of equivalence
classes. We can add and multiply in R[t]/(1 + ¢?). As usual, the sum (or product)
of equivalence classes P and () is defined to be the equivalence class of the sum
P+ g (or the product pg) of members; the result is independent of the choice. An
equivalence class then can be identified with a polynomial a + b¢, and the sum and
product of equivalence classes satisfies (15) and (16). In this setting we define C
as the collection of equivalence classes with this natural sum and product:

(25) C=RJ[t]/(1+t%).

Definition (25) allows us to set t* = —1 whenever we encounter a term of
degree at least two. The irreducibility of t2 4+ 1 matters. If we form RJ[t]/(p(t)) for
a reducible polynomial p, then the resulting object will not be a field.- The reason
is precisely parallel to the situation with modular arithmetic. If we consider Z/(n),
then we get a field (written F,,) if and only if n is prime.

» Exercise 1.32. Show that R[t]/(t® + 1) is not a field.

» Exercise 1.33. A polynomial EZ:O cxt® in R[t] is equivalent to precisely one
polynomial of the form A + Bt in the quotient space. What is A + Bt in terms of
the coefficients ¢;? ’

» Exercise 1.34. Prove the division algorithm in R[t]. In other words, given
polynomials p and g, with g not the zero polynomial, show that one can write
P = qg -+ r where either r = 0 or the degree of r is less than the degree of g. Show
that ¢ and r are uniquely determined by p and g.

» Exercise 1.35. For any polynomial p and any zq, show that there is a polyno-
mial ¢ such that p(z) = (z — zo)q(z) + p(zo).

6. A glimpse at metric spaces

Both the real number system and the complex number system provide intuition for
the general notion of a metric space. This section can be omitted without impacting
the logical development, but it should appeal to some readers.

Definition 6.1. Let X be a set. A distance functionon X is a function § : X x X —
R such that the following hold:
1) 6(z,y) > 0 for all z,y € X (distances are nonnegative).

2) 0(z,y) = 0 if and only if z = y (distinct points have positive distance between
them; a point has 0 distance to itself).
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Chapter 2

Complex Numbers

The main point of our work in Chapter 1 was to provide a precise definition of the
complex number field, based upon the existence of the real number field. While
we will continue to work with the relationships between real numbers and complex
numbers, our perspective will evolve toward thinking of complex numbers as the
objects of interest. The reader will surely be delighted by how often this perspective
leads to simpler computations, shorter proofs, and more elegant reasoning.

1. Complex conjugation

One of the most remarkable features of complex variable theory is the role played by
complex conjugation. There are two square roots of —1, namely +i. When we make
a choice of one of these, we create a kind of asymmetry. The mathematics must
somehow keep track of the fundamental symmetry; these ideas lead to fascinating
consequences.

Recall from Lemma 4.1 of Chapter 1 that C is not an ordered field. Therefore
all inequalities used ‘will compare real numbers. As we note below, real numbers
are precisely those complex numbers unchanged by taking complex conjugates.
Hence the fundamental issues involving inequalities also revolve around complex
conjugation.

Definition 1.1. For z,y real, put z = 2 + iy. We write z = Re(z) and y = Im(2).
The complex conjugate of z, written Z, is the complex number z — iy. The absolute
value (or modulus) of z, written |z|, is the nonnegative real number /2 + y2.

We make a few comments about the concepts in this definition. First we call
z the real part and y the imaginary part of x + iy. Note that y is a real number;
the imaginary part of z is not iy.

The absolute value function is fundamental in everything we do. Note first that
|2|* = 2Z. Next we naturally define the distance &(z,w) between complex numbers
z and w by §(z,w) = |2 — w|. Then §(z,w) equals the usual Euclidean distance

25
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2. Complex Numbers

between these points ik the plane. We can use the absolute value function to define
bounded set. A subsg S of C is bounded if there is a real number M such that
|z < M for all z in &. Thus S is bounded if and only if S is a subset of a ball
about 0 of sufficiently large radius.

The function mapping z into its complex conjugate is called complex conjuga-
tion. Applying this function twice gets us back where we started; that is, Z = .
This function satisfies many basic properties; see Lemma, 1.1.

Im

A

z=a+1y

Figure 2.1. Complex conjugation.

Here is a way to stretch your imagination. Imagine that you have never heard
of the real number system but that you know of a field called C. Furthermore
in this field there is a notion of convergent sequence making C complete in the
sense of Cauchy sequences. Imagine also that there is a continuous function (called
conjugation) z — Z satisfying properties 1), 2}, and 3) from Lemma 1.1. Continuity
guarantees that the conjugate of a limit of a sequence is the limit of the conjugates
of the terms. We could then define the real numbers to be those complex numbers
z for which z =%, '

For us the starting point was the real number system R, and we constructed
C from R. We return to that setting.

Lemma 1.1. The following formulas hold for all complex numbers z and w.
1)zZ==z.

5) Re(z) = ZEZ.

6) Im(z) = 2.

7) A complex number z is real if and only if z = Z.
8) I2] = |z
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Proof. Left to the reader as an exercise. 0

» Exercise 2.1. Prove Lemma 1.1. In each case, interpret the formula using
Figure 2.1.

» Exercise 2.2. For a subset S of C, define S* by z € §* if and only if Z € S.
Show that S* is bounded if and only if S is bounded.

» Exercise 2.3. Show for all complex numbers z and w that
|2+ wl” + |z — w]* = 22 + [w]?).
Interpret geometrically.

» Exercise 2.4. Suppose that |a| < 1 and that |2| < 1. Prove that

z—a
<1

1—-az
Comment: This fact is important in non-Euclidean geometry.

» Exercise 2.5. Let ¢ be real, and let a € C. Describe geometrically the set of z
for which az -+ @z = c.

» Exercise 2.6. Let ¢ be real, and let a € C. Suppose |a|> > c. Describe
geometrically the set of z for which |z|?> + az + @z + ¢ = 0.

» Exercise 2.7. Let a and b be nonzero complex numbers. Call them parallel if
one is a real multiple of the other. Find a simple algebraic condition for ¢ and b to
be parallel. (Use the imaginary part of something.)

» Exercise 2.8. Let a and b be nonzero complex numbers. Find an algebraic
condition for a and b to be perpendicular. (Use a similar idea as in Exercise 2.7.)

» Exercise 2.9. What is the most general (defining) equation for a line in C?
(Hint: The imaginary part of something must be 0.) What is the most general
(defining) equation of a circle in C?

» Exercise 2.10. For z,w € C, prove that |Re(z)| < |2| and |z + w| < |2| + Jw|.
Then verify that the function §(z,w) = |z — w| defines a distance function making
C into a metric space. (See Definition 6.1 of Chapter 1.)

2. Existence of square roots

In this section we give an algebraic proof that we can find a square root of an
arbitrary complex number. Some subtle points arise in the choice of signs. Later
we give an easier geometric method.

Proposition 2.1. For each w € C, there is a z € C with 2* = w.

Proof. Given w = a-+bi with a, b real, we want to find z = z+4y such that 22 = w.
If a = b = 0, then we put z = 0. Hence we may assume that a® + b # 0. The
equation (z + iy)? = w yields the system of equations z?2 —y? = a and 2zy = b.
We convert this system into a pair of linear equations for z? and y? by writing

(1) (1132 +y2)2 — (CB2 _ y2)2 —|—4932y2 — aZ 4 b2‘
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The right-hand side of (1) is positive, and hence by Theorem 3.1 of Chapter 1 it
has a positive real square root, and hence two real square roots. We choose the
positive square root. We obtain the system

z® +y? = Va2 + 12,

2’ —y? =a.

We solve these two equations by adding and subtracting, obtaining
9 a++a?+b?
®) P2 = ST

(3) 2__a+va2+b2
V=

First note that the right-hand sides of (2) and (3) are nonnegative, because
a® < a® +b%, and hence +a < va2 + b2. Recall that we chose the positive square
root of the expression a? + b2. Now we would like to take the square roots of
the right-hand sides of (2) and (3) to define z and y, but we are left with some
ambiguity of signs. In general there are two possible signs for = and two possible
signs for y, leading to four candidates for the solution. Yet we know from Lemma
2.1 of Chapter 1 that only two of these can work.

We resolve this ambiguity in the following manner, consistent with our conven-
tion that v/¢ denotes the positive square root of ¢ when ¢ > 0. First we deal with
the case b = 0. When b = 0, we put y = 0 if a > 0; we obtain the two solutions
i\/m. When b = 0, we put z = 0 if a < 0; we obtain the two solutions :I:z'\/m.
In both of these cases we use |a| for the square root of a2,

Next suppose b > 0. In taking the square roots of (2) and (3), we choose z
and y to have the same sign. Squaring now shows that these two answers satisfy
(z+1iy)? = a+1ib. Finally suppose b < 0. In taking the square roots of (2) and (3),
we choose 2 and y to have opposite signs. Squaring again shows that both answers
satisfy (z + iy)? = a + ib. O

In the proof of Proposition 2.1, we obtained four candidates +z & iy for z.
When z and y are both not 0, these four candidates are distinct. As we noted
in the proof, at most two of them can be square roots of w. Thus two of them
fail. Hence the delicate analysis involving the signs is required. Things seem too

¢ complicated! On the other hand, the existence of square roots follows easily from
\D* the polar representation of complex numbers in Section 6. At that time we will
i i

develop geometric intuition clarifying the subtleties in the proof of Proposition 2.1.
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Example 2.1. We solve 2? = 11 + 60i by the method of Proposition 2.1. We have
a? 4+ b? = 121 + 3600 and hence v/a2 + b® = 61. Therefore z2 = 1461 — 36 and
y? = % = 25. We then take £ = 6 and y =5 or z = —6 and y = —5 to obtain
the answers z = 4(6 + 5¢). The other combinations of signs fail. If instead we want
the square root of 11 — 604, then we have 22 = 36 and y? = 25 as before, but we
need to choose 2 and y to have opposite signs.

» Exercise 2.11. Find the error in the following alleged proof that —1 = 1.

—l=?=v-1Iv-1=+/(-)(-1)=v1=1.
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11 + 607

6 + 51
6—51

11 — 60¢

Figure 2.2. Finding square roots.

It is possible to solve cubic (third degree) and quartic (fourth degree) equa-
tions by using the quadratic formula cleverly. The history of this approach is quite
interesting and relevant for the development of modern mathematics. Sefe for ex-
ample [9]. We limit ourselves here however to a few exercises about solving cubic
polynomial equations. Cardano’s solution of the cubic equation dates to 1'545 and
provided perhaps the first compelling argument in support of complex variables.

» Exercise 2.12. Let 22+ A22+ Bz+C be a cubic polynomial. What substitution
reduces it to the form w?® + aw + b?

» Exercise 2.13. Suppose we can solve the cubic w® + aw + b = 0, in the sense
that we can find formulas for the roots in terms of a,b. By the previous exercise
we can then solve the general cubic. To solve w3 + aw + b = 0, we first make the
substitution w = ¢ + 2. If we choose « intelligently, then we get a sixth degree

equation of the form
(4) ¢®+es¢®+co=0.

What is the intelligent choice for o? Why? Since (4) is a quadratic in (3, one can
solve it by the quadratic formula.

» Exercise 2.14. Solve 23 + 3z — 4 = 0 by the method of the previous exercise.
Also solve it by elementary means and compare what you get. Do the same for
25 +62—20=0.

Remark 2.1. The method of Exercises 2.12 and 2.13 gives a formula for the so-
lution of the general cubic equation z® + A2z? + Bz + C = 0 in terms of A, B,C.
Unfortunately the solution will involve nested radicals. Trying to simplify these
nested radicals often leads one back to the original equation. Hence the method is




