ARITHMETIC

For example, let it be proposed to find the number of the cell £ of the fifth
perpendicular rank and of the third parallel rank.

' Having taken all the numbers that precede the index of the perpendicular
rank 5, thatis, 1,2, 3,4, take as many natural numbers beginning with the index
of the parallel rank 3, that is, 3, 4, 5, 6.

Now multiply the first numbers into each other, and let the product be 24.
Multiply the other numbers into each other, and let the product be 360, which
divided by the other product 24, gives 15 as the quotient. This quotient is the
desired number.

Indeed, ¢ is to the first number of its base ¥ in composed ratio of all the ratios
of the cells among themselves, that is,

£ is to V in composed ratio of £ to p + pto K + Kto@ + Qto V,
Sto4 4to3 5to02 6tol,

or by the twelfth consequence:
£is to V as 3 into 4 into 4 into b into 6 into 4 into 8 into 2 into 1,

But V is unity; hence ¢ is the quotient of the division of the product of 3 into 4
into 5 into 6 by the product of 4 into 3 into 2 into 1.2

Note. If the generator were not unity we should have to multiply the quotient

by the generator.

This paper is followed by several others, in which the Pascal triangle is applied.® First it is
used to sum the arithmetical sequences of different orders 1, 2, 3, 4, ete.; 1, 3, 6, 10, ete.,
1, 4, 10, 20, ... (these sequences are called “numbers of the first, gecond, etc. order”
[ordres numériques], then to the solution of certain games of chance, to the finding of com-
binations, to the raising of binomials to different powers, to the summation of the squares,
cubes, etc., of the terms of an arithmetical series, etc., and to the proof that (in our present
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1 p a positive integer. On this integral see Selection IV.6.
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6 FERMAT. TWO FERMAT THEOREMS AND FERMAT NUMBERS

Pierre de Fermat (1601-1665) was a lawyer attached as councilor to the provincial parlia-

ment (that is, law court) of Toulouse. Of his contributions to geometry and calculus we
speak in Selections IIL.3 and IV.7, 8. He was the first to take up seriously the challenge
offered in number theory by the Arithmetica of Diophantus, first made fully available in the
original Greek of A.D. ¢. 250 by Claude Bachet in 1621, together with a Latin translation.
Fermat communicated his results in letters to his friends or kept them to himself in notes,

8 Thi .
This means that P}, = R

1

— — ™ _ . the number of combinations of # elements in groups of p.
pi(n = p)

9 Some of this is translated in Smith, Source book, pp. 76-79.
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~many of them as marginal notes to his copy of Bachet. His son Samuel published a second
edition of Bachet’s Diophantus and added to it his father’s marginal notes (Toulouse, 1670).

The extant work of Fermat has been published in the Oeuvres de Fermat (4 vols.; Gauthier-
Villars, Paris, 1891-1912), in which the Latin texts are accompanied by a French trans-
Jation (in vol. ITI, 1896).

We first quote the fatnous Latin marginal note to Diophantus’ Proposition II, 8: “To
divide a given square number into two squares,” for which Diophantus gives the answer
(in our notation) [a(m? + 1?2 = (2am)? + [a(m?® — 1)]?; for example, a = 18 m =%
16 = (38)% 4+ (A2)?; see Oeuvres, I, 53; French translation, 111, 24. Fermat wrote:

In contrast, it is impossible to divide a cube into two cubes, or a fourth
power into two fourth powers, or in general any power beyond the square into
powers of the same degree; of this I have discovered a very wonderful demon-
stration [demonstrationem mirabilem sane detexs]. This margin is too narrow to
contain it.

~ Tt is well known that nobody has ever found this demonstratio sane mirabilis, but also that
obody has been able to discover a positive integer n > 2 for which 2" + y™ = 2" can be
golved in terms of positive integers z, y, z. On the enormous literature in this field see
achman, Das Fermatproblem (De Gruyter, Berlin-Leipzig, 1919); L. J. Mordell, Three
ctures on Fermat’s last theorem (Cambridge University Press, Cambridge, England, 1921);
Nogués, Théoréme de Fermat. Son histoire (Vuibert, Paris, 1932); H. S. Vandiver,
(l‘l;‘ma.t’s last theorem,” American Mathematical Monthly 53 (1946), 555-578. We shall
idw (Selection 1.9) how Euler proved Fermat’s theorem forn = 3andn = 4.

stmat communicated many of his results to the mathematician Bernard Frénicle de
(1605-1675). In a letter of October 18, 1640, written in French, we find, among many
Yations, the following paragraphs containing another theorem of Fermat, which states
a1 is divisible by p when p is prime and a, p are relatively prime. Fermat had been
sﬁed in Euclid’s theorem (Hlements, Prop. IX, 36) that numbers of the form
2" — 1) are perfect, that is, equal to the sum of their divisors including 1 (for example,
49248, 28=1+2+4+ 17+ 14), if 2* — 1 is prime. Such prime numbers
Fermat called the radicals of the perfect numbers, and he had sent to Father Marin
gsome of his conclusions about these radicals in a letter of June 1640." (If » is not
1 cannot be prime; if » is prime, 2* — 2 is divisible by n; if » is prime, 2" — 1
ible only by prime numbers of the form 2kn + 1; for example, 2047 = 2* — 1 =
11 _ 9 — 92046 = 11 x 186.) Then, in August 1640, in a letter to Frénicle,
d turned to numbers of the form 2" + 1, writing that he was ‘‘almost convinced

’ .1 Th.ese radicals 2® — ’l, when prime, are known as Mersenne numbers M,. It is clear that

¥ this case n}ust be prime, but this is not sufficient. For example, M;; = 2047 = 23 x 89.

: a;her Ma‘.rm Mersenne (1586-1648), a Minorite (Franciscan), was in constant corre-
Slzlti)liis%n(ae ‘ngh tllle outstanding mathematicians of his day. His Correspondence has been
l ed in 8 volumes (ed. C. de Waard; Beauchesne, Edition du Cent i

echerche, Paris, 1932-1963). ftion du Centro National do la
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il [quasi persuadé] that these numbers are prime when 7 is a power of 2. We now know that,
IE though this is true for n = 2,4,8, 16, it stops being true for n = 32, which, as Euler
|1 showed (Commentarii Academiae Scientiarum Petropolitanae 1 (1732/33, publ. 1738), 2048,
Opera omnia, ser. I, vol. 2, p. 73) is divisible by 641 (4294967297 = 641 x 6700417).2 Fer-
mat, on October 10, 1640, after referring to earlier letters, continues:

Tt seems to me after this that it is important to tell you on what foundation I
construct the demonstrations of all that concerns the geometrical progressions,
which is as follows:

Every prime number is always a factor [mesure infailliblement) of one of the
powers of any progression minus 1, and the exponent [exposant] of this power is
.l a divisor of the prime number minus 1. After one has found the first power that
i satisfies the proposition, all those powers of which the exponents are multiples
of the exponent of the first power also satisfy the proposition.
¥ Example: Let the given progression be

il 12 3 4 5 6
3 9 27 81 243 729 ete.

|
|
‘)“ with its exponents written on top.
‘\\ Now take, for instance, the prime number 13. Tt is a factor of the third power

‘\ minus 1, of which 3 is the exponent and a divisor of 12, which is one less than the

1\\ aumber 13, and because the exponent of 729, which is 6, is a multiple of the
i first exponent, which is 3, it follows that 13 is also a factor of this power 729
‘ \\ minus 1. '

‘ And this proposition is generally true for all progressions and for all prime
ol numbers, of which I would send you the proof if T were not afraid to be too long.
il But it is true that every prime number is a factor of a power plus 1 in any
Dol kind of progression; for, if the first power minus 1 of which the said prime
l 1 number is a factor has for exponent an odd number, then in this case there
1 . exists no power plus 1 in the whole progression of which this prime number is a

factor.

B - Example: Because in the progression of 2 the number 23 is a factor of the

power minus 1 which has 11 for exponent, the said number 23 will not be a factor
of any power plus 1 of the said progression to infinity.

If the first power minus 1 of which the given prime number is 2 factor has an
oven number for exponent, then in this case the power plus 1 which has an

exponent equal to half this first exponent will have the given prime as & factor.
M The whole difficulty consists in finding the prime numbers which are not

for finding which of the prime numbers are factors of the radicals of the perfect

i numbers, and to find a thousand other things as, for example, why it is that the
37th power minus 1 in the progression of 2 has the factor 223. In one word,

i Number theory and its history (McGraw-Hill, New York, 1948).

Al factors of any power plus 1 in a given progression, for this, for instance, is useful

2 These numbers 2" + 1,n = 2%, when prime, are known as Fermat numbers. See O. Ore, |

FERMAT. THE “PELL” EQUATION 7 ] 29

we must. determine which are the prime numbers that factor their first power
minus 1 in such a way that the exponent of the said power be an odd number—
which I think very difficult [ fort malaisé].

$

Fermat then (?ontinues with other striking properties of powers, also of numbers of the
form 2* + 1, which, he believed, are all prime if » is a power of 2.

7 FERMAT. THE “PELL” EQUATION

In a letter of February 1657 (Oeuwres, II, 333-335; III, 312-313) Fermat challenged all
mathematicians (thinking probably in the first place of John Wallis in England) to find an
infinity of integer solutions of the equation 2? — Ay® = 1, where 4 is any nonsquare in-
-~ teger. He may have been led to this by his study of Diophantus, who set the problem of
finding, for example, a number 2 such that both 10z + 9 and 5z + 4 are squares. If these
. squares are called %2 and v2 respectively, then 42 — 202 = 1, and a solution is # = 28. The
. problem was taken up by De Billy (see below) and later by Euler, who in his ““De solutione
problematum Diophanteorum per numeros integros,” Commentarii Academiae Scientiarum
Petropolitanae 6 (1732/33, publ. 1738), 175-188, Opera omnia, ser. I, vol. 2, 6-17, referred to
: -the problem as that of Pell and Fermat. John Pell (1611-1685), an English matilematician
had little to do with the problem, but the problem of Fermat has since been known as that;
of the Pell equation. It had already been studied by Indian mathematicians, and even in the
251‘91’70&;77; :ttributed to Archimedes, which leads to a “Pell” equation with 4 =
2 = 2.83.7-11.29-.353; see T. L. Hea ;
B oTom, 1981), 387, th, A manual of Greek mathematics (Clarendon
Z?‘ermat, after observing that ““Arithmetic has a domain of its own, the theory of integral
iimbers,” defines his problem as follows:

(.}iven any number not a square, then there are an infinite number of squares
which, when multiplied by the given number, make a square when unity is
added.

Example.—Given 3, a nonsquare number; this number multiplied by the
square number 1, and 1 being added, produces 4, which is a square.

Moreover, the same 3 multiplied by the square 16, with 1 added makes 49
which is a square. ’

And instead of 1 and 16, an infinite number of squares may be found showing
_ the' same property; I demand, however, a general rule, any number being given
~which is not a square. )
It is sought, for example, to find a square which when multiplied into 149,
- 109, 433, etec., becomes a square when unity is added.

See note 2.




