12 Isaac Newton

“motion along the curve; and his discovery of a pattern in the results which
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Sir Isaac Newton (1642-1727) did not dominate even English
mathematical and scientific life until the successful publication of his
Philosophiae Naturalis Principia Mathematica (The Mathematical
Principles of Natural Philosophy) in 1687 (see 12.B). Until then the vast
bulk of his discoveries lay in his desk drawers, known only in outline to a
few friends and colleagues. Afterwards, when he left Cambridge and
moved to London, where he was made director of the Royal Mint, he began
to publish increasingly, but even so it has remained for modern scholars to :
print more of Newton’s mathematical work than Newton ever did. So the -
picture of Newton that we have, and the nature of his influence, are
necessarily complicated. His first love was for mathematics, and his initial
years at Cambridge were spent mastering the literature; works by Oughtred,
Wallis, and especially Descartes’'s Geometry and the numerous
commentaries on it. But soon he left them behind, and in 1664 began to do
his own original research. Our first selections show him at work in this
period investigating curves in the Cartesian style, but insisting on the
centrality of the problem of tangents (see 12.A1, 12.A3, 12.A5). His use of
infinite series lent his work a generality which surpassed Descartes’s (see
12.A2,12.A3), but two other features of his thought are also particularly
noteworthy: his emphasis on the tangent as the instantaneous direction of
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yielded him an algorithm (see 12.A4, 12.A5). Soon he realized that
quadrature problems were inverse to tangency problems, and he was then-
in possession of what can be called the Newtonian calculus.

This calculus makes certain kinds of problems easy which had bee
difficult, and suggested to Newton that it was now possible to tackle.
much harder problem, the inverse tangent problem (raised in 12.A
which he regarded as a generalization of the finding of areas. His for
rules for ‘differentiation’ or finding fluxions did not, of course, invert in
simple way, but he found, as his two letters to Leibniz make clear ( o
12.C), that his method of infinite series was a great help here too, althougd
it was not the only method.

Isaac Newton

381

12.A Newton’s. Invention of the Calculus

12.A1 Tangents by motion and by the o-method

Lemma

If two bOdys A, B, mOVe.unifOMely the one fr()m a to ¢, d’ e, f; s
other b g k.l &c: in the same time,
Then are the lines %’ & cd, & de, & eﬁ& . . ., ’p’ )
.n,Ot it 1 bg, " gh,~ bk, i, c: as their velocnysq. And though they move
ormely yet are the infinitely little lines which each moment they describ
cribe, as

that if the described lines b
& ee (ac =)x, & (bg =
(ad =)x + po, & (bh =)y + qo in the next. o=y

Demonstration

Now if the equation expressing the relation

3
X" —~abx +a* —dyy = 0.1 ma i
. Yy substitute
because (by the lemma) they as well as x &xy+

twixt the lines x & y bee
po & y .+'qo into the place of x & A
doe signify the lines described by the
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bodys A & B. By doeing so there results
x> + 3poxx + 3ppoox + p30® — dyy — 2dgoy — dgqqoo = 0.
—‘abx  — abpo
+al
But x* — abx + a® — dyy = 0 (by supp). Therefore there remaines onely
3poxx + 3ppoox + p30® —2dqoy — dgqoo = 0.
— abpo '
Or dividing it by o tis
3px? + 3ppox + p300 —2dqy — dgqoo = 0.
— abp
Also those termes are infinitely little in which o is. Therefore omitting them there rests
3pxx — abp — 2dgqy = 0.

The like may bee done in all other equations.

12.A2 Rules for finding areas

The general method which I had devised some time ago fo.r measuring t‘he quanltlt.y (:;'
curves by an infinite series of terms you have, in the following, rather briefly explaine

rowly demonstrated. . '
th?}[{l) rtlﬁcr: baseyAB of some curve AD let the ordinate BD bfa perpendlcula:r and let Ag be
called x and BD y. Let again a, b, c, ... be given quantities and m, n integers.-Then

ﬁ“ucifc"f/" =y, then will [na/(m + n)]x* *™/" equal the area ABD. The matter will b?-
evident by example.
Example 1 1f x*(= 1 x x1) = y, that is, if @ =n=1and m=2, then 4x*=4BD.
Example 2 If 4Jx(= 4x}) = y, then &xi(=8,/x%) = ABD.
Example 3 If i/xs( = x%) =y, then 2x3(= 33/x%) = ABD.

Example 4 If (1/x*)(=x"2?)=y, that is, if a=n=1 and m= -2, th :

([1/—1]x"t =) — x~ (= —[1/x]) = «BD infinitely extended in thc': dircctionl(?fotB
computation sets its sign negative because it lies on the further side of the line

- i e = BDo.
Example 5 If 2/3./x3(= 3x~%) = y, then 2/— )x ¥ = —(2/ /%) o

= just as
Example 6 If (1/x)(= x~!) =y, then (1/0)x$11 = (1/0)x° = (1/0) x 1= oo, just a
-area of the hyperbola is on each side of the line BD.

Isaac Newton 383

Rule 2

If the value of Yy is compounded of several terms of that kind the area also will be
compounded of the areas which arise separately from each of those terms.

Let its first examples be these. If x> 4+ x* — y>then4x® + & = ABD. For if there be
always BF = x2 and FD = x%, then by the preceding rule 4x3 = the surface 4FB
described by the line BF and %x! = AFp described by DF; and consequently
3x* + &% = the whole ABD. Thus if x2 — x* =y, then I — &t = 4BD: and if

3x —2x% + x3 — 5x* = y, then X% — B3 4 Lyt D45 ABD.

12.A3 The sine series and the cycloid

Ifitis desired to find the sine 4B from the arc aD given, of the equation z = x + &x3 +
7o%° + 135x7 ... found above (supposing namely that 4B — X,0D = zand da = 1)1
extract the root, which will be x— 5 — 32° + thez® — s’ + 3638802 ... . If,

moreover, you want the cosine AP of that given arc, make AB(= \/ [1-xP=1-
12 444 __ 1 6 1.8
227 + 332" — 5352° + 03352° —

36788002 ° . . . .

Let it be noted here, by the way, that when you know 5 or 6 terms of those roots you
will for the most part be able to prolong them at will by observing analogies. Thus you
may prolong this x = z + 472 1,3 772* + 1352° ... by dividing the last term by
these numbers in order 2,3,4,5,6,7,.. ;and thisx = 7 — 2% + 1352° — 50402 ... by
these2 x 3,4 x 5,6 x 7, 8 x 9,10 x 11,.. ; and this x = 1 ~ 327 + Azt — o1 6

— 5302° ...
by these 1x2,3 x4, 5x6,7x8,9x10,... while this z = x + Lx® 4 xS 4

Ix13x3 5%x5 7x
5 7 H :
TizX ... you may produce by multiplying by these2 X3 7%x5 6 x T X0

And so for others.

Let these remarks suffice ‘for geometrical curves, Bﬁt, indeed, if the curve is
mechanical it yet by no means spurns our method. Take, for example, the cycloid




e

* x/3/[a® + x*] = y. And similarly in other cases.
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ADFG whose vertex is A and axis AH while AKH is the ‘whelegl’Dby v&zhichb(i)tv;;
. Setting now AB = x, = y(asa
ted. And let the surface ABD be sought. Se :
izrée;z: 1, I seek in the first instance the length of BD. Prgc:.lsely, by the natuf of a
cycloid, KD ’is equal to the arc AK, and thergforelthsa whole:j l;?e BDth: rﬁi(c ezi'il g(; ?}::
, ) = xt — 4x? — Lx? — Ax} ... and (from ,
But BK(= /[x — x“]) = x7 — 3x? — §x? — {¢
AK. But BK( }/L

2t + it i ence the whole line BD =
arc AK = x%+gxz + 43qx2 + 1i3x%..., so that in consequD S g g e Bl =
2xt —4x? — bx¥ — &x? . And (by Rule 2) the area ABD = $x2 - +
~4
Ly
252X ...,

Or more briefly thus. Since the straight line 4K is parallel to th? Ellng]e':n:’ ng) , f}z :v:;l
i e lin , ,
be to BK as the momentum of tzhe line 1;4B t10 ;he Ilngmenlu;l;l Oix% Hones (b
: = x¥] = Lx 7 /[x ~ x¥or x 7T — $x? — Ix? — hxt — o3exd L |
)1;\1/[);) }E;CD] Zi%x l\x/%[— %x%]— #x? —53ex?. .. and the surface ABD = 4xi —
uie = -3
PN S W: S WY SN T &
X2 — X X 3168* 2 , ., ., ) ) , _
15In a Zl%t diS;iSI;lilar way you will (on setting C as the circle’s centre and CB = x)
obtain the area CBDF, and so on.

12.A4 Quadrature as the inverse of fluxions

0 have base AB = x, perpendicular ordinate BD = y and area

II:;Daiyz.c ’lIl‘:l,(Z g[? = 0, BK = vand the rectangle BBH K(ov) equal to _the spz;ce rﬁﬂill).

It is, therefore, Af=x + 0 and 4B = z + ov. With 'these premisses, f;;)lowm y

arbitrarily assumed relationship between x and z I seek yin th}e wa%/) };(_)tu ts:c(i: olor an%.

Take at will %x% = z or $x® = z2. Then, when x + 0(24[2 is su 2s i u3 iyt

z + ov(Adp) for z, there arises (by the nature of tl.w. cupl/e)sg(x +2 3x 3 (—ii- i)Ccl(i)n o=

z% + 2zov + 0%*v?. On taking away equal quantities ggx and z?%) and div gﬁ o et
by o, there remains §(3x* + 3x0 + 0?) = 2zv + ov?. If we now suppose

infinitely small, that is, o to be zero, v and y will be equal and terms multiplied by o will .

3 .
vanish and there will consequently remz‘iinlg X 3x2 = 221.; or2 %;2(= zy) = %x?y, that s,
x%(= xz/x%) = y. Conversely therefore if x7 = y, thpn will X' =z o+ — ¢ and
Or in general if [n/(m + n)]ax™*"/" = z, that is, by sqttlngd?a (m s
m+n = p,ifcx?™ = zorc"x? = z",then when x + ois sul?stltuten (1rxan e =,
what is its equivalent, z + oy) for z there arises c"(x? 4 pox?~!..,

2" + noyz"~!' ..., omitting the other terms, to be precise, whif:h Would ultlm]a;teloy f
vanish. Now, on taking away the equal terms ¢"x? and z" and d1v1dmg thg r‘es.t yb -
there r.emain,s ¢"px?~1 = nyz"~ (= nyz"/z) = nyc"x?/cx?". That is, on dividing by

¢"x?, there will be px~! = ny/cxP" or pex? ™" = y; in other words, by rf:l?tormg

s 2 : me

: na/(m + n) for o and m + n for p, that is, m for p —n and na for p(c';:gzre_\zl Azc:” {
ax™" = y. Conversely therefore if ax™/" = y, then will [n/(m + n)Jax =z

to be proved. _ ' )
0Herré in passing may be noted a method by which as many curves as you ple

i i ill for thg
whose areas are known may be found: namely, by assuming any equation at will for th

it i i i . S0
relationship between the area z and from it in consequence seek'mg the ordma'ti;i1 y o
you should suppose ./[a®+x2]=2z, by computation you W i

IR
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12.A5 Finding fluxions of fluent quantities

The moments of the fluent Quantities (that is, their
of which they increase during each infinitely small period of time) are as their speeds of

Let there be given, accordingly, any equation x3 — gx2 + axy —y3=0 and
substitute x + xo in place of x and y + Yo in place of y: there will emerge

(3 + 3x0x? + 3x%20%x + %%0%) — (ax? + 2ax%o0x + ax?o?)
+ (axy + axoy + ayox + axyo®) — (y® + 3yoy? + 3y%0%y + 3%0%) = 0,

Now by hypothesis x3 — gx2 + axy — y> = 0,and when these terms

areerased and the
rest divided by o there will remain '

3x%x% 4 3%20x + %30% — 2g5%x —axX’o+axy+ayx taxyo—3yy? —3y%0y — 352 =0,

But further, since o is supposed to be infinitely small so that jt be able to express the
moments of quantities, terms which have it as a factor will be equivalent to nothing in
respect of the others. I therefore cast them out and there remains 3%x? — 2a%x +
axy + ayx — 3py? = (.

It is accordingly to be observed that terms not multiplied by o will always vanish, as
also those multiplied by o of more than one dimension; and that the remaining terms

after division by o will always take on the form they should have according to the rule.
This is what I wanted to show.

12.A6 Finding fluents from a fluxional relationship

Problem |

When a fluent quantity is exhibited, the relationship of whose moments to those of some
other fluent quantity is given, to find the relation of the quantities to one another.
Multiply the value of the ratio of the moments of the quantity sought to the moments

some denominator of severa] terms) by the exhibited quantity, then divide each term
individually by its own number of dimensions in this same quantity: what results will
be the value of the quantity sought.



