ARITHMETIC

57. The sum of the logarithms of half radius and any given arc is equal to the
sum of the logarithms of half the arc and the complement of the half arc. Whence
the logarithm of the half arc may be found if the logarithms of the other three

be given. ..

Article 58 deals with the logarithms of all arcs not less than 45 degrees.

59. To form a logarithmic table.

Here follows a description of the construction of a table of 45 pages, each page devoted
to one degree divided into minutes. -

Napier’s table is constructed in quite the same form as that used at present, except that
the second (sixth) column gives sines for the number of degrees indicated ab ’rjhe top (bot-
tom) and of minutes in the first (seventh) column, the third (fifth) column gives th('a cor-
responding logarithm, and the fourth column gives the differentiae between the logarithms
in the third and fifth columns, these being therefore essentially logarithmic tangents or

cotangents. A few entries follow.

+/=
0° min sines logarithm  differentiae logarithm sines
0 0 infinitum infinitum 0 10000000 69
1 2909 81425681 81425680 1 10000000 59
2 5818 74494213 74494211 2 9999998 58
3 87217 70439560 70439560 4 0999998 57
+/-
30° min sines logarithm  differentiae logarithm sines
0 5000000 6931469 5493059 1483410 8660254 60
1 5002519 6926432 5486342 1440090 8658799 59
2 5005038 6921399 5479628 1441771 8657344 58
44° min
59 7069011 3468645 5818 3462827 7071068 1
60 7071068 3465735 0 3465735 7071068 0

min 45°
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Hence log sin 3’ = log 8727 = 70439560,
log sin 30° 1’ = log 5002519 = 6926432,
log sin 45° = log 7071068 = 3465735; (half of log sin 30°, Art. 56),
also log sin 90° = log 10000000 = 0.

5 PASCAL. THE PASCAL TRIANGLE

The so-called Pascal triangle appears in a treatise by Blaise Pascal (1623-1662), published
posthumously under the title Traité du triangle arithmétique, avec quelques autres petits
traités sur lo méme manidre (Paris, 1665). This treatise is important not only because of its
careful examination of the properties of the binomial coefficients, but also because of their
application to problems in games of chance. At one place Pascal expresses with clarity the
principle of complete induction.-

The Pascal triangle appears for the first time (so far as we know at present) in a book of
1261 written by Yang Hui, one of the mathematicians of the Sung dynasty in China.! The
properties of binomial coefficients were discussed by the Persian mathematician Jamshid
AlKashi in his Key to arithmetic of ¢. 1425.2 Both in China and in Persia the knowledge of
these properties may be much older. This knowledge was shared by some of the Renaissance
mathematicians, and we see Pascal’s triangle on the title page of Peter Apian’s German
arithmetic of 1527. After this we find the triangle and the properties of binomial coefficients
in several other authors.®
" Pascal wrote his treatise probably by the end of 1654. It can be found in the Oeuvres,

éd. L. Brunschvicg and P. Boutroux, III (Hachette, Paris, 1909), 456 seq., and in other

ditions of Pascal’s work. A paraphrase of certain theorems can be found in H. Meschkowski,
Ways of thought of great mathematicians (Holden-Day, San Francisco, 1964), 36—43.

TREATISE ON THE ARITHMETIC TRIANGLE

1 designate as the arithmetic triangle a figure of which the construction is as
follows [Fig. 1]. Through an arbitrary point G I draw 2 lines perpendicular to
each other, GV and G{, on each of which I take as many equal and continuous
parts as I like, beginning at &, which I call 1, 2, 3, 4, ete., and these numbers are
the indices [exposans] of the divisions of the lines.

Then I join the points of the first division, which are on each of the two lines,
by another line that forms a triangle of which this line is the base. :

I also join the two points of the second division by another line that forms a
second triangle of which this line is the base.

1 J. Needham, Science and civilisation in China, IIT (Cambridge University Press, New
York, 1959), 135.

2 Russian translation by B. A. Rozenfel’d (Gos. Izdat, Moscow, 1956); see.also Selection
1.3, footnote 1.

3 Smith, History of mathematics, IL, 508-512. See also our Selection I1.9 (Girard).
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And joining in this way all the division points which have the same indices I
form with them as many #riangles and bases.

I draw through every one of the division points lines parallel to the sides, and
these by their intersections form small squares which T call cells [cellules].

And. the cells that are between two parallels that run from left to right are
called cells of the same parallel rank, such as the cells @, o, m, etec., or @, ¥, 0, ete.

And those that are between two lines that run from the top downward are called
cells of the same perpendicular rank, such as the cells G, ¢, A, D, ete. and these:
o, ¢, B, etc.

‘And those that the same base traverses diagonally are called cells of the same
base, such as the following: D, B, 0, A, and these: 4, ¢, 7.

The cells of the same base that are equally distant from their extremities are
called reciprocal, such as these: B, R and B, 8, because the index of the parallel
rank of the one is the same as the index of the perpendicular rank of the other,
as appears in the example, where E is in the second perpendicular and in the
fourth parallel rank, and E is in the second parallel and in the fourth per-
pendicular rank, reciprocally. It is easy enough to show that those which have
their indices reciprocally equal are in the same base and equally distant from its
extremities.

Tt is also quite easy to demonstrate that the index of the perpendicular rank
of any cell whatsoever, added to the index of its parallel rank, exceeds the index
of its base by unity.

For example, the cell F is in the third perpendicular rank and in the fourth
parallel one, and in the sixth base, and its two indices of the ranks 3 + 4 exceed
the index 6 of the base by unity, which results from the fact that the two sides

of the triangle are divided into an equal number of parts, but that is rather
understood than demonstrated.
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The following remark is of the same nature: that every base contains one cell
more than the preceding one, and every one contains as many cells as its index
has units; the second base go, for instance, has two cells, the third Ay has three
of them, ete.

We now place numbers in each cell and this is done in the following way: the
number of the first cell which is in the right angle is arbitrary, but once it has
been placed all the other numbers are determined, and for this reason it is called
the generator of the triangle. And every one of the other numbers is specified by
this sole rule:

The number of each cell is equal to that of the cell preceding it in its per-
pendicular rank plus that of the cell which precedes it in its pafallel rank. For
instance, the cell ¥, that is, the number of the cell F, is equal to cell C plus cell
E, and so the others.

From this many consequences can be drawn. Here are the most important
ones, where I consider-the triangles whose generator is unity, but what can be
said about them will also apply to the others.

FIRST CONSEQUENCE

In every arithmetic triangle all the cells of the first parallel rank and of the first
perpendicular rank are equal to the generator.

Indeed, by the construction of the triangle, every cell is equal to the cell which
precedes it in its perpendicular rank plus the cell that precedes it in its parallel
rank. Now, the cells of the first parallel rank have no cells which precede them
in their perpendicular ranks, nor have those of the first perpendicular rank any
in their parallel ranks: hence they are all equal to each other and to the
generating first number.

And so ¢ is equal to G + zero, that is, ¢ is equal to G.

And so 4 is equal to ¢ + zero, that is, ¢.

And so ¢ is equal to G + zero, and = equal to ¢ -+ zero.

And so the others.

sing a more modern notation, in which we call P} the cell of parallel rank [ and vertical

&+ 17— 2)!

P = & — DIg = DI’

k
Pt = ZPLI; eg,w=DR+0+y+ g

i=1

K
P{‘:ZP{‘*; eg,C =B+ ¢+ o

i=1




24 | 1 ARITHMETIC
k-1 -1 G
4. P;c_1=ZZP§; eg f—g=R+0+d+ptrtmtotC
i=1 j=1

where g = 1, the generator;

5. P{C=P§c; e.g.,(p=g=G’7r=A=G,D=A=G.
6. All P¥ = Pi, k fixed; eg., oy BEMg is equal to @y RSN;
1 zpf=2 Pi, k+ 1= fixed number = a, i+j=a—1

Lk=1,.,n 1,j=1,..,n-1
e.g.,D+)\+B+0=2A+2n,b+2w;
Pe=2072 k+l=m

8.
Lk=1,..,n
9. 1+2+...+2n___2n+1_1;
P p=-1
0. > Pr=2 Z P+ Pp, [og, P+ Pi+ P§=2(P5+ P+ P3,

l=n i=n-1

E+l=m i+j=n—1 p=n—2; e.g.,D+B+0=2A+2:p+1r;

11. Pl =2Pi-t = 2P_,; eg,0 =0+ B=25

TWELFTH CONSEQUENCE

In every arithmetic triangle,

upper is to the lower as the num : .
is to the number of those from the lower to the bottom, inclusive.

Let the two contiguous cells, arbitrari
then I say that

B is to c as 2 is to 3
lower upper because there are because there are
one one two cells between three cells between
E and the first, C and the top,
namely E, H; namely C, B, p.

Although this proposition has an infin
a very short demonstration by supposing two lemmas:
The first one, evident in itself, is that this propor
base; because it is clear enough that ¢ is to o as 1is to 1.
The second one is that if this propositi
necessarily be true in the next base. From
be true in all bases, because it is true in

on is true in an arbitrary base, /
which it is clear that it will necessarily ‘
the second base because of the first

if two cells are contiguous in the same base, the
ber of cells from the upper to the top of the base

ly chosen on the same base, be B, C;

ite number of cases I shall give for it

tion occurs in the second
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lemma; hence by means of the second lemma it is true in the third base, hence in
the fourth base, and so on to infinity.*

Tt is therefore necessary to demonstrate only the second lemma, and this can
be done in the following way. Let this proportion be true in an arbitrary base,
as in the fourth one D, that is, if Disto Bas 1isto 3, and Bto 0 as 2 to 2, and
0to Aas 3 to 1, ete., then I say that the same proportion will be true in the next
base, Hu, and that, for example, & is to C as 21is to 3.

Indeed, D is to B as 1 is tp 3, by hypothesis.

Hence D + Bisto Bas1 + 3isto 3.

\_V_J H_/
E igtoBas 4 isto3.
In the same way: B is to 6 as 2 is to 2, by hypothesis.
Hence B + 0'is to B as 2 + 2 is to 2.

S—~— S
¢ istoBas 4 isto2.
But Bis to ¥ as 3 is to 4.

Hence, by the double proportion,® C'is to F as 3is to 2. Q.E.D.

The proof can be given in the same way in all the other cases, since this proof
is founded only on the fact that this proportion is true in the preceding base, and
that every cell is equal to its preceding one plus the one above it, which is true
in all cases.®

There follow more * consequences,” numbered 13-19.” The article ends with a “ Problem ”:

Given the indices of the perpendicular and of the parallel rank of a cell, to find
the number of the cell, without using the arithmetic triangle.

4 This seems to be the first satisfactory statement of the principle of complete induction.
See H. Freudenthal, “ Zur Geschichte der vollstindigen Induktion,” Archives Internationales
des Sciences 22 (1963), 17-37.

8 The text has “proportion troublée,” probably & misprint for ““proportion doublée.”

¢ The meaning of this is as follows. Given

PLiPity = 3 (nbasok +1— 1)

But
Pl 4 PLtL = PLtY  (rule of formation of the triangle);
hence PiFL:PLY = E-I-k—_!,
k—1
14+ 1

P;ctlltpktzz = IG_-;—2’

Pyt Pty = l_J;_fL_I_l;
hence , PPy = LT (inbasok + ).

7 For example, consequence 17 states that
3 !
> Pi: ZP;c =k:l, eg., (B + ¢+ o):(B + A4) = 3:2.
i=1 i=1

These consequences can all be found in the translation of Pascal’s paper in Smith, Source
book, pp. 74-75. )




