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If AQ or TR = z, and AC = f, while BC = g; then, BC -2 BR %' and thus
az
X =—.
f
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If dx is constant, then dz is also constant. Hence c dy = ? ydz,orcy = ?I ydz,and

—_— —_— 2 —_—
cydy = Jﬁ[ y?dz, therefore ¢ Xz— = ;j y? dz. Hence we have both the area of the figure
and the moment to a certain extent (for something must be added on account of the
obliquity); also cz@ = ; yz dz, and therefore ¢ j z@ = ;j yz dz.

Also ﬂ = %dz, and hence, ¢ f;)—) = ;z. Now, unless I am greatly mistaken, J%y is
y

in our power. The whole matter reduces to this, we must find the curve in which the
ordinate is such that it is equal to the differences of the ordinates divided by the

1
abscissae, and then find the quadrature of that figure. d\/ay = ——.

Jay

Figures of this kind, in which the ordinates are dy/y, dy/y*,dy/y?, are to be sought in
the same way as I have obtained those whose ordinates are ydy, y* dy, etc. Now
w/a = dy/y, and since dy may be taken to be constant and equal to 8, therefore the

curve, in which w/a = d_y/ y, will give wy = a8, which would be a hyperbola. Hence the
figure, in which dy/y = z, is a hyperbola, no matter how you express y, and if y is

2 2 d
expressed by ¢? we have dy = 2¢, and 5(1; = $ Now, cJ—yX = %z, and therefore
y .
ﬁ 7}] = z, which thus appertains to a logarithm.
a

Thus we have solved all the problems on the inverse method of tangents, which
occur in Volume 3 of the Correspondence of Descartes, of which he solved one himself;
but the solution is not given; the other he tried to solve but could not, stating that it was
an irregular line, which in any case was not in human power, nay not within the power
of the angels unless-the art of describing it is determined by some other means.

13.A3 The first publiéation of the calculus

A new method for maxima and minima as well as tangents, which is neither impeded
by fractional nor irrational quantities, and a remarkable type of calculus for them

Let an axis AX [Figure 1] and several curves such as VV, WW, YY, ZZ be given, of
which the ordinates VX, WX, YX, ZX, perpendicular to the axis, are called v, w, y, z
respectively. The segment AX, cut off from the axis is called x. Let the tangents be VB,
WC, YD, ZE, intersecting the axis respectively at B, C, D, E. Now some straight line
selected arbitrarily is called dx, and the line which isto dx as v (or w,or y,or z)is to XB
(or XC,or XD,or XE)is called dv (or dw, or dy, or dz), or the difference of these v (or w,
or y, or z). Under these assumptions we have the following rules of the calculus.
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Ifais a given constant, then da = 0,and d(ax) = adx.If y = v (that is, if the ordinate
of any curve Y'Y is equal to any corresponding ordinate of the curve V'), then dy = do.
Now addition and subtraction: if z -y +w+z=v,thendz—y+w+x)=dv=
dz —dy + dw + dx. Multiplication: d(xv) = xdv + vdx, or, setting y= xv,
dy = x dv + vdx. It is indifferent whether we take a formula such as xv or its replacing
letter such as y. It is to be noted that x and dx are treated in this calculus in the same
way as y and dy, or any other indeterminate letter with its difference. It is also to be
noted that we cannot always move backward from a differential equation without

:some caution, something which we shall discuss elsewhere.

_ TodyFydv
oo
The following should be kept well in mind about the signs. When in the calculus for a
letter simply its differential is substituted, then the signs are preserved; for z we write dz,
for —z we write —dz, as appears from the previously given rule for addition and
subtraction. However, when it comes to an explanation of the values, that is, when the

Now division:vd‘2 or <1f z= 2) dz
y y




430 The History of Mathematics

relation of z to x is considered, then we can decide whether dz is a positive quantity or
less than zero (or negative). When the latter occurs, then the tangent Z E is not directed
toward A, but in the opposite direction, down from X. This happens when the
ordinates z decrease with increasing x. And since the ordinates v sometimes increase
and sometimes decrease, dv will sometimes be positive and sometimes be negative; in
the first case the tangent VB is directed toward A, in the latter it is directed in the
opposite sense. None of these cases happens in the intermediate position at M, at the
moment when v neither increases nor decreases, but is stationary. Then dv = 0, and it
does not matter whether the quantity is positive or negative, since +0 = —0. At this
place v, that is, the ordinate LM, is maximum (or, when the convexity is turned to the
axis, minimum), and the tangent to the curve at M is directed neither in the direction
from X up to A, to approach the axis, nor down to the other side, but is parallel to the
axis. When dv is infinite with respect to dx, then the tangent is perpendicular to the axis,
that is, it is the ordinate itself. When dv = dx, then the tangent makes half a right angle
with the axis. When with increasing ordinates v its increments or differences dv also
increase (that is, when dv is positive, d dv, the difference of the differences, is also
positive, and when dv is negative, d dv is also negative), then the curve turns toward the
axis its concavity, in the other case its convexity. Where the increment is maximum or
minimum, or where the increments from decreasing turn into increasing, or the
opposite, there is a point of inflection. Here concavity and convexity are interchanged,
provided the ordinates too do not turn from increasing into decreasing or the opposite,
because then the concavity or convexity would remain. However, it is impossible that
the increments continue to increase or decrease, but the ordinates turn from increasing
into decreasing, or the opposite. Hence a point of inflection occurs when d dv = 0 while
neither v nor dv = 0. The problem of finding inflection therefore has not, like that of
finding a maximum, two equal roots, but three. This all depends on the correct use of
the signs.

Sometimes it is better to use ambiguous signs, as we have done with the division,
before it is determined what the precise sign is. When with increasing x v/y increases (or
tody F ydv

Yy
such a way that this fraction is a positive (or negative) quantity. But T means the
opposite of &, so that when one is + the other is — or vice versa. There also may be
several ambiguities in the same computation, which I distinguish by parentheses. For

4
z

. . . . . .
decreases), then the ambiguous signs in d — = must be determined in
y

v X .
example, let — + +x; = w; then we must write
y

vivdyiyvar(i)de(?)zdy+((i))xdv((¢))vdX_
yy o zz . vy B

diw],

so that the ambiguities in the different terms may not be confused. We must take notice
that an ambiguous sign with itself gives +, with its opposite gives —, while with
another ambiguous sign it forms a new ambiguity depending on both.

1 d
Powers. dx® = ax"~" dx; for example, dx* = 3x%dx. d— = —%; for example,
x* X
1 3dx
fw= —3» then dw = ——a-
x X
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Roots. d.Yx* = %dxﬂ”/x“_b (hence d%= —\;_, for in this case a=1, b =2),
2 2
. 1
therefore g,"/x“‘b =42%y1 but y~! is the same as ;; from the nature of the

_ , , M1 1 —adx

exponents in a geometric progression, and ; = %, d y;—a = W The law for
integral powers would have been sufficient to cover the case of fractions as well as
roots, for a power becomes a fraction when the exponent is negative, and changes into
a root when the exponent is fractional. However, I prefer to draw these conclusions
myself rather than relegate their deduction to others, since they are quite general and
occur often. In a matter that is already complicated in itself it is preferable to facilitate
the operations.

Knowing thus the Algorithm (as I may say) of this calculus, which I call differential
calculus, all other differential equations can be solved by a common method. We can
find maxima and minima as-well as tangents without the necessity of removing
fractions, irrationals, and other restrictions, as had to be done according to the
methods that have been published hitherto. The demonstration of all this will be easy
to one who is experienced in these matters and who considers the fact, until now not
sufficiently explored, that dx, dy, dv, dw, dz can be taken proportional to the
momentary differences, that is, increments or decrements, of the corresponding
X, ¥, v, w, z. To any given equation we can thus write its differential equation. This can
be done by simply substituting for each term (that is, any part which through addition
or subtraction contributes to the equation) its differential quantity. For any other
quantity (not itself a term, but contributing to the formation of the term) we use its
differential quantity, to form the differential quantity of the term itself, not by simple
substitution, but according to the prescribed Algorithm. The methods published
before have no such transition. They mostly use a line such as DX or of similar kind,
but not the line dy which is the fourth proportional to DX, DY, dx—something quite
confusing. From there they go on removing fractions and irrationals (in which
undetermined quantities occur). It is clear that our method also covers transcendental
curves—those that cannot be reduced by algebraic computation, or have no particular
degree—and thus holds in a most general way without any particular and not always
satisfied assumptions. :

We have only to keep in mind that to find a tangent means to draw a line that
connects two points of the curve at an infinitely small distance, or the continued side of
a polygon with an infinite number of angles, which for us takes the place of the curve.
This infinitely small distance can always be expressed by a known differential like dv, or
by a relation to it, that is, by some known tangent. In particular, if y were a
transcendental quantity, for instance the ordinate of a cycloid, and it entered into a
computation in which z, the ordinate of another curve, were determined, and if we
desired to know dz or by means of dz the tangent of this latter curve, then we should by
all means determine dz by means of dy, since we have the tangent of the cycloid. The
tangent to the cycloid itself, if we assume that we do not yet have it, could be found in a
similar way from the given property of the tangent to the circle.

Now I shall propose an example of the calculus, in which I shall indicate division by

. .. X . .
x:y, which means the same as x divided by y, or ; Let the first or given equation be
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x:y + (@ + bx)(c — xx):(ex + fxx)* + ax./gg + yy + yy:/hh + Ix + mxx =0. It
expresses the relation between x and y or between AX and XY, where a, b,c, ¢, f,g,h
are given. We wish to draw from a point Y the line YD tangent to the curve, or to find
the ratio of the line DX to the given line XY. We shall write for short n = a + bx,
p=c—xx,q=ex+ fxx, r=gg + yy, and s = hh + Ix + mxx. We obtain x:y +

np:qq + ax\ﬁ + yy:f = 0, which we call the second equation. From our calculus it
follows that

d(x:y) = (£ xdy F ydx):yy,
and equally that
d(np:qq) = [(£)2np dg(F)a(n dp + pdn)]:q®,
d(ax\/;) = +ax dr:Z\/rT +a dx\/;,
d(yy:/s) = (£)yy ds (7)) dys dy:2s\/s.

All these differential quantities from d(x:y) to d( yy:\/g ) added together give 0, and
thus produce a third equation, obtained from the terms of the second equation by
substituting their differential quantities. Now dn=bdx and dp= —2xdx,
d=edx +2fxdx, dr =2ydy, and ds = ldx + 2mx dx. When we substitute these
values into the third equation we obtain a fourth equation, in which the only remaining
differential quantities, namely dx, dy, are all outside of the denominators and without
restrictions. Each term is multiplied either by dx or by dy, so that the law of
homogeneity always holds with respect to these two quantities, however complicated
the computation may be. From this we can always obtain the value of dx:dy, the ratio
of dx to dy, or the ratio of the required DX to the given XY. In our case this ratio will be
(if the fourth equation is changed into a proportionality):

Fx:yy — axy:\/;(i)2y:\/§
divided by

F1:y(+)Q2npe + 2fx):q*(F)(—2nx + pb):qq + aﬁ((i))yy(l + 2mx):2s\/s_.

Now x and y are given since point Y is given. Also given are the values of n, p,q,7,s
expressed in x and y, which we wrote down above. Hence we have obtained what we
required. Although this example is rather complicated we have presented it to show
how the above-mentioned rules can be used even in a more difficult computation. Now
it remains to show thair use in cases easier to grasp.

Let two points C and E [Figure 2] be given and a line SS in the same plane. It is
required to find a point F on SS such that when E and C are connected with F the sum
ofthe rectangle of CF and a given line s and the rectangle of FE and a given line r are as
small as possible. In other words, if SS is a line separating two media, and h represents
the density of the medium on the side of C (say water), r that of the medium on the side
of E (say air), then we ask for the point F such that the path from C to E via F is the
shortest possible. Let us assume that all such possible sums of rectangles, or all possible
paths, are represented by the ordinates KV of curve V'V perpendicular to the line GK
[Figure 1]. We shall call these ordinates w. Then it is required to find their minimum
NM. Since C and E [Figure 2] are given, their perpendiculars to SS are also given,
namely CP (which we call ¢) and EQ (which we call e); moreover PQ (which we call p) is
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Figure 2 . C

given. We denote QF = GN (or AX) by x, CF by f,and EF by g. Then FP = p — x,
f= \/cc + pp = 2px + xx or = \ﬁ for short; g = \/ee + xx or = ﬁ for short.

Hence
w=h/l +r/m.

The differential equation (since dw = 0 in the case of a minimum) is, according to our
calculus,

0= +hdl:2/l1 + rdm:2/m.
But dl = —2(p'— x) dx, dm = 2x dx; hence

~h(p—x):f =rxg.

When we now apply this to dioptrics, and take f and g, that is, CF and EF, equal to
each other (since the refraction at the point F is the same no matter how long the line
CF may be), then h(p — x) = rx or h:r = x:(p — x), or h:r = QF:FP; hence the sines
of the angles of incidence and of refraction, FPand QF, are in inverse ratio to r and h,
the densities of the media in which the incidence and the refraction take place.
However, this density is not to be understood with respect to us, but to the resistance
which the light rays meet. Thus we have a demonstration of the computation exhibited
elsewhere in these Acta, where we presented a general foundation of optics, catoptrics,
and dioptrics. Other very learned men have sought in many devious ways what
someone versed in this calculus can accomplish in ‘these lines as by magic.

- This I shall explain by still another example. Lét 13 [Figure 3] be a curve of such a
nature that, if we draw from one of its points, such as 3, six lines 34 ,35,36,37,38,39 to
six fixed points 4, 5, 6, 7, 8, 9 on the axis, then their sum is’equal to a given line. Let




