What Is a Limit?

Leibniz (1684): If any continuous transition is proposed terminating in a certain limit, then it is possible to form a general reasoning, which covers also the final limit.

Newton (1687): The ultimate ratio of evanescent quantities ... [are] limits towards which the ratios of quantities decreasing without limit do always converge; and to which they approach nearer than by any given difference, but never go beyond, nor in effect attain to, till the quantities are diminished in infinitum.

Maclaurin (1742): The ratio of $2x + e$ to a continually decreases while e decreases and is always greater than the ratio of $2x$ to a while e is any real increment, but it is manifest that it continually approaches to the ratio of $2x$ to a as its limit.

D'Alembert (1754): This ratio $[a : 2y + z]$ is always smaller than $a : 2y$, but the smaller z is, the greater the ratio will be and, since one may choose z as small as one pleases, the ratio $a : 2y + z$ can be brought as close to the ratio $a : 2y$ as we like. Consequently, $a : 2y$ is the limit of the ratio $a : 2y + z$.

Lacroix (1806): The limit of the ratio $(u_1 - u)/h$... is the value towards which this ratio tends in proportion as the quantity h diminishes, and to which it may approach as near as we choose to make it.

Cauchy (1821): If the successive values attributed to the same variable approach indefinitely a fixed value, such that they finally differ from it by as little as one wishes, this latter is called the limit of all the others.